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Preface

This book is intended to be an introduction to the theory of thermo-fluid
dynamics of two-phase flow for graduate students, scientists and practicing
engineers seriously involved in the subject. It can be used as a text book at
the graduate level courses focused on the two-phase flow in Nuclear
Engineering, Mechanical Engineering and Chemical Engineering, as well as
a basic reference book for two-phase flow formulations for researchers and
engineers involved in solving multiphase flow problems in various
technological fields.

The principles of single-phase flow fluid dynamics and heat transfer are
relatively well understood, however two-phase flow thermo-fluid dynamics
is an order of magnitude more complicated subject than that of the single-
phase flow due to the existence of moving and deformable interface and its
interactions with the two phases. However, in view of the practical
importance of two-phase flow in various modern engineering technologies
related to nuclear energy, chemical engineering processes and advanced heat
transfer systems, significant efforts have been made in recent years to
develop accurate general two-phase formulations, mechanistic models for
interfacial transfer and interfacial structures, and computational methods to
solve these predictive models.

A strong emphasis has been put on the rational approach to the derivation
of the two-phase flow formulations which represent the fundamental
physical principles such as the conservations laws and constitutive modeling
for various transfer mechanisms both in bulk fluids and at interface. Several
models such as the local instant formulation based on the single-phase flow
model with explicit treatment of interface and the macroscopic continuum
formulations based on various averaging methods are presented and
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discussed in detail. The macroscopic formulations are presented in terms of
the two-fluid model and drift-flux model which are two of the most accurate
and useful formulations for practical engineering problems.

The change of the interfacial structures in two-phase flow is dynamically
modeled through the interfacial area transport equation. This is a new
approach which can replace the static and inaccurate approach based on the
flow regime transition criteria. The interfacial momentum transfer models
are discussed in great detail, because for most two-phase flow, thermo-fluid
dynamics are dominated by the interfacial structures and interfacial
momentum transfer. Some other necessary constitutive relations such as the
turbulence modeling, transient forces and lift forces are also discussed.

Mamoru Ishii, Ph.D.

School of Nuclear Engineering
Purdue University

West Lafayette, IN, USA

Takashi Hibiki, Ph.D.
Research Reactor Institute
Kyoto University
Kumatori, Osaka, Japan

September 2005



Foreword

Thermo-Fluid Dynamics of Two-Phase Flow takes a major step forward
in our quest for understanding fluids as they metamorphose through change
of phase, properties and structure. Like Janus, the mythical Roman God
with two faces, fluids separating into liquid and gas, each state sufficiently
understood on its own, present a major challenge to the most astute and
insightful scientific minds when it comes to deciphering their dynamic
entanglement.

The challenge stems in part from the vastness of scale where two phase
phenomena can be encountered. Between the microscopic nano-scale of
molecular dynamics and deeply submerged modeling assumptions and the
macro-scale of measurements, there is a meso-scale as broad as it is
nebulous and elusive. This is the scale where everything is in a permanent
state of exchange, a Heraclitean state of flux, where nothing ever stays the
same and where knowledge can only be achieved by firmly grasping the
underlying principles of things.

The subject matter has sprung from the authors’ own firm grasp of
fundamentals. Their bibliographical contributions on two-phase principles
reflect a scientific tradition that considers theory and experiment a duality as
fundamental as that of appearance and reality. In this it differs from other
topical works in the science of fluids. For example, the leading notion that
runs through two-phase flow is that of interfacial velocity. It is a concept
that requires, amongst other things, continuous improvements in both
modeling and measurement. In the meso-scale, this gives rise to new science
of the interface which, besides the complexity of its problems and the
fuzziness of its structure, affords ample scope for the creation of elegant,
parsimonious formulations, as well as promising engineering applications.
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The two-phase flow theoretical discourse and experimental inquiry are
closely linked. The synthesis that arises from this connection generates
immense technological potential for measurements informing and validating
dynamic models and conversely. The resulting technology finds growing
utility in a broad spectrum of applications, ranging from next generation
nuclear machinery and space engines to pharmaceutical manufacturing, food
technology, energy and environmental remediation.

This is an intriguing subject and its proper understanding calls for
exercising the rigorous tools of advanced mathematics. The authors, with
enormous care and intellectual affection for the subject reach out and invite
an inclusive audience of scientists, engineers, technologists, professors and
students.

It is a great privilege to include the Thermo-Fluid Dynamics of Two-
Phase Flow in the series Smart Energy Systems: Nanowatts to Terawatts.
This is work that will stand the test of time for its scientific value as well as
its elegance and aesthetic character.

Lefteri H. Tsoukalas, Ph.D.
School of Nuclear Engineering
Purdue University

West Lafayette, IN, USA

September 2005
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Chapter 1
INTRODUCTION

1.1 Relevance of the problem

This book is intended to be a basic reference on the thermo-fluid dynamic
theory of two-phase flow. The subject of two or multiphase flow has
become increasingly important in a wide variety of engineering systems for
their optimum design and safe operations. It is, however, by no means
limited to today’s modern industrial technology, and multiphase flow
phenomena can be observed in a number of biological systems and natural
phenomena which require better understandings. Some of the important
applications are listed below.

Power Systems

Boiling water and pressurized water nuclear reactors; liquid metal fast
breeder nuclear reactors; conventional power plants with boilers and
evaporators; Rankine cycle liquid metal space power plants; MHD
generators; geothermal energy plants; internal combustion engines; jet
engines; liquid or solid propellant rockets; two-phase propulsors, etc.

Heat Transfer Systems

Heat exchangers; evaporators; condensers; spray cooling towers; dryers,
refrigerators, and electronic cooling systems; cryogenic heat exchangers;
film cooling systems; heat pipes; direct contact heat exchangers; heat storage
by heat of fusion, etc.

Process Systems

Extraction and distillation units; fluidized beds; chemical reactors;
desalination systems; emulsifiers; phase separators; atomizers; scrubbers;
absorbers; homogenizers; stirred reactors; porous media, etc.
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Transport Systems

Air-lift pump; ejectors; pipeline transport of gas and oil mixtures, of
slurries, of fibers, of wheat, and of pulverized solid particles; pumps and
hydrofoils with cavitations; pneumatic conveyors; highway traffic flows and
controls, etc.

Information Systems
Superfluidity of liquid helium; conducting or charged liquid film; liquid
crystals, etc.

Lubrication Systems
Two-phase flow lubrication; bearing cooling by cryogenics, etc.

Environmental Control

Air conditioners; refrigerators and coolers; dust collectors; sewage
treatment plants; pollutant separators; air pollution controls; life support
systems for space application, etc.

Geo-Meteorological Phenomena

Sedimentation; soil erosion and transport by wind; ocean waves; snow
drifts; sand dune formations; formation and motion of rain droplets; ice
formations; river floodings, landslides, and snowslides; physics of clouds,
rivers or seas covered by drift ice; fallout, etc.

Biological Systems

Cardiovascular system; respiratory system; gastrointestinal tract; blood
flow; bronchus flow and nasal cavity flow; capillary transport; body
temperature control by perspiration, etc.

It can be said that all systems and components listed above are governed
by essentially the same physical laws of transport of mass, momentum and
energy. It is evident that with our rapid advances in engineering technology,
the demands for progressively accurate predictions of the systems in interest
have increased. As the size of engineering systems becomes larger and the
operational conditions are being pushed to new limits, the precise
understanding of the physics governing these multiphase flow systems is
indispensable for safe as well as economically sound operations. This means
a shift of design methods from the ones exclusively based on static
experimental correlations to the ones based on mathematical models that can
predict dynamical behaviors of systems such as transient responses and
stabilities. It is clear that the subject of multiphase flow has immense
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importance in various engineering technology. The optimum design, the
prediction of operational limits and, very often, the safe control of a great
number of important systems depend upon the availability of realistic and
accurate mathematical models of two-phase flow.

1.2 Characteristic of multiphase flow

Many examples of multiphase flow systems are noted above. At first
glance it may appear that various two or multiphase flow systems and their
physical phenomena have very little in common. Because of this, the
tendency has been to analyze the problems of a particular system,
component or process and develop system specific models and correlations
of limited generality and applicability. Consequently, a broad understanding
of the thermo-fluid dynamics of two-phase flow has been only slowly
developed and, therefore, the predictive capability has not attained the level
available for single-phase flow analyses.

The design of engineering systems and the ability to predict their
performance depend upon both the availability of experimental data and of
conceptual mathematical models that can be used to describe the physical
processes with a required degree of accuracy. It is essential that the various
characteristics and physics of two-phase flow should be modeled and
formulated on a rational basis and supported by detailed scientific
experiments. It is well established in continuum mechanics that the
conceptual model for single-phase flow is formulated in terms of field
equations describing the conservation laws of mass, momentum, energy,
charge, etc. These field equations are then complemented by appropriate
constitutive equations for thermodynamic state, stress, energy transfer,
chemical reactions, etc. @ These constitutive equations specify the
thermodynamic, transport and chemical properties of a specific constituent
material.

It is to be expected, therefore, that the conceptual models for multiphase
flow should also be formulated in terms of the appropriate field and
constitutive relations. However, the derivation of such equations for multi-
phase flow is considerably more complicated than for single-phase flow.
The complex nature of two or multiphase flow originates from the existence
of multiple, deformable and moving interfaces and attendant significant
discontinuities of fluid properties and complicated flow field near the
interface. By focusing on the interfacial structure and transfer, it is noticed
that many of two-phase systems have a common geometrical structure. It is
recalled that single-phase flow can be classified according to the structure of
flow into laminar, transitional and turbulent flow. In contrast, two-phase
flow can be classified according to the structure of interface into several
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major groups which can be called flow regimes or patterns such as separated
flow, transitional or mixed flow and dispersed flow. It can be expected that
many of two-phase flow systems should exhibit certain degree of physical
similarity when the flow regimes are same. However, in general, the
concept of two-phase flow regimes is defined based on a macroscopic
volume or length scale which is often comparative to the system length scale.
This implies that the concept of two-phase flow regimes and regime-
dependent model require an introduction of a large length scale and
associated limitations. Therefore, regime-dependent models may lead to an
analysis that cannot mechanistically address the physics and phenomena
occurring below the reference length scale.

For most two-phase flow problems, the local instant formulation based
on the single-phase flow formulation with explicit moving interfaces
encounters insurmountable mathematical and numerical difficulties, and
therefore it is not a realistic or practical approach. This leads to the need of a
macroscopic formulation based on proper averaging which gives a two-
phase flow continuum formulation by effectively eliminating the interfacial
discontinuities. The essence of the formulation is to take into account for the
various multi-scale physics by a cascading modeling approach, bringing the
micro and meso-scale physics into the macroscopic continuum formulation.

The above discussion indicates the origin of the difficulties encountered
in developing broad understanding of multiphase flow and the generalized
method for analyzing such flow. The two-phase flow physics are
fundamentally multi-scale in nature. It is necessary to take into account
these cascading effects of various physics at different scales in the two-phase
flow formulation and closure relations. At least four different scales can be
important in multiphase flow. These are 1) system scale, 2) macroscopic
scale required for continuum assumption, 3) mesoscale related to local
structures, and 4) microscopic scale related to fine structures and molecular
transport. At the highest level, the scale is the system where system
transients and component interactions are the primary focus. For example,
nuclear reactor accidents and transient analysis requires specialized system
analysis codes. At the next level, macro physics such as the structure of
interface and the transport of mass, momentum and energy are addressed.
However, the multiphase flow field equations describing the conservation
principles require additional constitutive relations for bulk transfer. This
encompasses the turbulence effects for momentum and energy as well as for
interfacial exchanges for mass, momentum and energy transfer. These are
meso-scale physical phenomena that require concentrated research efforts.
Since the interfacial transfer rates can be considered as the product of the
interfacial flux and the available interfacial area, the modeling of the
interfacial area concentration is essential. In two-phase flow analysis, the
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void fraction and the interfacial area concentration represent the two
fundamental first-order geometrical parameters and, therefore, they are
closely related to two-phase flow regimes. However, the concept of the two-
phase flow regimes is difficult to quantify mathematically at the local point
because it is often defined at the scale close to the system scale.

This may indicate that the modeling of the changes of the interfacial area
concentration directly by a transport equation is a better approach than the
conventional method using the flow regime transitions criteria and regime-
dependent constitutive relations for interfacial area concentration. This is
particularly true for a three-dimensional formulation of two-phase flow. The
next lower level of physics in multiphase flow is related to the local
microscopic phenomena, such as: the wall nucleation or condensation;
bubble coalescence and break-up; and entrainment and deposition.

1.3 Classification of two-phase flow

There are a variety of two-phase flows depending on combinations of
two phases as well as on interface structures. Two-phase mixtures are
characterized by the existence of one or several interfaces and discontinuities
at the interface. It is easy to classify two-phase mixtures according to the
combinations of two phases, since in standard conditions we have only three
states of matters and at most four, namely, solid, liquid, and gas phases and
possibly plasma (Pai, 1972). Here, we consider only the first three phases,
therefore we have:

Gas-solid mixture;
Gas-liquid mixture;
Liquid-solid mixture;
Immiscible-liquid mixture.

s

It is evident that the fourth group is not a two-phase flow, however, for all
practical purposes it can be treated as if it is a two-phase mixture.

The second classification based on the interface structures and the
topographical distribution of each phase is far more difficult to make, since
these interface structure changes occur continuously. Here we follow the
standard flow regimes reviewed by Wallis (1969), Hewitt and Hall Taylor
(1970), Collier (1972), Govier and Aziz (1972) and the major classification
of Zuber (1971), Ishii (1971) and Kocamustafaogullari (1971). The two-
phase flow can be classified according to the geometry of the interfaces into
three main classes, namely, separated flow, transitional or mixed flow and
dispersed flow as shown in Table 1-1.
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Table 1-1. Classification of two-phase flow (Ishii, 1975)
Class Typical Geometry Configuration Examples
regimes
Separated | Filmflow |  —~—~—~r Liquid film in gas | Film condensation
flows SR Gas film in liquid | Film boiling
Annular ; : Liquid core and Film boiling
flow gas film Boilers
Gas core and
liquid film
Jet flow Liquid jet in gas Atomization
Gas jet in liquid Jet condenser
Mixed or Cap, Slug Gas pocket in Sodium boiling in
Transitional | or Churn- §§§ liquid forced convection
flows turbulent
flow 8
Bubbly ;R Gas bubbles in Evaporators with
annular X liquid film with wall nucleation
flow L. gas core
Droplet - D Gas core with Steam generator
annular 5 droplets and liquid
flow DR film
Bubbly S I Gas core with Boiling nuclear
droplet SN droplets and liquid | reactor channel
annular : FE film with gas
flow ST bubbles
Dispersed Bubbly 2° 00 Gas bubbles in Chemical reactors
flows flow % °Q liquid
- Efele
Droplet i P Liquid droplets in | Spray cooling
flow gas
Particulate : RS Solid particlesin | Transportation of
flow gas or liquid powder

Depending upon the type of the interface, the class of separated flow can
be divided into plane flow and quasi-axisymmetric flow each of which can
be subdivided into two regimes. Thus, the plane flow includes film and
stratified flow, whereas the quasi-axisymmetric flow consists of the annular
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and the jet-flow regimes. The various configurations of the two phases and
of the immiscible liquids are shown in Table 1-1.

The class of dispersed flow can also be divided into several types.
Depending upon the geometry of the interface, one can consider spherical,
elliptical, granular particles, etc. However, it is more convenient to
subdivide the class of dispersed flows by considering the phase of the
dispersion. Accordingly, we can distinguish three regimes: bubbly, droplet
or mist, and particulate flow. In each regime the geometry of the dispersion
can be spherical, spheroidal, distorted, etc. The various configurations
between the phases and mixture component are shown in Table 1-1.

As it has been noted above, the change of interfacial structures occurs
gradually, thus we have the third class which is characterized by the
presence of both separated and dispersed flow. The transition happens
frequently for liquid-vapor mixtures as a phase change progresses along a
channel. Here too, it is more convenient to subdivide the class of mixed
flow according to the phase of dispersion. Consequently, we can distinguish
five regimes, i.e., cap, slug or churn-turbulent flow, bubbly-annular flow,
bubbly annular-droplet flow and film flow with entrainment. The various
configurations between the phases and mixtures components are shown in
Table 1-1.

Figures 1-1 and 1-2 show typical air-water flow regimes observed in
vertical 25.4 mm and 50.8 mm diameter pipes, respectively. The flow
regimes in the first, second, third, fourth, and fifth figures from the left are
bubbly, cap-bubbly, slug, churn-turbulent, and annular flows, respectively.
Figure 1-3 also shows typical air-water flow regimes observed in a vertical
rectangular channel with the gap of 10 mm and the width of 200 mm. The
flow regimes in the first, second, third, and fourth figures from the left are
bubbly, cap-bubbly, churn-turbulent, and annular flows, respectively. Figure
1-4 shows inverted annular flow simulated adiabatically with turbulent water
jets, issuing downward from large aspect ratio nozzles, enclosed in gas
annuli (De Jarlais et al., 1986). The first, second, third and fourth images
from the left indicate symmetric jet instability, sinuous jet instability, large
surface waves and skirt formation, and highly turbulent jet instability,
respectively. Figure 1-5 shows typical images of inverted annular flow at
inlet liquid velocity 10.5 cm/s, inlet gas velocity 43.7 cm/s (nitrogen gas)
and inlet Freon-113 temperature 23 °C with wall temperature of near 200 °C
(Ishii and De Jarlais, 1987). Inverted annular flow was formed by
introducing the test fluid into the test section core through thin-walled,
tubular nozzles coaxially centered within the heater quartz tubing, while
vapor or gas is introduced in the annular gap between the liquid nozzle and
the heated quartz tubing. The absolute vertical size of each image is 12.5 cm.
The visualized elevation is higher from the left figure to the right figure.
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Figure I-3. Typical air-water flow images observed in a rectangular channel of
200 mm X 10 mm
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Figure I-4. Typical images of simulated air-water inverted annular flow (It is cocurrent down
flow)

Figure I-5. Axial development of Inverted anmular flow (It is cocurrent up flow)
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1.4 Outline of the book

The purpose of this book is to present a detailed two-phase flow
formulation that is rationally derived and developed using mechanistic
modeling. This book is an extension of the earlier work by the author (Ishii,
1975) with special emphasis on the modeling of the interfacial structure with
the interfacial area transport equation and modeling of the hydrodynamic
constitutive relations. However, special efforts are made such that the
formulation and mathematical models for complex two-phase flow physics
and phenomena are realistic and practical to use for engineering analyses. It
is focused on the detailed discussion of the general formulation of various
mathematical models of two-phase flow based on the conservation laws of
mass, momentum, and energy. In Part I, the foundation of the two-phase
flow formulation is given as the local instant formulation of the two-phase
flow based on the single-phase flow continuum formulation and explicit
existence of the interface dividing the phases. The conservation equations,
constitutive laws, jump conditions at the interface and special thermo-
mechanical relations at the interface to close the mathematical system of
equations are discussed.

Based on this local instant formulation, in Part II, macroscopic two-phase
continuum formulations are developed using various averaging techniques
which are essentially an integral transformation. The application of time
averaging leads to general three-dimensional formulation, effectively
eliminating the interfacial discontinuities and making both phases co-
existing continua. The interfacial discontinuities are replaced by the
interfacial transfer source and sink terms in the averaged differential balance
equations

Details of the three-dimensional two-phase flow models are presented in
Part III. The two-fluid model, drift-flux model, interfacial area transport,
and interfacial momentum transfer are major topics discussed. In Part IV,
more practical one-dimensional formulation of two-phase flow is given in
terms of the two-fluid model and drift-flux model. It is planned that a
second book will be written for many practical two-phase flow models and
correlations that are necessary for solving actual engineering problems and
the experimental base for these models.
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LOCAL INSTANT FORMULATION

The singular characteristic of two-phase or of two immiscible mixtures is
the presence of one or several interfaces separating the phases or
components. Examples of such flow systems can be found in a large number
of engineering systems as well as in a wide variety of natural phenomena.
The understanding of the flow and heat transfer processes of two-phase
systems has become increasingly important in nuclear, mechanical and
chemical engineering, as well as in environmental and medical science.

In analyzing two-phase flow, it is evident that we first follow the
standard method of continuum mechanics. Thus, a two-phase flow is
considered as a field that is subdivided into single-phase regions with
moving boundaries between phases. The standard differential balance
equations hold for each subregion with appropriate jump and boundary
conditions to match the solutions of these differential equations at the
interfaces. Hence, in theory, it is possible to formulate a two-phase flow
problem in terms of the local instant variable, namely, F' = F'(x,t). This
formulation is called a local instant formulation in order to distinguish it
from formulations based on various methods of averaging.

Such a formulation would result in a multiboundary problem with the
positions of the interface being unknown due to the coupling of the fields
and the boundary conditions. Indeed, mathematical difficulties encountered
by using this local instant formulation can be considerable and, in many
cases, they may be insurmountable. However, there are two fundamental
importances in the local instant formulation. The first importance is the
direct application to study the separated flows such as film, stratified,
annular and jet flow, see Table 1-1. The formulation can be used there to
study pressure drops, heat transfer, phase changes, the dynamic and stability
of an interface, and the critical heat flux. In addition to the above
applications, important examples of when this formulation can be used



12 Chapter 2

include: the problems of single or several bubble dynamics, the growth or
collapse of a single bubble or a droplet, and ice formation and melting.

The second importance of the local instant formulation is as a
Sfundamental base of the macroscopic two-phase flow models using various
averaging. When each subregion bounded by interfaces can be considered
as a continuum, the local instant formulation is mathematically rigorous.
Consequently, two-phase flow models should be derived from this
formulation by proper averaging methods. In the following, the general
formulation of two-phase flow systems based on the local instant variables is
presented and discussed. It should be noted here that the balance equations
for a single-phase one component flow were firmly established for some
time (Truesdell and Toupin, 1960; Bird et al, 1960). However, the axiomatic
construction of the general constitutive laws including the equations of state
was put into mathematical rigor by specialists (Coleman, 1964; Bowen,
1973; Truesdell, 1969). A similar approach was also used for a single-phase
diffusive mixture by Muller (1968).

Before going into the detailed derivation and discussion of the local
instant formulation, we review the method of mathematical physics in
connection with the continuum mechanics. The next diagram shows the
basic procedures used to obtain a mathematical model for a physical system.

Physical System Mathematical System Model
Physical Concepts Mathematical Concepts Variables
Physical Laws General Axioms Field Equations
Particular Class of Constitutive Axioms Constitutive Equations
Materials (Determinism)
L Interfacial Conditions }

As it can be seen from the diagram, a physical system is first replaced by a
mathematical system by introducing mathematical concepts, general axioms
and constitutive axioms. In the continuum mechanics they correspond to
variables, field equations and constitutive equations, whereas at the singular
surface the mathematical system requires the interfacial conditions. The
latter can be applied not only at the interface between two phases, but also at
the outer boundaries which limit the system. It is clear from the diagram that
the continuum formulation consists of three essential parts, namely: the
derivations of field equations, constitutive equations, and interfacial
conditions.

Now let us examine the basic procedure used to solve a particular
problem. The following diagram summarizes the standard method. Using
the continuum formulation, the physical problem is represented by idealized
boundary geometries, boundary conditions, initial conditions, field and
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Physical Problem

> {ﬂ)rle_llL LExperimental Data l y

Initial Conditions 1 I
1
Boundary Conditions } > ‘ Solution |

| Interfacial Conditions I i

4 ; 1
I P R— L Assumptlons I <

constitutive equations. It is evident that in two-phase flow systems, we have
interfaces within the system that can be represented by general interfacial
conditions. The solutions can be obtained by solving these sets of
differential equations together with some idealizing or simplifying
assumptions. For most problems of practical importance, experimental data
also play a key role. First, experimental data can be taken by accepting the
model, indicating the possibility of measurements. The comparison of a
solution to experimental data gives feedback to the model itself and to the
various assumptions. This feedback will improve both the methods of the
experiment and the solution. The validity of the model is shown in general
by solving a number of simple physical problems.

The continuum approach in single-phase thermo-fluid dynamics is widely
accepted and its validity is well proved. Thus, if each subregion bounded by
interfaces in two-phase systems can be considered as continuum, the validity
of local instant formulation is evident. By accepting this assumption, we
derive and discuss the field equations, the constitutive laws, and the
interfacial conditions. Since an interface is a singular case of the continuous
field, we have two different conditions at the interface. The balance at an
interface that corresponds to the field equation is called a jump condition.
Any additional information corresponding to the constitutive laws in space,
which are also necessary at interface, is called an interfacial boundary
condition.

1.1 Single-phase flow conservation equations
1.1.1 General balance equations

The derivation of the differential balance equation is shown in the
following diagram. The general integral balance can be written by
introducing the fluid density p,, the efflux J, and the body source ¢, of
any quantity ¢/, defined for a unit mass. Thus we have
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I General Integral Balance |

Leibnitz Rule

I Axiom of Continuum l-;_

I General Balance Equation l

d
Efv P dV = _§A,,. n, - JydA + j;, pddV @-1)

where V_ is a material volume with a material surface A _. It states that the
time rate of change of p,¢, in V,, is equal to the influx through A, plus
the body source. The subscript k& denotes the K-phase. If the functions
appearing in the Eq.(2-1) are sufficiently smooth such that the Jacobian
transformation between material and spatial coordinates exists, then the
familiar differential form of the balance equation can be obtained. This is
done by using the Reynolds transport theorem (Aris, 1962) expressed as

d [ OF,
- VmﬂdV—fVdeV—l—j;AmEcvk-n dA 2-2)

where v, denotes the velocity of a fluid particle. The Green’s theorem
gives a transformation between a certain volume and surface integral, thus

fvv- FdV = SEAn-ﬂdA. 2-3)

Hence, from Eqgs.(2-2) and (2-3) we obtain

d _ o [oF,
o Vmﬂdv_ﬁm{—a;+v-(vkﬂ)]dv. 2-4)

Furthermore, we note that the Reynolds transport theorem is a special case of
Leibnitz rule given by

d

_ 95
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where V(¢) is an arbitrary volume bounded by A(t) and -7 is the surface
displacement velocity of A(t).

In view of Egs.(2-1), (2-3) and (2-4) we obtain a differential balance
equation

0
—“_p(;zbk + V- ('Ukpk'l/)k) =-V- Jk + pk¢k' (2-6)

The first term of the above equation is the time rate of change of the quantity
per unit volume, whereas the second term is the rate of convection per unit
volume. The right-hand side terms represent the surface flux and the volume
source.

1.1.2 Conservation equation

Continuity Equation

The conservation of mass can be expressed in a differential form by
setting

v, =1 ¢, =0, J =0 2-7)

since there is no surface and volume sources of mass with respect to a fixed
mass volume. Hence from the general balance equation we obtain

9
79% +V-(p0,) = 0. (2-8)

Momentum Equation
The conservation of momentum can be obtained from Eq.(2-6) by
introducing the surface stress tensor 7, and the body force g, , thus we set

Y = v,
So="T=pl -, 2-9)
& = G,

where / is the unit tensor. Here we have split the stress tensor into the
pressure term and the viscous stress &, . In view of Eq.(2-6) we have

Op,v
/;t L+ V(o) =-Vp, +V-& + pg,. (2-10)
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Conservation of Angular Momentum

If we assume that there is no body torque or couple stress, then all
torques arise from the surface stress and the body force. In this case, the
conservation of angular momentum reduces to

T,=17 (2-11)

where 7, denotes the transposed stress tensor. The above result is correct
for a non-polar fluid, however, for a polar fluid we should introduce an
intrinsic angular momentum. In that case, we have a differential angular
momentum equation (Aris, 1962).

Conservation of Energy
The balance of energy can be written by considering the total energy of
the fluid. Thus we set

2
U

o Y

J,=q,—1,-v, (2-12)

b =Gy + 2

k

where v, , g, and ¢, represent the internal energy, heat flux and the body
heating, respectively. It can be seen here that both the flux and the body
source consist of the thermal effect and the mechanical effect. By
substituting Eq.(2-12) into Eq.(2-6) we have the total energy equation

2

v
) Y
Pr [Uk + 2

] +V- (2-13)

2
u—|—v—’°'v
ot Pr | Uy 5 &

=_V‘Qk+v'(2/;c'vk)+pkgk'vk + G-

These four local equations, namely, Egs.(2-8), (2-10), (2-11) and (2-13),
express the four basic physical laws of the conservation of mass, momentum,
angular momentum and energy. In order to solve these equations, it is
necessary to specify the fluxes and the body sources as well as the
fundamental equation of state. These are discussed under the constitutive
laws. Apart from these constitutive laws, we note that there are several
important transformations of above equations. A good review of



2. Local Instant Formulation 17

transformed equations can be found in Bird et al. (1960). The important
ones are given below.

The Transformation on Material Derivative
In view of the continuity equation we have

0 ppth,
ot

%,
ot

+V - (o0, ) = py [ (2-14)

D
+vk-wk]zpkl';—fk.

This special time derivative is called the material or substantial derivative,
since it expresses the rate of change with respect to time when an observer
moves with the fluid.

Equation of Motion
By using the above transformation the momentum equation becomes the
equation of motion

D,v,
Py Dt

=—Vp, + V-G + p,g,. (2-15)

Here it is noted that D v, /Dt is the fluid acceleration, thus the equation of
motion expresses Newton’s Second Law of Motion.

Mechanical Energy Equation
By dotting the equation of motion by the velocity we obtain

o o v
—“[Pk 7’6] + V'[Pk ?’“'vk]

=0 Vp, + 0, (V- &)+ pv; - gy

(2-16)

For a symmetrical stress tensor
Vv, =@ -V)v,=V-(C v)-v,-(V-&). (2-17)

Thus, Eq.(2-16) may be written as
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(2-18)

This mechanical energy equation is a scalar equation, therefore it represents
only some part of the physical law concerning the fluid motion governed by
the momentum equation.

Internal Energy Equation
By subtracting the mechanical energy equation from the total energy
equation, we obtain the internal energy equation

Op,u .
i;t L+ V- (Pk“k”k) =-V-q, — pV v +C:Vv, + . (2-19)

Enthalpy Equation
By introducing the enthalpy defined by

Dy
Py

i =u, + (2-20)

the enthalpy energy equation can be obtained as

Op, . D :
——-—gktk + V- (szk”k) =-V-q, + Ik)—zt)k +&: VY, + 4, (2-21)

1.1.3 Entropy inequality and principle of constitutive law

The constitutive laws are constructed on three different bases. The
entropy inequality can be considered as a restriction on the constitutive laws,
and it should be satisfied by the proper constitutive equations regardless of
the material responses. Apart from the entropy inequality there is an
important group of constitutive axioms that idealize in general terms the
responses and behaviors of all the materials included in the theory. The
principles of determinism and local action are frequently used in the
continuum mechanics.

The above two bases of the constitutive laws define the general forms of
the constitutive equations permitted in the theory. The third base of the
constitutive laws is the mathematical modeling of material responses of a
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certain group of fluids based on the experimental observations. Using these
three bases, we obtain specific constitutive equations that can be used to
solve the field equations. It is evident that the balance equations and the
proper constitutive equations should form a mathematically closed set of
equations.

Now we proceed to the discussion of the entropy inequality. In order to
state the second law of thermodynamics, it is necessary to introduce the
concept of a temperature 7, and of the specific entropy s,. With these
variables the second law can be written as an inequality

d q q
— v 2k pdA— | ZE4V >0 2-22
3 e +9, T, ™ ). 7%= 2)

Assuming the sufficient smoothness on the variables we obtain

0 q ¢ _
—(p.s, )+ V- (p8.v +V-[—’°]———:A >0 (2-23)

where 4\, is the rate of entropy production per unit volume. In this form it
appears that Eq.(2-23) yields no clear physical or mathematical meanings in
relation to the conservation equations, since the relations of s, and T} to the
other dependent variables are not specified. In other words, the constitutive
equations are not given yet. The inequality thus can be considered as a
restriction on the constitutive laws rather than on the process itself.

As it is evident from the previous section, the number of dependent
variables exceed that of the field equations, thus the balance equations of
mass, momentum, angular momentum and total energy with proper
boundary conditions are insufficient to yield any specific answers.
Consequently, it is necessary to supplement them with various constitutive
equations that define a certain type of ideal materials. Constitutive equations,
thus, can be considered as a mathematical model of a particular group of
materials. They are formulated on experimental data characterizing specific
behaviors of materials together with postulated principles governing them.

From their physical significances, it is possible to classify various
constitutive equations into three groups:

1. Mechanical constitutive equations;
2. Energetic constitutive equations;
3. Constitutive equation of state.



20 Chapter 2

The first group specifies the stress tensor and the body force, whereas the
second group supplies the heat flux and the body heating. The last equation
gives a relation between the thermodynamic properties such as the entropy,
internal energy and density of the fluid with the particle coordinates as a
parameter.  If it does not depend on the particle, it is called
thermodynamically homogenous. It implies that the field consists of same
material.

As it has been explained, the derivation of a general form of constitutive
laws follows the postulated principles such as the entropy inequality,
determinism, frame indifference and local action. The most important of
them all is the principle of determinism that roughly states the predictability
of a present state from a past history. The principle of material frame-
indifference is the realization of the idea that the response of a material is
independent of the frame or the observer. And the entropy inequality
requires that the constitutive equations should satisfy inequality (2-23)
unconditionally.  Further restrictions such as the equipresence of the
variables are frequently introduced into the constitutive equations for flux,
namely, &, and g, .

1.14 Constitutive equation

We restrict our attention to particular type of materials and constitutive
equations which are most important and widely used in the fluid mechanics.

Fundamental Equation of State

The standard form of the fundamental equation of state for
thermodynamically homogeneous fluid is given by a function relating the
internal energy to the entropy and the density, hence we have

=t (5,)- (2-24)

And the temperature and the thermodynamic pressure are given by

o, _ Oy

T, = a—sk’ D = ‘8 (1/-,0;3-)“.

(2-25)

Thus in a differential form, the fundamental equation of state becomes

du, =T,ds, — p,d [L .
P

(2-26)
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The Gibbs free energy, enthalpy and Helmholtz free energy function are
defined by

g = —Iys + o (2-27)
Pk
i, =u, + 2 (2-28)
Py
i =uw —Tys, (2-29)

respectively. These can be considered as a Legendre transformation” (Callen,
1960) which changes independent variables from the original ones to the

first derivatives. Thus in our case we have

% = 9, (T, p;) (2-30)

* If we have

9y
Oz,

Il

Y= y(q"l:wz’"'axn); Pz

then the Legendre transformation is given by

Z = y—zj:'Pimi
i1

and in this case Z becomes

Z: Z (P17 ‘PZ’.“’})j’ mj+1,...’$n)_
Thus, we have

dZ = —zj: z,dP, + Zn: Pdz,.

i=1 i=j+1
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G = b (8, 1) (2-31)

fo = 5 (T 0:) (2-32)

which are also a fundamental equation of state.

Since the temperature and the pressure are the first order derivatives of
u, of the fundamental equation of state, Eq.(2-24) can be replaced by a
combination of thermal and caloric equations of state (Bird et al., 1960;
Callen, 1960) given by

2. = 0 (P, T}) (2-33)

w, =y, (o, T;)- (2-34)

The temperature and pressure are easily measurable quantities; therefore, it
is more practical to obtain these two equations of state from experiments as
well as to use them in the formulation. A simple example of these equations
of state is for an incompressible fluid

p, = constant

(2-35)
U, = U, (Tk )

And in this case the pressure cannot be defined thermodynamically, thus we
use the hydrodynamic pressure which is the average of the normal stress.
Furthermore, an ideal gas has the equations of state

D, = RyTipy,

(2-36)
Uy, = Uy (Tk)

where R,, is the ideal gas constant divided by a molecular weight.
Mechanical Constitutive Equation

The simplest rheological constitutive equation is the one for an inviscid
fluid expressed as

g =o. @37)
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For most fluid, Newton’s Law of Viscosity apples. The generalized linearly
viscous fluid of Navier-Stokes has a constitutive equation (Bird et al., 1960)

T = p, {vfuk + (Vvk)+] — [%,u,c — ,\k](v ‘v )0 (2-38)

where 4, and ), are the viscosity and the bulk viscosity of the k"-phase,
respectively.

The body forces arise from external force fields and from mutual
interaction forces with surrounding bodies or fluid particles. The origins of
the forces are Newtonian gravitational, electrostatic, and electromagnetic
forces. If the mutual interaction forces are important the body forces may
not be considered as a function only of the independent variables & and ¢.
In such a case, the principle of local actions cannot be applied. For most
problems, however, these mutual interaction forces can be neglected in
comparison with the gravitational field force g. Thus we have

g9 =g (2-39)

Energetic Constitutive Equation

The contact heat transfer is expressed by the heat flux vector g, , and its
constitutive equation specifies the nature and mechanism of the contact
energy transfer. Most fluids obey the generalized Fourier’s Law of Heat
Conduction having the form

q, = —K,-VT,. (2-40)

The second order tensor K, is the conductivity tensor which takes account
for the anisotropy of the material. For an isotropic fluid the constitutive law
can be expressed by a single coefficient as

q, = —K,(T,)VT,. (2-41)

This is the standard form of Fourier’s Law of Heat Conduction and the scalar
K, is called the thermal conductivity.

The body heating ¢, arises from external energy sources and from
mutual interactions. Energy can be generated by nuclear fission and can be
transferred from distance by radiation, electric conduction and magnetic
induction. The mutual interaction or transfer of energy is best exemplified
by the mutual radiation between two parts of the fluid. In most cases these
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interaction terms are negligibly small in comparison with the contact heating.
The radiation heat transfer becomes increasingly important at elevated
temperature and in that case the effects are not local. If the radiation effects
are negligible and the nuclear, electric or magnetic heating are absent, then
the constitutive law for body heating is simply

g =0 (2-42)

which can be used in a wide range of practical problems.

Finally, we note that the entropy inequality requires the transport
coefficients p,, A, and K, to be non-negative. Thus, viscous stress works
as a resistance of fluid motions and it does not give out work. Furthermore,
the heat flows only in the direction of higher to lower temperatures.

1.2 Interfacial balance and boundary condition
1.2.1 Interfacial balance (Jump condition)

The standard differential balance equations derived in the previous
sections can be applied to each phase up to an interface, but not across it. A
particular form of the balance equation should be used at an interface in
order to take into account the singular characteristics, namely, the sharp
changes (or discontinuities) in various variables. By considering the
interface as a singular surface across which the fluid density, energy and
velocity suffer jump discontinuities, the so-called jump conditions have been
developed. These conditions specify the exchanges of mass, momentum,
and energy through the interface and stand as matching conditions between
two phases, thus they are indispensable in two-phase flow analyses.
Furthermore since a solid boundary in a single-phase flow problem also
constitutes an interface, various simplified forms of the jump conditions are
in frequent use without much notice. Because of its importances, we discuss
in detail the derivation and physical significance of the jump conditions.

The interfacial jump conditions without any surface properties were first
put into general form by Kotchine (1926) as the dynamical compatibility
condition at shock discontinuities, though special cases had been developed
earlier by various authors. It can be derived from the integral balance
equation by assuming that it holds for a material volume with a surface of
discontinuity. Various authors (Scriven, 1960; Slattery, 1964; Standart,
1964; Delhaye, 1968; Kelly, 1964) have attempted to extend the Kotchine’s
theorem. These include the introduction of interfacial line fluxes such as the
surface tension, viscous stress and heat flux or of surface material properties.
There are several approaches to the problem and the results of the above
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authors are not in complete agreement. The detailed discussion on this
subject as well as a comprehensive analysis which shows the origins of
various discrepancies among previous studies have been presented by
Delhaye (1974). A particular emphasis is directed there to the correct form
of the energy jump condition and of the interfacial entropy production.

Since it will be convenient to consider a finite thickness interface in
applying time average to two-phase flow fields, we derive a general
interfacial balance equation based on the control volume analyses. Suppose
the position of an interface is given by a mathematical surface f (z, t)=0.
The effect of the interface on the physical variables is limited only to the
neighborhood of the surface, and the domain of influence is given by a thin
layer of thickness & with &, and 9, at each side of the surface. Let’s denote
the simple connected region on the surface by A, then the control volume is
bounded by a surface X, which is normal to A; and the intersection of 4
and X, is a closed curve C;. Thus X, forms a ring with a width § ,
whereas the boundaries of the interfacial region at each side are denoted by
A and A,. Our control volume V is formed by X, A and A4,.

Since the magnitude of § is assumed to be much smaller than the
characteristic dimension along the surface A,, we put

n, =-n, (2-43)

where 1, and n, are the outward unit normal vectors from the bulk fluid of
phase 1 and 2, respectively. The outward unit vector normal to X, is
denoted by IV, then the extended general integral balance equation for the
control volume V; is given by

d 2
E‘f;’ ppdV = ZfAk n; - [(’Uk - "’i)Pk% + Jk]dA
i k=1

(2-44)
_fc', fl N -[(v—v,)pp + Jd6dC + fv,- pddV.

The first two integrals on the right-hand side take account for the fluxes from
the surface A4, 4, and ;. In order to reduce the volume integral balance
to a surface integral balance over A,, we should introduce surface properties
defined below.

The surface mean particle velocity v, is given by

P68 = ﬁ 2 pvds (2-45)
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Figure 2-1. Interface (Ishii, 1975)

where the mean density p, and the mean density per unit surface area p,
are defined as

b
p. = p, 6= f_  pdb. (2-46)
Then the weighted mean values of ) and ¢ are given by
4
puth = [ pwds (2-47)
and
4
b, = ﬁ " pode. (2-48)

The notation here is such that a quantity per unit interface mass and per unit
surface area is denoted by the subscript s and a, respectively.

The control surface velocity can be split into the tangential and normal
components, thus

v, =V + U, : (2-49)
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where
Vy = Uy
Qf, (2-50)
v,-n= —@t—.
IV{]

Hence the normal component is the surface displacement velocity and the
tangential component is given by the mean tangential particle velocity v,, .
Since the unit vector [N is in the tangential plane and normal to C;, we
have

N.-v,=N-v, (2-51)

Thus, from Eqs.(2-45) and (2-51) we obtain

" pN (v, —v)d6 =0 (2-52)
by

and
fi pYN - (v; — v)db = fil pN - (v, — v)dé. (2-53)

In view of Eqs.(2-44) and (2-53) we define the average line efflux along C,
by

J, = ﬁ i {J — (v, — ) pp} dé. (2-54)

Using the above definitions the integral balance at the interfacial region
becomes

%fa Py, dA
2
= ;Lk n, -[(v, — v,) pb, + J,]dA — qu-Ja dC  (2-55)

+ fAi 0.0, dA.
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As in the case for the derivation of the field equation, here we need two
mathematical transformations, namely, the surface transport theorem and the
surface Green’s theorem (Weatherburn, 1927; McConnell, 1957; Aris 1962).
The surface transport theorem is given by

4 Mf{ () + FV, v}dA (2-56)

where d, / dt denotes the convective derivative with the surface velocity v,

defined by Eq.(2-50), and V| denotes the surface divergence operator. The
surface Green’s theorem is given by

qu.JadC= fA’_A“ﬂgln tJ%),5 dA @-57)

o a

Here, A*, g,_, t" and 2, , denote the surface metric tensor, the space
metric tensor, the hybrid tensor, and the surface covariant derivative,
respectively (Aris, 1962).

The surface flux, J, in space coordinates is expressed by J, i which
represents the space vector for mass and energy balance and the space tensor
for momentum balance. The essential concepts of the tensor symbols are
given below. First the Cartesian space coordinates are denoted by
(yl,yz,%) and a general coordinates by (:El,a:z,ms) , then the space metric
tensor is defined by

3 6yk 6yk
== L 2-58
gln kzz; .’171 axn ( )

which relates the distance of the infinitesimal coordinate element between
these two systems. As shown in Fig.2-2, if the Cartesian coordinates yk
glve a kpomt of a surface with the surface coordinates of (ul,uz) as
=y (u U ) then the surface metric tensor is defined by

3 k k
A0 =3 Oy 9y (2-59)

and the small distance ds is given by
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yl

Figure 2-2. Relationship between Cartesian coordinates and surface coordinates

(d3)2 = (dyl)2 + (dy2)2 + (dy3 )2 = A dudu’. (2-60)

By introducing the general space coordinates, the surface position is
givenby z' = z' (ul,u%. The hybrid tensor is then defined by

. or
= . 2-61
* ou® (2-61)

The covariance surface derivative ( ), , 18 similar to the space derivative

but it also takes into account for the curved coordinate effects. Furthermore,
if IN - J, has only a tangential component as in the case of surface tension

force, A g, t*J™ = t"J**. Hence, the surface flux contribution can be

written as (t™J°"),, or (¢ J*),, where t_denotes the hybrid tensor in
@ 8 Ji] (e

a a4

vector notation. It is noted that for the momentum transfer, the dominant
interfacial momentum flux is the isotropic surface tension o . Then,
JP = o A” . Inthis case, the surface flux contribution becomes as follows

(t,0A),,=2Hon + £ A (0),,. (2-62)
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The first term represents the net effect of the curved surface and gives the
normal component force with the mean curvature H , whereas the second
term represents the tangential force due to surface tension gradient.

Since we assumed that & is sufficiently small, the surface 4 and 4,
coincide with A; geometrically. Thus, Eq.(2-55) reduces to

d,
f{dt( X AR RA v}dA
B fA,. {Z{pkwknk (v —v)+my 'Jk] (2-63)
—A% gy, (8277 )5 +0.9, } dA.

This balance equation holds for any arbitrary portion of an interface with
A, >> 6%, thus we obtain a differential balance equation

d,
ﬁ(¢)+m¢v ‘v,

= Z{pk¢knk (v, —v)+my Jk} (2-64)
k=1

— A g, (1297 )35 +0u

We note here this result has exactly the same form as the one derived by
Delhaye (1974), although the method used and the definition of the surface
velocity v, is different. Let’s define a surface quantity and a source per
surface area as

Y, = P, (2-65)
and
. = Puby (2-66)

Then the surface balance equation becomes

d 2
'ﬁ(wa) + wavs ‘v, = ;{pkd}knk . (’Uk — ’UZ)+ n, Jk} (2-67)

_Aaﬂgln( Zji ) +,.
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The left-hand side represents the time rate of change of ¢, from the
observer moving at v,, plus the effect of the surface dilatation. Whereas the
three terms on the right-hand side are the fluxes from the bulk phases, the
line flux along the surface, and the surface source respectively. We note that
Eq.(2-6) and Eq.(2-67) govern the physical laws in the bulk phases and at an
interface.

In order to obtain a simpler expression for interfacial jump of quantities,
we make further assumptions which are consistent with our thin layer
assumption given by

§* << A, (2-68)

First the mass density of interface p, is negligibly small so that its
momentum and mechanical energy can also be neglected. Secondly, all the
molecular diffusion fluxes along the line are neglected, namely, no surface
viscous stress or surface heat flux. Furthermore all the surface sources are
neglected, namely, no particular body force other than the gravity and no
radiation effect.

The thermodynamic tension and hence the interfacial energy are included
in the following analysis, consequently from the principle of determinism we
should postulate the existence of the surface equation of state. Under these
assumptions we obtain

Interfacial Mass Balance
2
> oy - (v, ~v,) =0. (2-69)
k=1

By defining the interfacial mass efflux from the k"-phase as
my, = pny - (v, — ;) (2-70)

we have from Eq.(2-69)

> m, =0. (2-71)

This equation simply states that there is no capacity of mass at the interface,
hence phase changes are pure exchanges of mass between the two phases.
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Interfacial Momentum Balance
2
S o - (v, —v)v, — T} + (£,470),,= 0. (2-72)
k=1

Equation (2-72) is a balance between the momentum fluxes from the bulk
fluids and the interfacial tension.

Interfacial Energy Balance
Substituting the interfacial energy u, per unit surface area for ¢, , we
obtain from Eq.(2-67)

%‘ +u,V, v,
2 2

= Z{pknk '('vk - ”i)[“k + %] +n, (_Ec U, + ‘Ik) (2-73)
%=1

+(t,A4%0 ;).

The left-hand side represents the rate change of the surface energy, whereas
the right-hand side accounts for the energy transfer from the bulk at each
side and for the work done by the surface tension.

1.2.2 Boundary conditions at interface
As in the case of the three-dimensional field equations the surface
balance equations should be supplemented by various constitutive laws. In

order to establish the principle of determinism, first we introduce a simple
equation of state. Since the mass of interface is negligible, we have

u, = u,(s,) 2-74)

where u, and s, are the specific internal energy and the specific entropy
per unit surface area, respectively.
The thermodynamic tension is given by
o=-T1Ts,+u, (2-75)

where the temperature T is defined by
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Thus, in a differential form, Eq.(2-74) becomes

du, =T,ds,

and the Gibbs-Duhem relation is given by

5,dT; +do = 0.

The interfacial enthalpy is defined by
1, = u, — 0.
From Eq.(2-78) we have

do
— =—s,.
dT,

Hence, from Egs.(2-77) and (2-80) we obtain

du, = —Tid[d—a].
dT,

By combining Egs.(2-75), (2-79) and (2-80) we get

do

dT,

u, =T

a i

do
034, =T, | 2.
o=

Thus the thermal equation of state

o= (T(T-)

33

(2-76)

@-77)

(2-78)

(2-79)

(2-80)

(2-81)

(2-82)

(2-83)

supplies all the necessary information to interrelate the thermodynamic
properties. By substituting Eq.(2-81) into Eq.(2-73) we obtain an energy

jump condition in terms of the surface tension as
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d | do do

| ||V, - v,

er) )7

=(t,4"0),, v, (2-84)

2 2
+Z[mk [“k + _v;_] +n, (—];c U+ qk)}'
k=1

-
1

Interfacial Entropy Inequality

Following the above discussion, we assume the existence of the surface
temperature T, which enables us to write an entropy inequality at the
interface. Thus, in the absence of surface heat flux and source terms, we
have

ds 2 n -q
A =248V, v, — > |mys, +——F
: z[ ot

> 0. (2-85)

The entropy s, in above inequality can be eliminated by using the energy
balance equation, Eq.(2-73), and the equation of state, Eq.(2-77), hence we
obtain

2 B 2
TiAa = Z[m’“ w, — 8T + lvk 'U¢| + By
=l P (2-86)
T.
“nk‘@'(vk _'vi)+nk'qk{1_FZ } > 0.
k

We note here that this expression has the same form as the one obtained by
Delhaye (1974). Also a similar result was derived by Standart (1968)
without considering the surface properties and the surface tension term, but
including the effect of chemical reactions.

In general, the interfacial jump conditions, Eqgs.(2-69), (2-72) and (2-84),
do not constitute sufficient matching conditions which are necessary to
define the problem uniquely. Consequently, they should be supplemented
by various boundary conditions that restrict the kinematical, dynamical and
thermal relations between two phases. These relations can also be
considered as interfacial constitutive laws, satisfying the restriction imposed
by the entropy inequality (2-86). They may be obtained from the standard
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argument of the irreversible thermodynamics. In order to do so, first suitable
combinations of fluxes and potentials should be postulated in the inequality
(2-86), and then the fluxes were expanded linearly in terms of the potentials.
Here, the principle of equipresence and the symmetric relations between the
expansion coefficients are normally used. The standard procedure for a
general system is discussed in detail by De Groot and Mazur (1962) among
others, and it has been applied to an interface by Standart (1968), and
Bornhorst and Hatsopoulos (1967). Standart based his argument on the
correct jump conditions and the entropy inequality and obtained the
interfacial constitutive laws with great care, though he neglected from the
beginning all the surface properties and the surface tension that are generally
important in a two-phase system. The results of Bornhorst are limited to
particular cases and the argument is based on the classical thermodynamic
tools of piston, reservoir, homogeneous system, etc.

The analysis based on the constitutive laws of the interface may be
important for a detailed study of a two-phase system. However, they are
generally too complicated to apply as boundary conditions. Furthermore, the
effects of the potentials, namely, the discontinuities of temperature, chemical
potential, tangential velocity, etc., as driving forces of transfer of quantities,
or resulting interfacial resistances to heat, momentum and mass transfer are
relatively insignificant in the total system.

Consequently a much simpler theory for providing the necessary
boundary conditions is desirable. As a limiting case, it is possible to
consider the case when entropy production of the interface A, becomes zero.
This means that there are no resistances to interfacial transfer of quantities.
Hence, the exchanges between two phases are governed by the conditions of
the bulk fluid at each side, but not by the interface itself. Furthermore, from
the classical thermodynamic point of view, the transfer at the interface is
said to be reversible. This is not so for a shock discontinuity in a single-
phase flow.

By setting the entropy production of Eq.(2-86) to be zero we obtain

v.— v,
gk+| k 2 3 _T;:k]_zk:%.(vtk_vﬁ)

]

(2-87)

Moreover, we assume that the three terms in Eq.(2-87) are independently
zero for all combinations of the mass flux, the tangential stresses and the
heat fluxes.
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Thermal Boundary Condition

Thus, from the last term of Eq.(2-87), we obtain a thermal equilibrium
condition at the interface

T, =T,=T (2-88)

that is consistent with the assumption of the existence of the equation of state
at the interface, Eqs.(2-74) and (2-83). In view of Eqs.(2-82) and (2-84) this
thermal boundary condition sets the energy level of the interface. In contrast
to the above equation, the energy jump condition, Eq.(2-73), specifies the
relation between the energy transfers to the interface. Furthermore, the
thermal equilibrium condition, Eq.(2-88), eliminates a variable 7}, and it
stands as a matching condition for the temperature of each phase at the
interface. We note here that, in reality, the discontinuity of the temperature
at the interface exists and can be estimated from the kinetic theories
(Hirschfelder et al.,, 1954). However, its value in comparison with the
absolute temperature is very small for most materials with few exceptions,
such as for liquid metals (Brodkey, 1971). Thus, the influence on the
interfacial transfer is negligible under the standard conditions.

No-Slip Condition

In view of the definition of the interfacial surface velocity v;, Eq.(2-50),
the tangential velocity v, is an unknown parameter, whereas the normal
component is directly related to the position of the interface. Furthermore, it
appears in the dissipation term in the entropy inequality (2-86) and Eq.(2-87).
Thus, it is natural to supply a constitutive relation between the tangential
stress 7, and the tangential relative velocity v, — v, , as it has been
discussed previously. However, in the present analysis we have assumed
that the interfacial entropy production is identically zero. By taking the
second term of Eq.(2-87) to be zero independently, we obtain a no-slip
condition

Vy = Uy = Yy (2-89)

The no-slip condition for a moving viscous fluid in contact with a solid wall
is well established (Goldstein, 1938; Serrin, 1959). It is called a classical
adherence condition and it has been verified experimentally and also
analytically from kinetic theories. The relation given by Eq.(2-89) can be
used to eliminate the interfacial tangential particle velocity and then it can be
utilized as a velocity boundary condition at an interface.
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However, it should be noted here that for an inviscid fluid the no-slip
condition (2-89) is not necessary and cannot be satisfied generally, due to the
tangential component of the momentum jump condition, Eq.(2-72). This is
in complete agreement with our analysis, since the viscous dissipation term
in Eq.(2-87) is identically zero for an inviscid fluid and does not appear in
the entropy inequality. Consequently, Eq.(2-89) cannot be obtained.
Furthermore, under the condition of no-slip, the momentum jump condition,
Eq.(2-72), in the tangential and the normal directions becomes

2
D Tw = ATt (), (2-90)
k=1
and
2 m2
Z n,—~+mp, — T, | = 2H,mno (2-91)
k=1 Pr

where the normal and the tangential viscous stress is given by
My & =Ty + Ty =MWT o+ Ty (2-92)

And the mean curvature H,, is taken from phase 2 to 1, namely, H,, > 0 if
the interface makes a convex surface in phase 1.

Chemical (Phase Change) Boundary Condition

In analogy with the preceding discussion, the chemical (or phase change)
boundary condition can be obtained by setting the first term of Eq.(2-87) to
be independently zero for all values of 7, . This implies that the entropy
production due to a phase transition is zero, and hence the phase change is
considered not as a transfer due to non-equilibrium forces, but rather as an
equilibrium transformation of state.

Substituting the thermal equilibrium condition, Eq.(2-88), into the first
term of Eq.(2-87) and equating it to zero, we obtain

""2_”1‘2 |”1_”z'|2 Twn2 _ Tonl
(9,—9,)= — —|-on2 _ Zeal | (2-93)

2 2 P2 Py

The phase change condition given by the above equation shows that the
difference in the chemical potential compensates for the mechanical effects
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of the relative kinetic energy difference and of the normal stresses. Here it
should be noted that this phase change condition is only applicable to the
case when the transfer of mass across the interface is possible. In other
words, if the transfer of mass is identically zero for all conditions as in the
case of two immiscible non-reacting liquids, the boundary condition should
be

m, =0 (2-94)
which replaces the condition on the chemical potentials.
1.2.3 Simplified boundary condition

In the preceding sections the interfacial jump conditions and
supplementary boundary conditions have been given. It is important to
realize that the thermal equilibrium condition, Eq.(2-88), normal component
of the momentum jump condition, Eq.(2-91), and the phase change boundary
condition, Eq.(2-93), correspond to the standard thermal, mechanical and
chemical equilibrium conditions of the thermostatics (Gibbs, 1948). The
difference is that the present analysis takes into account the dynamic effects
of mass transfer and of the normal stresses in the mechanical and phase
change boundary conditions. These interesting properties between the
results of dynamical analysis and of the thermostatic theory can be
summarized in the following table.

It can be seen from the table that except the thermal condition these
interfacial relations are still very complicated for many practical applications.
This is mainly due to the terms arisen from the mass transfer and from the
normal stresses. The former contributes as a thrust force due to the density
change in the mechanical boundary condition and also as an impact kinetic
energy change in the chemical (phase) boundary condition. The latter
introduces complicated coupling effects of the flow fields with the
thermodynamic properties at the interface. Under standard conditions,
however, the normal stresses may be neglected with respect to the pressure
terms, which greatly simplify the mechanical boundary condition, Eq.(2-91).
The same argument can be applied to the chemical boundary condition, since
the order of magnitude of the term p, g, is p, , thus the normal stress terms
can be neglected also in Eq.(2-93). Similarly the mass transfer terms are
negligibly small in most practical problems, though they can be important
for problems with large mass transfer rate or with vapor film boiling.

Since in the standard formulation of field equations the Gibbs free energy
g, does not appear explicitly, it is desirable to transform the variable g, in
the chemical boundary condition, Eq.(2-93), into other variables which have
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Table 2-1. Interfacial relations of thermodynamic potentials (Ishii, 1975)

Analysis
Thermostatics Present Dynamical Analysis
Condition

Thermal 1,-T,=0 ,-T,=0

Mechanical - 211
=D, = P —p,=—2H,0—mj|——— +(Trm1*Tvm2)
AP
Chemical m12 1 1 T -
hase ch 9-9,=0 99 =*—[——— +| -t -
(phase change) 17 9% 1792 5 P12 p; o S

already been used in the field equations. For this purpose, we recall here
that the Gibbs free energy expressed as a function of the temperature and
pressure is a fundamental equation of state, Eq.(2-30), thus we have

9 = 9. (T, ;) (2-95)

and

1
dg, = —s, dT}, +—dp,. (2-96)

k

The thermostatic phase equilibrium condition is then given by
L=T,=T"p =p, =p";and g, = g,. (2-97)
Hence from Eqgs.(2-95) and (2-97) we obtain
g (T, p"™) = g, (T™,p™) (2-98)
which reduces to the classical saturation condition
p* = p™ (T*). (2-99)

This relation shows that the thermostatic equilibrium condition uniquely
relates the thermodynamic potentials of each phase. Furthermore, the
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differential form of Eq.(2-99) known as the Clausius-Clapeyron equation can
be obtained from Eqs.(2-27) and (2-28) and Eqs.(2-96) and (2-97)

sat

dp™ i

dTaat - T5at [i B l‘]
IS )

(2-100)

where all values of the right-hand side are calculated on the saturation line
given by Eq.(2-99).

If we assume that the deviations of the interface pressures of each phase
from the saturation pressure corresponding to the interfacial temperature 7;
are sufficiently small in comparison with the pressure level, the Gibbs free
energy function can be expanded around the static saturation point. Thus we
have

9 (p”“t,Ti) = g (pk,Ti) - ——53’%—— (2-101)
Py (Pk aTi)

where 6p, is defined by

8p, = p, — p™ (T). (2-102)
Since we have

(™ (T),T) = g, (™ (T), T,). (2-103)
Equation (2-93) can be reduced to

N T

P P2 2\ P, P

whereas the mechanical boundary condition, Eq.(2-91), with the definition
of dp, becomes

a1 1
6p1 — 6p2 = —2H21o' — 771,12 [__ . _] + (Tnnl — TnnZ)‘ (2-105)
A P2
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These above two equations can be solved for the pressure deviation from the
saturation pressure as

C\2
6p1 = —ZHZIO—[ pl ] + (’”Ll) [L - L] + Tnnl

P P 2\, m
and (2-106)
. \2
op, = —2H210"[ e’ ] + (r™n) [—1— — —1—] + T,
Pr— P, 2 \p Py

This result shows that neither phase is in the saturation condition given
by Eq.(2-99). The amount of deviation of pressure from p°* depends on the
mean curvature, the surface tension, the mass transfer rate and the normal
stress. An interesting result follows if we take into account only the effect of
the surface tension and drop the other terms which are generally negligibly
small. In this case, we can approximate

Py
P = Pg

op, = 2Hfga[ ] and 6p, = 2Hfgo[ ] (2-107)

Ps = Py

Since the mean curvature of the liquid phase H s 18 positive for a droplet
and negative for a bubble, the phase pressures at the interface are both over
the saturation pressure for a droplet flow, and they are both under it for a
bubbly flow.

Now we recall the existence of the limits on heating of liquid or cooling
of vapor beyond the saturation condition in terms of the pressure deviation at
fixed temperature, namely, the instability points of the equation of state in
the thermostatics. Thus, we write

6pg§6pgmax(Ti)

(2-108)
8p;> 6D pn (1)

which are shown in Fig.2-3.

Figure 2-3 shows the saturation line corresponding to the Clausius-
Clapeyron equation or Eq.(2-99) and the limits of the metastable liquid and
vapor phases. These two limits can be obtained from the van der Waals
equation of state given by
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/ Critical Point
Liquid Phase Vapor Phase
6pgmax .:"'::
Limit of Existence . {
of Vapor N ;
: SPeme Eq.(2-99); Saturation Line
Limit of Existence
of Liquid
T
T;
Figure 2-3. p-T diagram (Ishii, 1975)
a M
pP+—— [— - b] = RT (2-109)
(o) |17

where R and M are the gas constant and the molecular weight,
respectively. a and b are empirical constants. The thermodynamic theory
states that the intrinsic thermodynamic stability requires

Op
o(1)],

Therefore, by using the van der Waals equation, the loci of 9p / 9 (1//)) =0

<0. (2-110)

can be found. These loci actually represent two limits, namely the
superheated liquid limit and subcooled vapor limit. These two loci are
shown by the broken curves in Fig.2-3.

It is interesting to note that Eq.(2-107) with the limiting condition of
Eq.(2-108) gives the smallest droplet and the bubble sizes. In other words,
these sizes are the lowest natural level of the disturbances in the statistical
sense. Beyond these limits the liquid or the vapor phase cannot stay without
changing the phase, because the statistical fluctuations create a core which
can grow to a bubble or a droplet.

The relations given by Eqs.(2-107) and (2-108) at a temperature 7; are
exhibited in Fig.2-4. The widely used interfacial condition that the vapor
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Figure 2-4. pg-Op;relation (Ishii, 1975)

interfacial pressure equals the saturation pressure p** at a temperature T,
can be derived as a further approximation to Eq.(2-107). Since the density
ratio between phases is very large at a small reduce pressure, namely,
p/p. <<1 where p, is the critical pressure, Eq.(2-107) can be
approximated by

6p, ~0, p,~ p(T,)

g @-111)
ép, ~ 2H 0, p; =~ p* (T,)+2H 0.

1.24 External boundary condition and contact angle

The external boundary condition is a special case of the jump and the
supplemental interfacial boundary conditions which have been discussed in
the previous section. For a standard single-phase flow problem, these
conditions become particularly simple because the mass transfer rate m,,
the effect of the surface tension and the velocity of the solid-wall interface
are all set to be zero. Similar simplifications could also be applied to a two-
phase flow system, however, two exceptional characteristics should be taken
into account here. These are:

1. The wall microstructure effect on bubble nucleations;
2. The intersection of a phase interface with the external boundary.
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Figure 2-5. Contact angle (Ishii, 1975)

The first effect characterizes the necessity to consider the existence of
surface nucleation sites which have irregular geometries deviating from the
standard idealized wall boundary. These microstructures and the gas content
in these sites often decide the bubble nucleation conditions and the degree of
thermodynamic non-equilibrium. The second case is the singularity created
by meeting of two different interfaces, see Fig.2-5. As a bubble or a droplet
comes in contact with the external boundary, the vapor-liquid interface
attaches to the wall and forms a singular curve at the intersection. When
such a contact line is formed, the angle of contact # measured though the
liquid characterizes the condition along the curve. An analysis similar to the
one for the interface can be developed also for this singular line. In this case,
since the area of transport from the bulk fluids is the thickness of the
interface 6, the effects of the mass transfers and of the fluxes of the fluids
can be neglected. Hence, only the surface fluxes and possibly the properties
associated with the curve, namely, energy of the contact line, are important.
By considering only the surface fluxes, we have from the force balance in
the normal plane to the singular curve

0 18 £
cos =2~ (2-112)

O
where o, , 0, and o, denote the surface tension between vapor-liquid,
vapor-solid, and liquid-solid respectively.

We note here that Eq.(2-112) is consistent with the jump conditions, if
we neglect the tension tangent to the singular curve and thus the thermal
energy of the curve. If these effects are neglected, Eq.(2-112) is the only
condition obtainable in parallel with the jump conditions. Hence, as it has
been mentioned, the contact angle € characterizes the phenomenon and an
appropriate constitutive law should be supplied if o, and o, are not
available. The static contact angle 6 is well measured and tabulated for
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various interfaces: in reality however it is greatly influenced by the surface
roughness, the deposit of foreign materials and the purity of fluid itself.

Furthermore, the dynamic contact angle of a moving interface can be
significantly different from the static values. However, in the absence of a
well established constitutive law for 6 under dynamic condition, the static
values are frequently used in practical problems. We only note here that it is
generally accepted that the apparent difference between the static and the
dynamic contact angle is a function of a surface tension o, and the normal
slipping velocity of the singular curve (Schwartz and Tejada, 1972; Phillips
and Raddiford, 1972).

In summarizing this section we list standard external boundary conditions
at the solid wall:

The position of an external boundary

f,@=0 (2-113)
No-mass transfer condition

Uy =Yy, =0 (2-114)
No-slip condition for a viscous fluid

vy =0, =0 (2-115)
The force balance from the momentum jump condition

n1,+n, - 7,=0 (2-116)
The energy balance from the energy jump condition

n,-q +n,-q,=0 (2-117)
The thermal equilibrium condition

T, =T, (2-118)

These above conditions can be applied where a fluid is in contact with
the wall. It cannot be applied however at an intersection of an interface with
the solid boundary. On such a singular curve the constitutive equation for
the contact angle f should be given. Finally, we summarize the local
instant formulation of a two-phase flow system in the following diagram.
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EXTERNAL BOUNDARY CONDITIONS

Position of the Wall Jump Conditions

Constraints Interfacial B. C.
Contact Angle
PHASE 1 INTERFACE PHASE 2
Field Equations Jump Conditions Field Equations
Continuity Eq. Mass J. C. C.E.
Momentum Eq. Momentum J. C. M. E.
Energy Eq. Energy J. C. E. E.
Constitutive Equations Interfacial B. C. Constitutive Equations
Equation of State Thermal B. C. E. S.
Mechanical C. E. (No-slip B. C.) M. C.E.
Energetic C. E. (Chemical B. C.) E.C.E.
INITIAL CONDITIONS
1.3 Application of local instant formulation to two-phase
flow problems
1.3.1 Drag force acting on a spherical particle in a very slow stream

As an example of applying local instant formulation to two-phase flow
problems, let us study the drag constitutive equation of a solid sphere of
radius 7, in a very slow stream of speed U, (creeping flow) (Stokes, 1851;
Schlichting, 1979). In order to analyze this problem analytically, we assume
(1) Newtonian viscous fluid with constant viscosity, (2) incompressible flow
(fluid density is constant), and (3) very small Reynolds number
(Rel|= 2r,p,U, [k} <<1) where viscous effects dominate the flow and
the inertia term can be neglected in the momentum equation. Then, the
continuity equation, Eq.(2-8), and the momentum equation, Eq.(2-10), can
be linearized as

Vo, =0 (2-119)

Vp, = p,Vu,. (2-120)

The gravity term is dropped by considering the pressure field which
excludes the hydrostatic effect. The velocity components and the pressure in
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spherical coordinates (r,0) with 6 =0 in the direction of U, can be
derived under the boundary condition of no-slip on the solid sphere as

3r 17
v, =U,cosf|{l — =4 4 —-& 2-121
re Oc [ 2 r 2 7‘3] ( )
v,, = —U,cos0 (1 — 3% li (2-122)
e 0 4r 4r°
P, =D, — Mcos@. (2-123)

272

where p_ is the uniform freestream pressure. The shear stress acting on the
solid sphere, 7 ,,, is given by

r=a = MC [_1_%—*_ 81}7’0]

) 3R g (2-124)
r 00 or

T

Tr&c

r=ry

Thus, the total drag force, F},, acting on the solid sphere is given by
integrating the pressure and the shear stress around the surface as

F, = f OW T e SINOdA — f Ow p, cos BdA (2-125)

= 47”211%UO + ZWTd/‘cUo = 67{7;},/'1%[]0

where A is the surface area. This indicates that the drag consists of the
pressure and shear forces even in this viscosity dominated flow. Then, we
define the drag coefficient, C,), by

1

Cp T
EchOAp

]l

(2-126)

where Ap is the projected area of a particle. Thus, we have
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24

Cc,=—.
P Re

(2-127)

This analysis was extended by Rybczynski (1911) and Hadamard (1911) to
creeping motion of a spherical fluid particle in an infinite Navier-Stokes
fluid (Brodkey, 1967; Soo, 1967). Thus, the total force acting on a fluid
particle is given by

2p, + 31
F, = 6mryp, (v, — v,){———% 1. (2-128)
? 3 (l‘l‘c + ud)
Then, we define the drag coefficient, C),_ , by
F,
Cp., = i D (2-129)
5 P (vcoo - vd)Ap
and the particle Reynolds number by
2r,p, (v, —v
Re, = ~4le (Ve =) (2-130)

He

It is evident here that v, and v, are the undisturbed flow velocity and the
particle velocity. Thus, we have

c, =24 lz“c 34 ];Red <l. 2-131)
Re, 3(/% + /’l’d)

The drag law given by Rybczynski and Hadamard is good up to a Reynolds
number of about 1.

1.3.2 Kelvin-Helmbholtz instability

As another example of application of local instant formulation to two-
phase flow problems, let us study the Kelvin-Helmholtz instability
(Helmholtz, 1868; Kelvin; 1871; Lamb, 1945). The Kelvin-Helmholtz
instability arises at the interface of two fluid layers of different densities p,
and p, flowing with average velocities v, and v, in a horizontal duct. In
order to analyze this problem analytically, we assume: (1) inviscid flow
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(viscous force is negligible); (2) incompressible flow (fluid density is
constant); and (3) irrotational flow. It is convenient to use rectangular
coordinates (z,y) where z and y indicate the coordinate in the horizontal
direction and the coordinate in the vertical direction measured from the
average interface of the two fluid layers, respectively. Then, the velocity
components are given in terms of the velocity potential, ¢, , as

Uy = %,vyk = —%—QZ‘. (2-132)

Thus, the continuity equation, Eq.(2-8), is given in terms of the velocity
potential as

2 2
9% L 0% _ @-133)
ox Oy
and the momentum equation, Eq.(2-10), is given by
1 0
Py 2ot b gy =224 F (1) (-134)
P 2 ot

where F'(t) is the function of ¢, respectively. The shape of the interface
between two phases are approximated by a sinusoidal wave as

n = nesin{k(z — Ct)} (2-135)

where 7),, k, and C are the amplitude, the wave number, and the wave
velocity, respectively. Then, the velocity potentials of the upper fluid
(k =1) and lower fluid (k = 2) are derived under the boundary condition
of no fluid penetration on the upper and lower duct surfaces and the
assumption of small perturbation.

cosh {k (b y)}
sinh (kh, )

¢ = vz +n, (v —O) cos{k(z — Ct)} (2-136)

cosh {k (h, + y)}
sinh (kh, )

¢, = —v,2 — 1, (v, — C) cos {k(z — Ct)} (2-137)
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where h and h, are the average thickness of the upper and lower fluid
layers, respectively. Substituting Eqs.(2-136) and (2-137) into Eq.(2-134)

and assuming v, << v, yield the pressure of each phase at the interface as

pa = —p{(w — C) heoth (khy) + g} nysin {k(z — Ct)}
+D;

(2-138)

P = p{(ts — C)' heoth (hy) — g} msin {k (z — C1)} (2-139)
TP

where p; is the pressure at a smooth interface. The interfacial pressure
difference between two fluid layers is due to the surface tension, and can be
approximated by

0*n
= Py = —O —. 2-140
p‘zZ pzl 6%2 ( )

Then, the wave velocity can be obtained from Eq.(2-135) and Egs.(2-138)-
to-(2-140) as

P+ P P+ s

PLT Py

'y + p ok+(p,—p)g/k —u )
o L L \/ e: —m)ft oh| S—=| @14

where p, = pkcoth(khk). Under the deep water assumption of
h, / (27r/k), h, / (27r/k') > .25, pj can be approximated to be p, . In this
case, Eq.(2-141) can be simplified as

2
C=PUT Y, Ci-m&[q—%] (2-142)
Pyt 0, Pt Py
where
cr—9p=n ok (2-143)

o0

koo, o



2. Local Instant Formulation 51

When the root in the expression for the wave velocity C' has a nonzero
imaginary part, then the interfacial disturbance can grow exponentially.
Hence, the flow is unstable if

g_pzwpl_i__
kpo+py ptop

2
<m4”_%]- (2-144)
P+ Py

There are several important points to be recognized in this stability
criterion. First, the viscous effects of the fluids are neglected; therefore, the
Reynolds number plays no role in this type of interfacial instability. The
stability of the system then is governed by three effects, namely, the gravity
force, surface-tension force, and relative motion. The relative-motion term
is always destabilizing due to the inertia force from Bernoulli effect. The
surface-tension force is always stabilizing, since the flat interface has the
minimum surface area, and the surface-tension force acts to resist any
deformation from the equilibrium configuration. The gravity term is
stabilizing only if the upper fluid is lighter than the lower fluid (p, > p,).

The propagation velocity C_ in the absence of the flows (or the left-
hand side of the stability criterion) is a function of the wave number k.
Therefore, as the wavelength A\ = 27/k changes from zero to infinite, the
wave velocity decreases to the minimum value and then increases. This

minimum value of C? is given by ¢2_ = Z[Jg (p, ﬁpl)/(pz — pl)z]l/z,

which occurs at k” = g(p2 - pl) o . This corresponds to the critical
wavelength of \, = 27/k,. This 1s known as Taylor wave length that is
one of the most important internal length scales in two-phase flow. Then the
system is stable for small disturbances of all wavelengths if the relative
velocity is sufficiently small to satisfy

2(p +py)

2
v, — U <
( : 2) P1P2

og(p, — py)- (2-145)

For a relative velocity larger than this limit, the system is only
conditionally stable for a certain range of the wavelength. When the
wavelength is large, the value of Cfo in Eq.(2-143) is mainly determined by
the gravity term. Conversely, if A is sufficiently small, the capillary force
governs the wave motion.

Furthermore, it is possible to develop a similar stability criterion based on
the one-dimensional two-phase flow equations (Wallis, 1969;
Kocamustafaogullari, 1971). It is noted (Miles, 1957) that the Kelvin-
Helmbholtz instability theory tends to overpredict the critical relative velocity
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for the initial generation of surface waves, except in the case of highly
viscous fluids. However, the Kelvin-Helmholtz instability mechanism is
important in wave-propagation phenomena, particularly for flows in a
confined channel (Kordyban, 1977). Based on the analysis, Kelvin proposed
the word “Ripples” to describe waves having a wavelength of less than

A =2mjo/g(p, — p1)-

For a gravity dominated flow with a relatively large wave length
A >> ), the surface tension effect can be neglected. By considering the
finite channel flow, Eq.(2-141) can give a criterion for instability as

2
90— N r |
kol +p) lz[p{+p£]

By taking a Taylor expansion and retaining only the first order term for the
hyperbolic functions, a following simplified but useful criterion can be
obtained.

(’Ul—’U2)2 >%(P2_Pl)(P1+Pz) ~ g(Pz_Pl)hl. (2-147)

Pips oy

When this criterion is compared to experimental data for slug formation in a
channel, the critical relative velocity is overpredicted by a factor close to two.
This discrepancy can be explained by a theoretical analysis introducing a
finite amplitude or wave front propagation method (Mishima and Ishii, 1980;
Wu and Ishii, 1996).

1.3.3 Rayleigh-Taylor instability

The Rayleigh-Taylor instability is the interfacial instability between two
fluids of different densities that are stratified in the gravity field or
accelerated normal to the interface. It is commonly observed that the
boundary between two stratified fluid layers at rest is not stable if the upper-
fluid density p, is larger than the lower-fluid density p, . Since the
Rayleigh-Taylor instability can lead to the destruction of the single common
interface, it is important in the formation of bubbles or droplets. In
particular, the critical wavelength predicted by the related stability analysis
is one of the most significant length scales for two-phase flow.

The Rayleigh-Taylor instability can be considered as a special case of the
Kelvin-Helmholtz instability with zero flows and p, > p,. Hence, the
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propagation velocity can be obtained from Eq.(2-142) by setting
vy=v,=0

02:£P2_91+ ok .
kpo+p patp

(2-148)

The system is unstable if the root of the propagation velocity has a nonzero
imaginary part. Therefore, Eq.(2-148) shows that the gravitational force is
destabilizing for p; > p,, whereas the surface-tension force is stabilizing.
There is a critical wavelength \ below which C 2 is always positive. This

is given by \ =2« /g/ g(p, — p,)- If the wavelength of a disturbance is

larger than the critical wave length (A > ))), then C? becomes negative
and the interface is unstable. For fluids that are unlimited laterally, the
wavelength of the disturbance can be as large as desired; therefore such a
system is always unstable. However, if the fluids are confined laterally, the
maximum wavelength is limited to twice the system dimension. This
implies that a system is stable if the lateral characteristic dimension is less
than half the critical wavelength A, . For an air-water system, this
characteristic dimension is 0.86 cm. A similar dimension can be obtained
from fluids contained in a vertical cylinder by using polar coordinates in the
stability analysis.

For an unstable system, any disturbance having a wavelength greater than
A, can grow in time. However, the dominant waves are those having the
maximum growth factor.  Since the wave amplitude grows with
exp (-ikCt), the predominant wavelength should be

30

=2 —2
A 9(py—p,)

(2-149)

These unstable waves can be observed as water droplets dripping from a
wire in a rainy day, or condensed water droplets falling from a horizontal
downward-facing surface. Quite regular waveforms and generation of
bubbles due to the Rayleigh-Taylor instability can also be observed in film
boiling. Note that this instability is not limited to the gravitational field.
Any interface, and fluids that are accelerated normal to the interface, can
exhibit the same instability. This can occur for example in nuclear explosion
and inertia confinement of a fusion pellet. In such a case the acceleration
should replace the gravity field g in the analysis.
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VARIOUS METHODS OF AVERAGING

1.1 Purpose of averaging

The design of engineering systems and the ability to predict their
performance depend on the availability of experimental data and conceptual
models that can be used to describe a physical process with a required degree
of accuracy. From both a scientific and a practical point of view, it is
essential that the various characteristics and properties of such conceptual
models and processes are clearly formulated on rational bases and supported
by experimental data. For this purpose, specially designed experiments are
required which must be conducted in conjunction with and in support of
analytical investigations. It is well established in continuum mechanics that
the conceptual models for single-phase flow of a gas or of a liquid are
formulated in terms of field equations describing the conservation laws of
mass, momentum, energy, charge, etc. These field equations are then
complemented by appropriate constitutive equations such as the constitutive
equations of state, stress, chemical reactions, etc., which specify the
thermodynamic, transport and chemical properties of a given constituent
material, namely, of a specified solid, liquid or gas.

It is to be expected, therefore, that the conceptual models describing the
steady state and dynamic characteristics of multiphase or multi-component
media should also be formulated in terms of the appropriate field and
constitutive equations. However, the derivation of such equations for the
flow of structured media is considerably more complicated than for strictly
continuous homogeneous media for single-phase flow. In order to
appreciate the difficulties in deriving balance equations for structured,
namely, inhomogeneous media with interfacial discontinuities, we recall that
in continuum mechanics the field theories are constructed on integral
balances of mass, momentum and energy. Thus, if the variables in the
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region of integration are continuously differentiable and the Jacobian
transformation between material and spatial coordinates exists, then the
Euler-type differential balance can be obtained by using the Leibnitz’s rule;
more specifically, however, the Reynolds’s transport theorem allows us to
interchange differential and integral operations.

In multi-phase or multi-component flows, the presence of interfacial
surfaces introduces great difficulties in the mathematical and physical
formulation of the problem. From the mathematical point of view, a multi-
phase flow can be considered as a field that is subdivided into single-phase
regions with moving boundaries separating the constituent phases. The
differential balance holds for each sub-region. It cannot be applied, however,
to the set of these sub-regions in the normal sense without violating the
above conditions of continuity. From the point of view of physics, the
difficulties encountered in deriving the field and constitutive equations
appropriate to multi-phase flow systems stem from the presence of the
interface. It also stems from the fact that both the steady and dynamic
characteristics of multi-phase flows depend upon the interfacial structure of
the flow. For example, the steady state and the dynamic characteristics of
dispersed two-phase flow systems depend upon the collective dynamics of
solid particles, bubbles or droplets interacting with each other and with the
surrounding continuous phase; whereas, in the case of separated flows, these
characteristics depend upon the structure and wave dynamics of the interface.
In order to determine the collective interaction of particles and the dynamics
of the interface, it is necessary to describe first the local properties of the
flow and then to obtain a macroscopic description by means of appropriate
averaging procedures. For dispersed flows, for example, it is necessary to
determine the rates of nucleation, evaporation or condensation, motion and
disintegration of single droplets (bubbles) as well as the collisions and
coalescence processes of several droplets (or bubbles).

For separated flow, the structure and the dynamics of the interface greatly
influence the rates of mass, heat and momentum transfer as well as the
stability of the system. For example, the performance and flow stability of a
condenser for space application depend upon the dynamics of the vapor
interface. Similarly, the rate of droplet entrainment from a liquid film, and
therefore, the effectiveness of film cooling, depend upon the stability of the
vapor liquid interface.

It can be concluded from this discussion that in order to derive the field
and constitutive equations appropriate to structured multiphase flow, it is
necessary to describe the local characteristics of the flow. From that flow,
the macroscopic properties should be obtained by means of an appropriate
averaging procedure. It is evident also that the design, performance and,
very often, the safe operation of a great number of important technological
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systems (which were enumerated in the preceding sections) depend upon the
availability of realistic and accurate field and constitutive equations.

The formulation based on the local instant variables of Chapter 2 shows
that, in general, it results in a multi-boundary problem with the positions of
the interfaces being unknown. In such a case the mathematical difficulties
encountered in obtaining solutions are prohibitively great and in many
practical problems they are beyond our present computational capability. In
order to appreciate these difficulties we recall that even in single-phase
turbulent flow without moving interfaces, it has not been possible to obtain
exact solutions expressing local instant fluctuations. It can be said that
overwhelming difficulties encountered in the local instant formulations stem
from:

1. Existence of the multiple deformable moving interfaces with their
motions being unknown;

2. Existence of the fluctuations of variables due to turbulences and to the
motions of the interfaces;

3. Significant discontinuities of properties at interface.

The first effect causes complicated coupling between the field equations of
each phase and the interfacial conditions, whereas the second effect
inevitably introduces a statistical characteristic originated from the
instability of the Navier-Stokes equation and of the interfacial waves. The
third effect introduces huge local jumps in various variables in space and
time. Since these difficulties exist in almost all two-phase flow systems, an
application of the local instant formulation to obtain a solution is severely
limited. For a system with a simple interfacial geometry, however, as in the
case of a single or several bubble problem or of a separated flow, it has been
used extensively and very useful information have been obtained. As most
two-phase flow observed in practical engineering systems have extremely
complicated interfacial geometry and motions, it is not possible to solve for
local instant motions of the fluid particles. Such microscopic details of the
fluid motions and of other variables are rarely needed for an engineering
problem, but rather macroscopic aspects of the flow are much more
important.

By proper averaging, we can obtain the mean values of fluid motions and
properties that effectively eliminate local instant fluctuations. The averaging
procedure can be considered as low-pass filtering, excluding unwanted high
frequency signals from local instant fluctuations. However, it is important to
note that the statistical properties of these fluctuations influencing the
macroscopic phenomena should be taken into account in a formulation based
on averaging.
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1.2 Classification of averaging

The importance and the necessity of averaging procedures in order to
derive macroscopic field and constitutive equations for structured two-phase
media have been discussed in the Section 1.1 of Chapter 3 In this section we
study various methods of averaging that can be applied to thermo-fluid
dynamics in general and to two-phase flow in particular. Depending on the
basic physical concepts used to formulate thermal-hydraulic problems,
averaging procedures can be classified into three main groups: the Eulerian
averaging; the Lagrangian averaging; and the Boltzmann statistical
averaging. They can be further divided into sub-groups based on a variable
with which a mathematical operator of averaging is defined. The summary
of the classifications and the definitions of various averaging are given
below.

i) Eulerian Average - Eulerian Mean Value

Function: F' = F(t,z) G-

. 1

Time (Temporal) mean value: X f . F (t, :1:) dt (3-2)
. 1

Spatial mean value: AR jARF (t, :1:) dR (z) (3-3)

1

Volume: fAVF(t,a:)dV (3-4)

Area: L F (t :1:) dA (3-5)
CAAJaT VT

Line: —— F(t,2)dC (3-6)
S AC I VY
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1 N
Statistical mean value: i Z E, (t, a:) 3-7)
n=1

Mixed mean value: combination of above operations

ii) Lagrangian Average - Lagrangian Mean Value

Function: F' = F (t,X); X = X(a,t) (3-8)
. 1
Time (Temporal) mean value: A f y F (t, X ) dt (3-9)
1 N
Statistical mean value: N Z E, (t, X ) (3-10)
n==1

iii) Boltzmann Statistical Average

Particle density function: f = f (:1:, &, t) 3-11)

[ w(e)rae

[ ra

Here we note that £ and X are the spatial and the material coordinates,
respectively, whereas £ is the phase velocity or kinetic energy of particles.
Furthermore, we point out that the true time or statistical averaging is
defined by taking the limit At -— 0o or N — oo, which is only possible
in concept. The material coordinates can be considered as the initial
positions of all the particles, thus if X is fixed it implies the value of a
function following a particle.

The most important and widely used group of averaging in continuum
mechanics is the Eulerian averaging, because it is closely related to human
observations and most instrumentations. The basic concept underlining this
method is the time-space description of physical phenomena. In a so-called
Eulerian description, the time and space coordinates are taken as

Transport properties: w(t, m) (3-12)
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independent variables and various dependent variables express their changes
with respect to these coordinates. Since the standard field equations of
continuum mechanics developed in Chapter 2 adapt to this description, it is
natural to consider averaging with respect to these independent variables,
namely, the time and the space. Furthermore, these averaging processes are
basically integral operators, therefore, they have an effect of smoothing out
instant or local variations within a domain of integration.

The Lagrangian mean values are directly related to the Lagrangian
description of mechanics. As the particle coordinate X displaces the spatial
variable & of the Eulerian description, this averaging is naturally fitted to a
study of the dynamics of a particle. If our interest is focused on a behavior
of an individual particle rather than on the collective mechanics of a group of
particles, the Lagrangian average is important and useful for analyses. The
Lagrangian time average is taken by following a certain particle and
observing it over some time interval. A simple example is the average speed
of a particular vehicle such as a car, a train or an airplane. Furthermore, the
Eulerian temporal mean values can be exemplified by an average velocity of
all cars passing at a point on a road over some time interval.

In contrast to the mean values explained above, the Eulerian and the
Lagrangian statistical mean values are based on a statistical assumption,
since they involve a collection of N similar samples denoted by F, with
n=1---,N. A fundamental question arises as we ask, “What are the
similar samples for a system with fluctuating signals?” To visualize a group
of similar samples, it is useful to consider a time averaging as a filtering
process that eliminates unwanted fluctuations. The similar samples may
then be considered as a group of samples which have time mean values of all
the important variables within certain ranges of deviations. In this case, the
time interval of the averaging and the ranges of deviations define the
unwanted fluctuations, thus the statistical averaging depends on them. For a
steady-state flow based on time averaging, random sampling over a time
domain can constitute a proper set of samples as it is often done in
experimental measurements. In this case, the time averaging and the
statistical averaging are equivalent. There are many other factors to consider,
however it is also possible to leave it as an abstract concept. The difficulties
arise when the constitutive equations are studied in connection with
experimental data. The true statistical averaging involving an infinite
number of similar samples is only possible in concept, and it cannot be
realized. Thus, if it is considered alone, the ensemble averaging faces two
difficulties, namely, choosing a group of similar samples and connecting the
experimental data to a model.

The Boltzmann statistical averaging with a concept of the particle
number density is important when the collective mechanics of a large
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number of particles are in question. As the number of particles and their
interactions between them increase, the behavior of any single particle
becomes so complicated and diversified, it is not practical to solve for each
particle. In such a case, the behavior of a group of many particles
increasingly exhibits some particular characteristics that are different from a
single particle as the collective particle mechanics becomes a governing
factor. It is well known that the Boltzmann statistical averaging applied to a
large number of molecules with an appropriate mean-free path can lead to
field equations that closely resemble that of the continuum mechanics. It can
also be applied to subatomic particles, such as neutrons, to obtain a transport
theory for them. This can be done by first writing the balance equation for
the particle density function, which is known as the Boltzmann transport
equation. Then it is necessary to assume a form of the particle interaction
term as well as stochastic characteristics of the particle density function. A
simple model using two-molecular interaction was developed by Maxwell,
thus the Boltzmann transport equation with the collision integral of Maxwell
was called the Maxwell-Boltzmann equation. This equation became the
foundation of the kinetic theory of gases. We recall that if the Maxwell-
Boltzmann equation is multiplied by 1, particle velocity, or the kinetic
energy (1/2)§2 then averaged over the particle velocity field, it can be
reduced to a form similar to the standard conservation equations of mass,
momentum and energy in the continuum mechanics.

1.3 Various Averaging in Connection with Two-Phase
Flow Analysis

In order to study two-phase flow systems, many of above averaging
methods have been used by various researchers. The applications of
averaging can be divided into two main categories

1. To define properties and then to correlate experimental data.
2. To obtain usable field and constitutive equations that can be used to
predict macroscopic processes.

The most elementary use is to define mean properties and motions that
include various kinds of concentrations, density, velocity and energy of each
-phase or of a mixture. These properly defined mean values then can be used
for various experimental purposes and for developments of empirical
correlations. The choice of averaging and instrumentations are closely
coupled since, in general, measured quantities represent some kinds of mean
values themselves.
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Both the Eulerian time and spatial averaging are frequently in use,
because experimenters incline to consider two-phase mixtures as quasi-
continuum. Furthermore, they are usually the easiest mean values to
measure in fluid flow systems. However, when a particular fluid particle can
be distinguishable and traceable, as in the case of a bubbly or droplet flow,
the Lagrangian mean values are also used. It is only natural that these mean
values are obtained for stationary systems that can be considered to have
steady-state characteristics in terms of mean values. Various correlations are
then developed by further applying the statistical averaging among different
data. This is the standard method of experimental physics to minimize errors.

Before we proceed to the second application of averaging, we discuss
briefly two fundamentally different formulations of the macroscopic field
equations; namely the two-fluid model and the drift-flux (mixture) model.
The two-fluid model is formulated by considering each phase separately.
Consequently, it is expressed by two sets of conservation equations of mass,
momentum and energy. Each of these six field equations has invariably an
interaction term coupling the two phases through jump conditions. The
mixture model is formulated by considering the mixture as a whole. Thus,
the model is expressed in terms of three-mixture conservation equations of
mass, momentum, and energy with one additional diffusion (continuity)
equation which takes account of the concentration changes. A mixture
conservation equation can be obtained by adding two corresponding
conservation equations for each phase with an appropriate jump condition.
However, it should be noted that a proper mixture model should be
formulated in terms of correctly defined mixture quantities. It can be said
that the drift-flux model is an example of a mixture model that includes
diffusion model, slip flow model and homogeneous flow model. However,
for most practical applications, the drift-flux model is the best mixture model
that is highly developed for normal gravity (Ishii, 1977) as well as micro-
gravity conditions (Hibiki and Ishii, 2003b; Hibiki et al., 2004).

Now we proceed to a discussion of the second and more important
application of these averaging. That is to obtain the macroscopic two-phase
flow field equations and the constitutive equations in terms of mean values.
Here, again, the Eulerian spatial and time averaging have been used
extensively by various authors, though the Eulerian or Boltzmann statistical
averaging have also been applied.

Using the Eulerian volumetric averaging, important contributions for an
establishment of a three-dimensional model of highly dispersed flows has
been made by Zuber (1964a), Zuber et al. (1964), Wundt (1967), Delhaye
(1968) and Slattery (1972). These analyses were based on a volume element
that included both phases at the same moment. Moreover, it was considered
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to be much smaller than the total system in interest, thus main applications
were for highly dispersed flows.

It has long been realized that the Eulerian area averaging over a cross
section of a duct is very useful for engineering applications, since field
equations reduce to a one-dimensional model. By area averaging, the
information on changes of variables in the direction normal to the main flow
is basically lost. Therefore, the transfer of momentum and energy between
the wall and the fluid should be expressed by empirical correlations or by
simplified models which replace the exact interfacial conditions. We note
that even in single-phase flow problems, the area-averaging method has been
widely used because its simplicity is highly desirable in many practical
engineering applications. For example, the use of the wall friction factor or
the heat transfer coefficient is closely related to the concept of the area
averaging. We also mention here its extensive use in compressible fluid
flow analyses. A good review of single-phase flow area averaging as well as
macroscopic equations that correspond to the open-system equations in
thermodynamics can be found in Bird et al. (1960), Whitaker (1968) and
Slattery (1972). The boundary layer integral method of von Karman is also
an ingenious application of the area averaging. Furthermore, numerous
examples of area averaging can be found in the literature on lubricating films,
open channel flow and shell theories in mechanics.

However, in applications to two-phase flow systems, many authors used
phenomenological approach rather than mathematically exact area averaging,
thus the results of Martinelli and Nelson (1948), Kutateladze (1952),
Brodkey (1967), Levy (1960) and Wallis (1969) were in disagreement with
each other and none of them are complete (Kocamustafaogullari, 1971). The
rational approach to obtain a one-dimensional model is to integrate single-
phase differential field equations over the cross sectional area. Meyer
(1960) was an early user of this method to obtain mixture equations, but his
definitions of various mixture properties as well as the lack of a diffusion
(continuity) equation were objectionable (Zuber, 1967).

A rigorous derivation of one-dimensional mixture field equations with an
additional diffusion (continuity) equation, namely, the drift-flux model, was
carried out by Zuber et al. (1964) and Zuber (1967). The result shows a
significant similarity with the field equations for heterogeneous chemically
reacting single-phase systems. The latter had been developed as the
thermomechanical theory of diffusion based on the interacting continua
occupying the same point at the same time but having two different
velocities. Numerous authors have contributed in this theory, thus we only
recall those of Fick (1855), Stefan (1871), von Karman (1950), Prigogine
and Mazur (1951), Hirschfelder et al. (1954), Truesdell and Toupin (1960),
and Truesdell (1969). A similar result obtained from an entirely different
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method of the kinetic theory of gas mixtures by Maxwell (1867) should also
be noted here.

In contrast to the analysis of Zuber, the analysis of Delhaye (1968) and
Verier and Delhaye (1968) was directed to two-fluid model based on three
field equations for each phase with three jump conditions that couple the two
fields. A very systematic method was employed in deriving field equations
from three different Eulerian spatial averaging as well as the statistical and
the temporal averaging in Vernier and Delhaye (1968). This is apparently
the first publication which shows important similarities as well as
differences between the various averaging methods. The effect of surface
tension, which is important for the analysis of interfacial stability and of
flow regimes, has been included in the study of Kocamustafaogullari (1971).
This study highlighted that the area averaged model is particularly suited for
studying a separated flow regime and interfacial wave instabilities. However,
it can be used in any type of flow regimes, provided the constitutive
equations can be supplied (Bouré and Réocreux, 1972). Furthermore, in the
former reference a clear separation of analytical methods between the drift-
flux model and the two-fluid model has been given. Although this
distinction had been well known for other kind of mixtures, for example in
study of the super fluidity of helium II of Landau (1941), of the plasma
dynamics of Pai (1962), and of the diffusion theory of Truesdell (1969), in
two-phase flow analysis it had been vague. This shortcoming of traditional
two-phase flow formulation was first pointed out by Zuber and Dougherty
(1967). In subsequent analyses of Ishii (1971) using time averaging and of
Kocamustafaogullari (1971) using area averaging a clear distinction between
the two models has been made. This point was also discussed by Bouré and
Réocreux (1972) in connection with the problem of the two-phase sound
wave propagation and of choking phenomena.

The Eulerian time averaging, which has been widely applied in analyzing
a single-phase turbulent flow, is also used for two-phase flow. In applying
the time averaging method to a mixture, many authors coupled it with other
space averaging procedures. Important contributions were made by Russian
researchers (Teletov, 1945; Frankl, 1953; Teletov, 1957; Diunin, 1963) who
have used the Eulerian time-volume mean values and obtained three-
dimensional field equations.

An analysis based on the Eulerian time averaging alone was apparently
initiated by Vernier and Delhaye (1968), however, a detailed study leading
to a mathematical formulation was not given there. Furthermore, Panton
(1968) obtained the mixture model by first integrating in a time interval then
in a volume element. His analysis was more explicit in integration
procedures than the works by the Russian researchers, but both results were
quite similar. In Ishii (1971), a two-fluid model formulation including the
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surface source terms was obtained by using the time averaging alone, then
the area averaging over a cross section of a duct was carried out. There, all
the constitutive equations as well as boundary conditions, which should be
specified in a standard one-dimensional two-phase flow model, were
identified. We also note the extensive study by Drew (1971) who has used
an Eulerian multiple mixed averaging procedure. In his analysis, two
integrals over both space and time domains have been taken in order to
smooth out higher order singularities. These multiple integral operations are
equivalent to the continuum assumption, therefore, they are not necessary.
The averaging should not be considered as a pure mathematical
transformation, since the constitutive model can be only developed based on
the continuum assumption. Here, readers should also refer to Delhaye
(1969; 1970), where various models based on Eulerian space averaging as
well as a comprehensive review on the subject could be found.

It can be said that the Eulerian time averaging is particularly useful for a
turbulent two-phase flow or for a dispersed two-phase flow (Ishii, 1975; Ishii,
1977; Ishii and Mishima, 1984). In these flows, since the transport processes
are highly dependent on the local fluctuations of variables about the mean,
the constitutive equations are best obtainable for a time averaged model from
experimental data. This is supported by the standard single-phase turbulent
flow analysis.

An extensive study using Eulerian statistical averaging was catried out
by Vernier and Delhaye (1968) in which they obtained an important
conclusion. Under stationary flow condition, they concluded, the field
equations from the true time averaging, namely, the temporal averaging with
At — 0o, and the ones from the statistical averaging are identical.
Furthermore, the statistical averaging was combined with the spatial
averaging, then supplemented with various constitutive assumptions to yield
a practical two-dimensional model. The Boltzmann statistical averaging has
also been used by several authors (Murray, 1954; Buevich, 1969; Buyevich,
1972; Culick, 1964; Kalinin, 1970; Pai, 1971) for a highly dispersed two-
phase flow systems. In general, the particle density functions are considered,
then the Boltzmann transport equation for the functions is written. Kalinin
(1970) assumed that the particle density functions represent the expected
number of particles of a particular mass and velocity, whereas Pai (1971)
considered the radius, velocity and temperature as the arguments of the
functions. Then a simplified version of Maxwell’s equation of transfer for
each phase has been obtained from the Maxwell-Boltzmann equation by
integrating over the arguments of the particle density function except time
and space variables. Since it involves assumptions on the distributions as
well as on inter-particle and particle-gas interaction terms, the results are not
general, but represent a special kind of continuum.
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It is interesting, however, to note that three different methods and views
of mechanics of mixtures in a local sense are represented: the Eulerian time
or statistical averaging applied to two-phase mixtures; the thermomechanical
theory of diffusion based on two continua; and the Boltzmann statistical
averaging applied to gas mixtures or to highly dispersed flows. The first
theory considers the mixture to be essentially a group of single-phase regions
bounded by interfaces, whereas in the second theory the two components
coexist at the same point and time. In contrast to the above two theories,
which are established on the foundation of the continuum mechanics, the last
theory is based on the statistical expectations and the probability. The
importance, however, is that if each transfer terms of above models are
correctly interpreted, the resulting field equations have very similar forms.

A preliminary study using ensemble cell averaging was carried out by
Arnold et al. (1989) where they derived turbulent stress and interfacial
pressure forces due to pressure variations over the surface of non-distorting

bubbles for an idealized inviscid bubbly flow. They discussed deficiencies
~inherent in spatial averaging techniques, and recommended ensemble
averaging for the formulation of two-fluid models of two-phase flows.
Zhang and Prosperetti (1994a) derived averaged equations governing a
mixture of equal spherical compressible bubbles in an inviscid liquid by the
ensemble-averaging method. They concluded that the method was
systematic and general because of no ad hoc closure relations required, and
suggested the possibility that the method might be applied to a variety of
thermo-fluid and solid mechanics situations. Zhang and Prosperetti (1994b)
extended this method to the case of spheres with a variable radius. Zhang
(1993) summarized the other applications to heat conduction and convection,
Stokes flow, and thermocapillary process. Here, readers should also refer to
Prosperetti (1999), in which some considerations on the modeling of
disperse multiphase flows by averaged equations can be found. Kolev
(2002) presented a two-phase flow formulation mostly for development of
safety analysis codes based on multi-field approach.

Finally, we briefly discuss the application of the Lagrangian averaging to
two-phase flow systems. This approach is useful for particulate flow,
however, in general it encounters considerable difficulties and
impracticabilities due to the diffusion and phase changes. For the particulate
flow without phase changes, the Lagrangian equation of the mean particle
motion can be obtained in detail for many practical cases. Thus, we note
that the Lagrangian description of a single particle dynamics is frequently in
use as a momentum equation for a particulate phase in a highly dispersed
flow (Carrier, 1958; Zuber, 1964a). Many analyses on the bubble rise and
terminal velocity use the Lagrangian time averaging implicitly, particularly
in a case when the continuum phase is in the turbulent flow regime.
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BASIC RELATIONS IN TIME AVERAGING

The importance of the Eulerian time averaging in studying a single-phase
turbulent flow is well known. Since the most useful information in
analyzing standard fluid flow systems is the time mean values rather than the
local instant responses of the fluid, its use both in experimental and
analytical purposes is indispensable in turbulent flow studies. For example
mean velocity, temperature and pressure or the heat transfer coefficient and
the friction factor are the important mean values routinely required in
standard problems. Furthermore, commonly used experimental methods and
measurements are well suited for the application of the time average. Thus,
a single-phase turbulent flow has been studied in great depth by using the
time averaged field equations with the constitutive laws expressed by mean
values. Although these models, which are based on time averaging, do not
give answers to the fundamental origin, structure and transport mechanisms
of turbulent flow, their applications to engineering systems are widely
accepted as efficient means of solving problems.

In discussing the importance of the Eulerian time averaging applied to
two-phase mixtures, we first recall that in two-phase flow the local instant
fluctuations of variables are caused not only by turbulence but also by
rapidly moving and deforming interfaces. Because of these complicated
flow and fluctuations, the solutions from the local instant formulation are
inaccessible, therefore in order to derive appropriate field and constitutive
equations it is necessary to apply some averaging procedure to the original
local instant formulation. In view of the above discussion on the importance
and usefulness of the time average in a single-phase turbulent flow analysis,
it is both natural and logical that we also apply the time averaging to two-
phase flow.

It is expected that the averaged field equations distinctly exhibit
macroscopic phenomena of the system from hopelessly complicated
interfacial and turbulent fluctuations, since they enter the formulation only
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statistically. There are two notable consequences from the time averaging
when it is applied to a two-phase mixture:

1. Smoothing out of turbulent fluctuations in same sense as in a single-
phase flow;

2. Bringing two phases, which are alternately occupying a volume element,
into continua simultaneously existing at same point with a properly
defined probability for each phase.

Furthermore, it should be recognized that the constitutive laws appearing
in the averaged field equations should be expressed through the time mean
values. These constitutive laws can be developed from a simple modeling of
two-phase transport phenomena together with various experimental data that
are commonly expressed by the mean values.

In the following chapters, we develop a detailed theory of the thermo-
fluid dynamics of two-phase flow using the time averaging. First, we
assume that the occupant of any particular point is alternating randomly
between the two phases and that the time-averaged functions are sufficiently
smooth in the new coordinates. Namely, the time coordinate having a
minimum scale of At based on the time interval of averaging below which
a time differential operator has no physical meaning.

1.1 Time domain and definition of functions

First, we recall that the singular characteristic of two-phase or of two
immiscible mixture is the presence of one or several interfaces between the
phases or components. Furthermore, whereas single-phase flows can be
classified according to the geometry of the flow in laminar, transitional and
turbulent flow, the flow of two phases or of a mixture of immiscible liquids
can be classified according to the geometry of the interface into three
classes: separated flow; transitional or mixed flow; and dispersed flow.
These classes of structured flow are shown in Table 1-1.

In any flow regime, various properties suffer discontinuous changes at
phase interfaces, if these interfaces are considered as singular surfaces with
their thickness being zero and the properties having jump discontinuities.
This can be illustrated more dramatically by taking a fluid density p, as
shown in Figs.4-1 and 4-2. Since in two-phase flow systems the mass of
each phase is clearly separated by the interfaces and do not mix at the
molecular level, the local instant fluid density shows stepwise discontinuities
between p, and p,. Figure 4-1 shows the instantaneous discontinuities of
p in space, whereas Fig.4-2 exhibits the discontinuities in time at some
fixed point x, .



4. Basic Relations in Time Averaging 69

X3

Xy

Figure 4-1. Fluid density in space at #=t, (Ishii, 1975)

,01 LA (e ————N e

Figure 4-2. Fluid density in time at x=x, (Ishii, 1975)

For the purpose of time averaging, the observation from the time
coordinate gives a more accurate picture of the problem. It can easily be
seen that four distinct processes in terms of p may occur at any fixed point,
which we can classify as follows:
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1. p=p,(t) forall ¢ ; always phase 2 at x,

2. p=p(t) forall ¢ ; always phase 1 at

3. p alternates between p, and p, ;phase 1 and 2 alternate at @,

4. p isneither p, and p, ; interface at @, for some finite time

It is evident that, following a change of p from p, to p, or vice versa, all
properties may change drastically because the phase occupying the point will
be different. For the case of (1) and (2), since the time averaging at that
point is trivial, we eliminate such cases. Furthermore, as case (4) is a rather
singular configuration of case (3), it will be considered separately later.
Hence, we examine the case in which the phase alternates stepwisely
between 1 and 2.

Our purpose here is to average the fluid properties and field equations in
order to treat two-phase flow as a mixture of continua. First, we take a fixed
time interval Af of the averaging and assume that it is large enough to
smooth out the local variations of properties yet small compared to the
macroscopic time constant of the unsteadiness of the bulk flow. This
assumption is identical to that made in analyzing turbulent single-phase flow.
After choosing any particular reference point and time (mo,to) , we have
definite times, #,t,,---,¢,,--- referring to the interfaces which pass the point

z, from time (to — At/z) to (to + At/z). By using the arbitrarily small

interfacial thickness ¢ of the Section 1.2 of Chapter 2, the time intervals
associated with each interface can be defined as

25:_‘5_:M (@-1)
v v

ni ni

which can vary among interfaces, thus we use ¢; for the j®- interface. Since
we are going to treat the interfaces as a shell whose position is represented
by a mathematical surface, we may take £, as a corresponding time interval
for both 6, and 6,. Then the assumption that an interface is a singular
surface, or the interface thickness 6 — 0, corresponds to

lime; = 0 for all j if |v,|=0. 4-2)

§—0

In subsequent analyses, we frequently use this relation in order to derive
macroscopic field equations. Now we define the set of time intervals, in
which the characteristic of the interface dominates, as
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Figure 4-3. Various time intervals (Ishii, 1975)
[At], te[tj—ej;tj +€j] forj=1,...,n 4-3)

The remaining part of the time interval is given by[At]., which can be
separated into intervals of phase 1 and 2. Thus

[At]T = [AtL + [At]z‘

By introducing
[At]; telt,—
we have

At

— b+
R

A

2

[ad) = 4], + (], =[ad] + (41,

These relations are shown in Fig.4-3.

Since in the course of analyses it becomes necessary to distinguish three
states, namely, phase 1, phase 2 or interface, we assign state density
functions M,, M,, and M which are defined as:

(4-4)

(4-5)

(4-6)
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M, (z,t)=1 My(2,t)=0 (k=1or 2);
A point occupied by k™ -phase
M (z,t)=1 M, (z,t)=0 (k=1 and 2);

A point occupied by interface

@*-7)

A general function F' associated with two phases is considered to be
continuously differentiable everywhere except in the interfacial regions of
thickness 6. Then a general function of the k"-phase F, at the point of
averaging x, is defined as

= F(mo,t) if teAt],

Ec(m‘”t) =M, (m‘”t)F —0 if te[At], .

(4-8)
This function F, represents variables of each phase in a local instant
formulation given in Chapter 2.

1.2 Local time fraction - Local void fraction

The time interval occupied by each phase is defined by taking the limit
0 — 0 as (see Fig.4-3)

J

At = &%{Z[(% —ej) (6 + 5]‘)] + &1}; j=2m-1

(4-9)
A - 1}%{;[(% o) (et &2}; j—2m.
Hence, from the assumption (4-2) we have
At = At + At,. (4-10)

By recalling the previous assumption that the interfaces are not stationary
and do not occupy a location x, for finite time intervals, we can find the
time averaged phase density function «; as

o st = 13’5%212 M (20:t) . (4-11)
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Hence, in view of Eq.(4-9), we get

Q = Al for kK = 1 and 2. (4-12)
A

And from Eqs.(4-10) and (4-12) we obtain the following relation
oy +a, =1 (4-13)

which is the consequence that the averaged interface density function oy is
zero. We note here that g is defined in parallel with Eqs.(4-7) and (4-11)
as

— i L
ag = léli:%E » M, (mo,t) dt. (4-14)

The function «y, , which appears only after the integral operation, is a
fundamental parameter in studying the time averaged field equations.
Physically v, represents a probability of finding the k™-phase, thus it
expresses the geometrical (static) importance of that phase. Hereafter we
call oy, as a local time fraction or a local void fraction of the K®-phase.

1.3 Time average and weighted mean values

In this section, we define the time average and weighted mean values of
functions associated with two-phase flow fields.

Time Average
The Eulerian time average of the general function F' is defined by

F(mo,to) = léiHOlALt [Mr F(:z:o,t>dt. (4-15)

Hereafter, the symbol F' denotes the mathematical operation defined in the
right-hand side of Eq.(4-15). Similarly, the mean value of the k™-phase
general function F, is given by

F, (20,t) = l(si{%ALt o (0t dt. (4-16)
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Because of the special property associated with M, it can be shown that
o, = M,. 4-17)

In view of Egs.(4-8), (4-15) and (4-16) we have

F= Lii%{—Al—t-JIAmﬁ;(mo,t)dt +—Al?j[‘AtL‘F2(m0,t)dt}. (4-18)

Hence we obtain an important relation
F=F+F, (4-19)

The functions of F| and F, are directly related to instant, local physical or
flow variables of each phase; however, F, and F, are averaged over the
total time interval Af . Thus, they can be considered as superficially
averaged values. From this point of view, we introduce various weighted
mean values that preserve some of the important characteristics of original
variables.

We start from a general case, then proceed to special cases. Hence by
taking a non-zero scalar weight function w, we define the general weighted
mean value of F' as

e i}

F

Il

|5

(4-20)

where the function w also belongs to the group of a general function F'
defined in the previous section. Then it follows that the weighting function
for each phase can also be defined through Eq.(4-8).

Consequently a general phase weighted mean value in parallel with
Eq.(4-20) should be

w Fy

=W
F—

(4-21)
Wy,

It follows that
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F’ = = = 4=l (4-22)

which relates the mixture and the phase mean values. Since these formulas
are too general, we discuss in below some of the important special cases.

Phase Average F,

The most natural mean value associated with each phase can be defined
by taking the phase density function M, as a weighting function in Eq.(4-
21), hence we have

=— [ Fadt 4-23
FTOM, o At i F (423

where we used Egs.(4-7), (4-8) and (4-17). As it is evident from the
definition, the phase average denoted by F, represents the simple average in
the time interval [At]k of the phase. Hence, we have

o, F,. (4-24)

MN
]

|
MN

F=

B
Il
LN
o
Il
B

1

Mass Weighted Mean Value ) and @/b;

In general, the volume, momentum, energy and entropy, etc. are
considered to be extensive variables (Callen, 1960). If the function F' is
taken as a quantity per unit volume of the extensive characteristic, then they
can also be expressed in terms of the variable per unit mass ¢/ as

F=pm (4-25)

where p is the local instant fluid density. Hence, the properties for each
phase F, are given by

E =py, k=1lor2. (4-26)
Here p, and 1, denote k"-phase local instant density and a quantity per

unit mass, respectively. Then the appropriate mean values for ) and 1,
should be weighted by the densities as
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p=2 @-27)
D

b, = P _ Pt (4-28)
P

The most important reason of weighting 1/ by the density p is that the
quantities represented by 1) are an additive set function of mass.
From the definition of the mass weighted mean values, we have

2
oY = pib. (4-29)
k=1

Hence, we obtain the most important relation between the mass weighted
mixture property and that of two phase as

2 2
Z G Py Z Py
_ k=l — k=l

2. T T2 :
Z O Pr Z Pr
k=1

" (4-30)

We note here that the above result is analogous to the definitions used in the
thermo-mechanical theory of diffusion (Truesdell, 1969) and in Maxwell’s
equation of transfer in the kinetic theory of gases (Maxwell, 1867). In
particular, since the density is a property per unit volume, we have

2 2.
P=D P=) P (4-31)

Fundamental Hypothesis on Smoothness of Mean Values

Our purpose of the averaging is to transform two phases, alternately
occupying a point with discontinuities at interfaces, into two simultaneous
continua. Consequently, the assumption on the continuity of derivatives is
required. Thus, let us introduce here a fundamental hypothesis on the
smoothness of the mean values F' and F, .
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By considering a macroscopic process in terms of the mean values, it is
assumed that they are sufficiently smooth to have higher order derivatives as
necessary except at some isolated singularities, if the time constant of the
process is sufficiently larger than At. In other words any changes of mean
values within the time interval At are considered to be infinitesimal. This
can be visualized by considering the time differential operator in the average
field as a finite difference operator with the time increment 6t — At and
not 6t — 0. If we apply averaging to a mean value we get

(F)= L gim F (y,t) dt. (4-32)

However, since F' is continuous, we obtain from the integral mean value
theorem

(F) = F (2,7, (4-33)
where
to—% < 7y S to—{-éz—t.

Thus, in analogy with the fundamental hypothesis, it is assumed that in the
macroscopic fields we have

(F)= F(mo,to). (4-34)

It states that the averaging does not alter the mean values. Then it is
straightforward that we obtain

w

(F) =F"; (F)=F"

k (4-35)
@) =B ) -R

And for a constant C' we have
- = —w W C—Yk
c=C=C, =C, " =—+£=C. (4-36)
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Fluctuating Component

As in the analyses of turbulent flows, it is a prime importance to
introduce fluctuating components of variables in order to take into account
these effects statistically. In general, they are defined as a difference
between a local instant variable and its weighted mean value, thus we have

F/ =F -F". (4-37)

Since once a variable F, is specified then the form of the weighted average
will be given, the fluctuating component can be defined uniquely. From
Egs.(4-35) and (4-37) we immediately obtain

F™" =o. (4-38)

Furthermore, the mean value of the fluctuating component can be related
to other parameters as

F = oF = (fkw + Fk’) (4-39)

and

E:E‘F—Lw" =akEs/"(1_ak)—‘F—1k

Wy

(4-40)

These relations will be used in analyzing the two-phase turbulent fluxes in
the averaged field equations.

14 Time average of derivatives
In this section, the relation between the average of the derivative and the

derivative of the average is obtained. By the time derivative of the average,
we mean

OF (,,t .
% — %{Ait lim f[ N F(zyt) dt}. (4-41)

Since the domain of the integration is discontinuous, we subdivide it and
apply the Leibnitz rule to Eq.(4-41). Thus we have
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OF (a:o, t)

OF _ 1yl 2o,
oty At oo |[Jag ot

#5[F (et + ) - Flet, )

In view of Eq.(4-2) we define

lim¢, +¢, = t
€;—0
and correspondingly

7

Hence, from Eq.(4-42) we get

@_ 8F(m0,t0) B 1

ot Bt At

J

The average of the space derivative at £ = &, can be written as

VF = lim— o VF (:z:o, )dt

60 At

Therefore, by applying the Leibnitz rule we obtain

(1)t}

VF =lim ‘v {_Al? f[AtlT
Ay Z{ V(t;—e)F (""wt;

+V (b + &) F (2t + )}

gglp(mo,tig) F(ayt5) = F*(mo,t)

—{F+ (20:t, ) = F~ (20rt

79

(4-42)

(4-43)

(4-44)

(4-45)

(4-46)

(4-47)
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The physical significance of the last term of the right-hand side of the
above equation is not clear and should be examined in more detail. For this
purpose we introduce the equation of a surface given by

f(xa Y, Z,t) =0 (4"48)

which passes the point &, at { = ¢,. Then

df = (Vf)-dz, + %dtj =0 (4-49)

Thus, in view of Eq.(4-43), we have

__Vf
Vt, = ~5F" (4-50)
ot

However, the normal vector and the displacement velocity (Truesdell and
Toupin, 1960) are given by

n= V—f (4-51)
V]
and
of
von=uy,=—9L (4-52)
V|
Hence, by eliminating the surface function in Eq.(4-50) we obtain
Vi, = ——. (4-53)
v,-n

1

Then Eq.(4-47) becomes
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VF = Vf(wo,t0>

+>° —1——1—{n+F (azo,tf) +n F (:1: t )} 9
7 At v, ’ Y
The unit normal vector of the interface is defined such that
n-v, =v, >0. (4-55)
Then
n" v, >0, n v, <0 (4-56)

where n™ and n~ correspond to the limit outward normal vector of the
fluid at each side of the interface.
Using the simplified notations, Eqs.(4-45) and (4-54) become

OF _ ———8F(m°’t°) _ 1 —1—(F+'nfr ‘v, + Fn” -v) 4-57)

ot ot, At 7 Uy
— o= 1 1 o
VF = VF (2,1, ) + A—t;v—m(ww +n F) (4-58)

We note here that the function F' can be a scalar, a vector or a tensor, and
V operator can be a divergence or a gradient operator with proper tensorial
operation between n* and F*. These above two transformations and the
definitions of various mean values are the basic tools to be used to obtain the
macroscopic field equations in terms of mean values. In contrast to the case
without discontinuities in the function F', the above transformations show
the important contributions made by the moving interfaces in relating the
average of the derivatives to the derivatives of the average.
As corollaries of Eqs.(4-57) and (4-58) we have

OF _ 0% 151 (pn, . u) (4-59)
ot 01, At>u,
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VE, =VE, + Ait > 1 (n.F,). (4-60)

The special case of the above equations is for the time fraction o, . In this
case, directly from the original definition Eq.(4-11), we obtain

Oa, 1 1
- S o 4-61
ot Atz]:vm. (7 -v,) (4-61)
Vo, = — 5% (4-62)
* At J ,Um'.

These equations clearly demonstrate the existence of microscopic
singularities explained in connection with the fundamental hypothesis of
smoothness in the Section 1.3 of Chapter 4.

1.5 Concentrations and mixture properties

The local time fraction <, has been defined in the Section 1.2 of Chapter
4. The parameter o, signifies the physical events and the structures of the
two-phase flow at any particular point. Therefore, it is anticipated that the
local time fraction o, appears in all field equations. Furthermore, as the
two-phase constitutive laws should also depend on the physical structures of
the flow, its importance in deriving these laws is expected.

Apart from the local time fraction o, , another concentration based on
mass can be defined. In analogy with the theory of diffusion, the mass
fraction ¢, is given by

P 0 _ Py
o

ck = — ===
oy P+ oy p, Pm

(4-63)

It is the measure of the relative significance of the k"-phase mass with
respect to the mixture mass. Since the momentum and energy are an
additive set function of mass, it is expected that the mixture properties of
these variables can be expressed by those of each phase with the mass
fraction ¢, as a weighting function. From Eq.(4-63) we have
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2
e =1 (4-64)
k=1
and
1 2 ¢,
=35 (4-65)
pm ; pk

The above two parameters, namely, «, and c,, are static concentrations,
because they represent the events, structures or masses in a two-phase flow.
Furthermore, kinematic concentrations are defined through various mean
velocity fields, thus they represent the relative importance of the amount of
flows or fluxes. Because of this basic characteristic of the kinematic
variables, they cannot generally be defined in a 3-dimensional formulation,
since the flows and fluxes are vector and not scalar quantities. However,
they can easily be defined for a one-dimensional model. For example, the
quality z has been frequently used in the literature. In what follows, we
define important mixture properties.

1) The mixture density

P =D 04D, (4-66)
k=1
where
= _ D
=" (4-67)
O

2
v, =t — =3¢, (4-68)
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|

)
s
S

]
B
ke
B
?5:'

o, =Bk = Lk (4-69)

s
=
R
a

3) The mixture energy

2
0 P Uy, 2

u, =+=— = ch u, (4-70)
pm k=1

o =tk = Lk @-71)

2
Pn =) 4D (4-72)
k=1
where
7 =2 (4-73)
Oy

G, =4 =%"c4 (4-74)
P k=1
where
~  pd pi
PPt _ P (4-75)
Py Py

Then it can be shown that
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i, =u, +2n (4-76)
Prm
and
=u 2 4-77)
Py,
6) The mixture entropy
2 —
¥, P S, 2
s, =+ ——=>"¢5 (4-78)
Pm k=
where
5 =05 _ B 4-79)

7) The general mixture flux .J

We recall here the general balance equation, Eq.(2-6), the generalized
flux and the volume source defined in the Section 1.1 of Chapter 2. From
the form of the balance equation, it is natural to define the mixture molecular
diffusion flux J as

2 -
J=> o, (4-80)
k=1
where
J, = Je (4-81)
Qy

8) The mixture general source term ¢,
Since the source term ¢ is defined as the variable per unit mass, it
should be weighed by the density. Hence, we have
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2 ——~
b =E—— =) ", (4-82)

vk - Pk (4-83)

It can be seen that the variables based on unit mass are weighted by the mass
concentrations, whereas the ones based on unit volume or surface are
weighted by the time fractions.

1.6 Velocity field

In general, two-phase flow systems with transport of mass, momentum
and energy are characterized by the existence of two different densities and
velocities. Thus it is necessary to introduce two properly defined mean
velocity fields in the formulation in order to take into account the effects of
the relative motion between the phases, namely, the diffusion of mass,
momentum, and energy. However, there are several velocity fields that are
useful in analyzing various aspects of a two-phase flow problem. A
selection of velocity fields for a particular problem depends upon
characteristics and nature of the flow as well as on the forms of available
constitutive laws. In what follows, we present these velocity fields that are
important in studying various aspects of two-phase flow systems.

As it has been explained in the previous section, the definition of the
center of mass velocities is based on the fundamental characteristic of linear
momentum. First, we recall that it is an additive set function of mass. In
other words, as it is well known as a fundamental theorem on the center of
mass, the total momentum of a body is given by the momentum of the center
of mass with the same mass as the body. It is the direct extension of the
above idea into the averaging procedure that we obtain the mass-weighted
mixture and phase velocities as proper mean velocities.

The concept of the center of mass in the time averaging is trivial and it
has the form
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lélirol [At],. p :Eodt
T = . (4-84)
lim pdt
-0 J[At],

However &, is kept constant during the integration, thus the center of mass
is ®,. Then the definition of the mixture density, Eq.(4-66), naturally
follows. The fundamental theorem on the center of mass can be extended as

lim Py At = lim pudt. (4-85)

50 [At]T 50 [At]T

Hence in view of the definitions of weighted mean values, it is
straightforward to show that the center of mass velocities of the mixture and
of each phase have been given correctly by Eqs.(4-68) and (4-69),
respectively.

We define the relative velocity by

v, =0, — 0, (4-86)

Ji = o0, (4-87)

which can be considered as the velocity when one of the phases superficially
occupies the entire interval At with the total amount of the flow fixed, and
therefore it is also called the superficial velocity. Accordingly the mixture
volumetric flux, namely, the velocity of the center of volume, is defined by

2 2
i=> 4 =) 0. (4-88)

If the relative velocity between the phases exists, the velocities v,, and

J are not equal because of the differences of the densities of the two phases.

The diffusion velocity of each phase, namely, the relative velocity with
respect to the mass center of the mixture, is defined by

Vi, =0, — v

m

(4-89)

which are frequently used in the analyses of heterogeneous chemically
reacting single-phase systems. The diffusion velocities can also be
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expressed by the relative velocity, though the symmetry between phases
cannot be kept because of the definition, Eq.(4-86). Thus we have

‘flm = meld v, = —G,

P
and (4-90)
.V'Zm = alpl vr = clvr‘

m

In a two-phase flow system, the drift velocity of each phase, namely the
relative velocity with respect to the center of volume, is important because
the constitutive equations for these velocities in the mixture formulation is
relatively simple and well developed (Zuber et al, 1964; Ishii, 1977). By
definition, the drift velocity is given by

V, =5 —j 4-91)

In terms of the relative velocity, it becomes

-‘,Ij = ~a2’vr
and (4-92)
V,; = av,.

Several important relations between the above velocities can be obtained
directly from the definitions. For example, from Eqs.(4-88), (4-89) and (4-
90) we get

j=uv, + QIQZMUT'

or (4-93)

From Eqs.(4-90) and (4-92) we have
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> eV =0 (4-94)
k=1
and
2
> oV, =0 (4-95)
k=1

Finally, we note that if the relative velocity is zero, then

Vim:‘/;m:‘,lj:‘/;j:vr:o (4-96)
and thus
v=v,=v,=]j (4-97)

which characterizes the homogenous velocity field.

Generally speaking, the velocities based on the center of mass are
important for dynamic analyses because of the fundamental theorem of
center of mass. However, the velocities based on the center of volume,
namely, volumetric fluxes, are useful for kinematic analyses. This is
particularly true if each phase has constant properties such as the constant
densities, internal energies or enthalpies, etc.

1.7 Fundamental identity

In developing a drift-flux model based on the mixture properties, it is
necessary to express an average convective flux by various mean values. In
this section, we derive this relation directly from the definitions. From
Eq.(4-29), the convective flux of the mixture becomes

pyv = Zpkwkvk = Zak Py (4-98)
k=1 k=1

Our purpose here is to split the right-hand side of the equation into the terms
expressed by the mean values and the ones representing the statistical effects
of the fluctuating components. Since the mean values of 1) and v are
weighted by mass, the fluctuating components are given by Eq.(4-37) as
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=Pt rh B=U Y, v =0+ (4-99)

with

=0, pi =0 po =0. (4-100)

By substituting Eqgs.(4-99) and (4-100) into Eq.(4-98) we obtain

2 2
PPV = "o T, + >y pi; (4-101)
k=1 k=1

By using the definition of the mixture properties and that of the diffusion
velocities, the above equation reduces to

2 2
pYv = p, U, v, + z P Vi Vim T Z ay, Pk“p/:'vli- (4-102)
k=1 k=1

It shows that the average convective flux can be split into three parts
according to the different transport mechanisms: the mixture transport based
on the mixture properties; the diffusion transport of 1/, due to the difference
of the phase velocities; and the transport due to the two-phase and turbulent
fluctuations. In order to distinguish these last two transport mechanisms we
introduce special fluxes associated with them. Hence, we define the
diffusion flux J° as

P P2 2
I YA (4-103)
pm k=1

2
JP = Zakp—kwkvlvm =
k=1

whereas the covariance or the turbulent flux J; is defined as

Ty = pibio. (4-104)

Thus, the mixture turbulent flux should be

2 2
J' =" = apii,. (4-105)
k=1 k=1
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By substituting Egs.(4-103) and (4-105) into Eq.(4-101) we obtain a
fundamental identity

- 2 o 2
v = p, v, +J° + T =" 0T + Y oy JY . (4-106)
k=1 k=1

Hence, from the definitions of the mean values we have

0 Pt
8 4. (757) = a9 )

+V-(J7+J7)

(4-107)

and for each phase we get

Opy . =
%wk'i'v ( Pebiv,) = ké:fkwk +V- (%Pk%"’k)

-I-V-(akaT).

(4-108)

We note that Eq.(4-108) shows a simple analogy with a single-phase
turbulent flow averaging, therefore, the last term is called the Reynolds flux.

In view of Eq.(4-107), it can be seen that the left-hand side of the
equation is not expressed by the averages of the derivatives, but by the
derivatives of the averages. However, when we apply the Eulerian temporal
averaging to the local formulation of two-phase flows, we first encounter
with the averages of the derivatives. Now we recall that the important
transformations between these two operations have been derived in the
Section 1.4 of Chapter 4. Thus, by substituting Eqs.(4-57) and (4-58) into
Eq.(4-107) we obtain

oy Pt ,
[8_] wv) 8t + V (pmwmvm)
: . (4-109)
vo(s? ’“ﬂ)+zg§: E:&%f% —v,) U}
Ui k=1

A similar relation for an individual phase follows, thus we have
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8 605 b, =T
[—pakzbk ] + V- (pk%’vk) = kpk"w"‘k +V- (Ozk 2% 'vk)
4-110)

1 1
+V-(akJ,?) + th]:[v_mnk - py (v, — 'vz.)o,bk}.

These above two equations show important contributions made by the
interfacial transfer in addition to the statistical effects of fluctuations.
Furthermore, in the mixture average, Eq.(4-107), the diffusion term J”
appears due to the differences in phase velocities.

Furthermore, from the definitions of mean values and of the diffusion
flux we have

Lale 17 (p00,)+ 77

Z &lkpkd}k +V- (%Pk¢k"’k)

k=1

(4-111)

This relation enables us to transform the field equations for the two-fluid
model to the ones for the drifi-flux model.
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TIME AVERAGED BALANCE EQUATION

1.1 General balance equation

In the preceding chapter, the important definitions and basic relations
between them have been given. We now apply them to the time averaging
of the balance laws in the two-phase flow media. As it has been explained in
the Section 1.1 of Chapter 4, it was necessary to introduce several sets of
time intervals because of the discontinuous changes in the nature of fluid
surrounding the point of average. Thus the domain of averaging has been
divided into [At], and [At], . During [At], , the standard balance
equation (2-6) holds, since the fluid occupying the point &, can be
considered as a continuum. However, in [At] s the interfacial balance
equation, namely, the jump condition of the Section 1.2 of Chapter 2, is valid
because the characteristics of the interface dominates in this time interval.

Our purpose here is to average the balance laws in time by properly
assigning appropriate balance equations of the bulk fluid and of an interface.
Now let us first proceed with an analysis in [At], when the point of
averaging is occupied by one of the phases and not by an interface. For time
t € [At], =[At], +[At],, we consider the balance of a quantity ¢ in the
following form

0
BV=—%+V-(p¢v)+V-J—p¢=O. (5-1)

Here J and ¢ represent the generalized tensor efflux and the source of 7/,
respectively. Since it is multiplied by the density p, the quantity v is
expressed as the quantity per unit mass. Thus the above equation itself is a
mathematical statement of the balance of the quantity in a unit volume. This
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is an important point to be remembered when we compare it to the surface
balance equation in the course of the time averaging. In order to keep the
volumetric origin of Eq.(5-1), the balance is denoted by B,,. Furthermore,
we recall here that when Eq.(5-1) is applied for each phase, the subscripts
that differentiate two fluids should appear with variables. For time
tc [At] 4, a different kind of balance equation should be used due to the
special characteristics of an interface. Since the detailed derivation of the
interfacial balance equation has been given in the Section 1.2 of Chapter 2,
we simply recall those results. Thus, from Eq.(2-67), the balance of matter
1 at the interface becomes

1
BS = _{iwa +wavs "vi

2
Z[pknk )Y, + 1, J, (5-2)

k=1

(Y ),ﬁ ~4.} =

In order to obtain Eq.(5-2), we have divided Eq.(2-67) by the interfacial
thickness 6. Consequently, the above equation is the balance of ¢/ in an
unit volume of the region.

The averaged balance per volume can be obtained by integrating the
proper balance equations in the time domain. Now let us express the balance
equation in general by

B=0 (5-3)
where

B=B, =0 for t €[At], (5-4)

B=B; =0 for ¢t €[At],. (5-5)

By taking a time average of B we have

1

— Bdt = 0. (5-6)
At 4
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Following the assumption previously made, we approximate the interfacial
region with a singular surface by taking the limit 6 — 0. Thus Eq.(5-6)
becomes

At [HO " B dt—%——A—15np " Bgdt = 0. (5-7)

The first part can be expressed in terms of the mean values defined in the
Section 1.3 of Chapter 4, hence from Eq.(5-1) with Eqgs.(4-25), (4-57) and
(4-58) we obtain

1 .. 8pw
Ktlémg o, B, dt = ™ +V-ppv+V-J — pd
{ | 2 (5-8)
LY {—'Z["k'Pk(”k—”@)%ank'“]k] =0
J i k=1

or in terms of the mixture properties

1 .. _ Op Y, '
_232151?01 j[‘At]T B, dt = e + V(P ¥n¥,)

+V-(T+I°+JI7) = p0, (5-9)

1 1 &
+At {_Z[nk-Pk('Uk——‘vi)'(/)k-{-nk.a]k]}:o

Uni k=1

where the fundamental identity of the Section 1.7 of Chapter 4 has been used.
From Eq.(4-2) with Eq.(4-1) the second part originating from interfaces
becomes

1 11 [d,
_AT,LI«S‘E]E)1 [At]sBSdt_th {dt(w”wV U
(5-10)

2
+g, A (tgji.)w ~;nk ' [Pk (v —v)% + Jk]} =0.
=1

It is evident that the above equation is a time-averaged interfacial balance
equation. In order to distinguish it from the local jump condition, we call it
the interfacial transfer condition or the macroscopic jump condition.
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In view of Eqgs.(5-7), (5-9) and (5-10), we obtain a macroscopic balance
equation for the mixture

8pgzbm+v (Pnton®) + V(T + T +I7) = p, 8,
1 1 (d,

+ZE {dt(w) VS v—qs} (5-11)
1 1 afl {4n gl

+At g, A (827 ),,=0.

The terms given by J , J° and J” represent the effluxes due to the
average molecular diffusion, the macroscopic phase diffusions with respect
to the mixture center of mass, and the statistical effects of the two-phase and
turbulent fluctuations, whereas p, ¢, is the mixture volumetric source.
From the form of the balance equation, it is also possible to consider the
interfacial terms as an additional source or sink.

It is generally accepted that the mass and momentum of the interface can
be neglected. The surface energy, however, may not be insignificant
because of the energy associated with the thermodynamic tension, namely,
the surface tension. Thus, the first part of the interfacial term is important
only in the energy balance equation. The surface line flux appears in the
momentum and the energy balances, though the molecular diffusion
transfers along an interface (namely the surface viscous stress and the
surface heat flux) are neglected. This means that these line fluxes account
for the effects of the surface tension only. When Eq.(5-11) is applied for the
balance of mass, momentum and energy, appropriate forms corresponding to
the simplified jump conditions of Eqgs.(2-69), (2-72) and (2-73) should be
used.

The averaged balance equations for each phase can be obtained by
considering the function associated only with a particular phase, Eq.(4-8).
Thus, in analogy with Eq.(5-9), we have

50ék(‘;k¢k +V- (akpk¢kvk)+v [ak(] +J )}—Oékp:k@
(5-12)
1 1
+At [ Ty Pk( )7/)k+nk ]}_0

where we have used the transformation (4-110) and the local instant general
balance equation for the k*-phase, Eq.(2-6). For simplicity, let us define
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1 1

I, =— At ‘|”"nk [pk(vk_vi)wk +Jk]} (5-13)
1 1(dy

J = —— | Zs*a V v —

™ At .{v dt TV (5-14)

+91nAuﬁ (tg J, :i )

And the mixture total flux is given by
J, =J+J°+J". (5-15)

Here I, and I represent the interfacial source for the K™-phase and for the
mixture, respectively. With these definitions the mixture general balance
equation (5-11) reduces to

O,
ot

+ V(o) = =V T+ oy + 1, (5-16)

whereas the balance equation for the K*-phase becomes

80‘1; Py
ot
+oy, ﬁ_;@ + 1.

X (42 t5;) = V-[ak(J:kJerT)

(5-17)

Furthermore, the interfacial transfer condition (5-10) can be rewritten as
I, -1,=0. (5-18)

Each of these three macroscopic equations expresses the balance of matter
2 for the mixture, for the k™-phase, and at the interfaces, respectively. The
mixture balance equation will be the foundation of the formulation of the
drift-flux model. Furthermore, the phase balance equations and the
interfacial transfer conditions are required for the two-fluid model
formulation.
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In view of Egs.(5-16), (5-17) and (5-18), our fundamental purpose of
averaging has been accomplished. Thus, the original two phases which are
alternately occupying a point have been transformed into two co-existing
continua. Moreover the hopelessly complicated two-phase and turbulent
fluctuations have been smoothed out and their statistical macroscopic effects
have been taken into account by the covariance (or turbulent flux) terms. In
the next two sections we present balance equations of mass, momentum and
energy for the diffusion model and for the two-fluid model separately.

1.2 Two-fluid model field equations

In this section, the macroscopic balance equation (5-17) and the
interfacial transfer condition (5-18), which have been derived from the time
averaging, are applied to the conservation laws of mass, momentum and
energy. The choice of variables in these equations follows that of the local

instant formulation of Chapter 2.

Mass Balance
In order to obtain mass balance equations, we set

vo=1 J,=0, ¢ =0. 2-7)
And in view of Eq.(2-69) we define

1 1
r,=1I = “ {v—nk - py (v, — 'vi)} (5-19)
J ni

I,=0. (5-20)

Then by substituting Eq.(2-7) into Eqs.(5-17) and (5-18) we get

8fgktpk +V-(o458) =T, k=1and2 (5-21)
and

2

YI,=0o. (5-22)
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Equation (5-21) is the continuity equation for each phase with the interfacial
mass source [, appearing on the right-hand side due to phase changes,
whereas the second equation, Eq.(5-22), expresses the conservation of mass
at the interfaces.

Momentum Balance
The macroscopic momentum balance can be obtained from Egs.(5-13),
(5-14) and (5-17) by setting
h=v, JSi=-T,=pl-C, & =g, (2-9)

and by defining the following terms in view of Egs. (2-72) and (4-104)

1 1
Mk EIk :—Zt : {v—mnk.[pk(’vk—’vi)’vk—ﬂ}} (5-23)
M =1 =—1—Z ——l—(t A%0), (5-24)
m m At ; » o Jei
g =-J, =-pyv. (5-25)

With these definitions we obtain from Eqs.(5-17) and (5-18)

OB L G (o 5055) =~V (o )

ot (5-26)

+ V-0 (E+ )|+ g+ M,
and
2
> M, - M, =0 (5-27)
k=1

Here the terms &  and M, denote the turbulent flux and the k™-phase
momentum source form the interfacial transfer, respectively, whereas the
term M is the mixture momentum source due to the surface tension effect.
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Energy Balance

Chapter 5

The energy balances for the macroscopic fields can be obtained from

Eq.(5-17) by first setting

2 )
v
¢k:uk+7k’ Je=aq, — T - v, L

k

O =g, v+

2-12)

and by defining following terms in view of Eqs.(5-13), (5-14) and (2-73)

E =1,

2

1 1
= — — —nk.
At 57 v,

et~ L5 L [4(2) (2], o
At v, | latldT) T dT

n

v
Pk("’k _vz‘)[uk +?k]_7;c"vk +q,

N2
)
e =1U .
k k

2

Thus, we have from Egs.(5-17) and (5-18)

__—..a:
" Pk

+V-

1/)\2
%]

QL Py | € +_2” U

==V [o (@ +a))|+ V(T 5)
+akp_7§;-’6;+Ek

}@a&

(5-29)

(5-30)

(5-31)

(5-32)
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and
> E,—E,=0 (5-33)

where we have assumed

—

g, = g, (5-34)

We also note that the apparent internal energy e, consists of the standard
thermal energy and the turbulent kinetic energy, see Eq.(5-31). The term
E, represents the interfacial supply of energy to the K"-phase, while E_ is
the energy source for the mixture. This means that the energy can be stored
at or released from interfaces. As it can be seen from the definition, the
turbulent heat flux qkT takes account for the turbulent energy convection as
well as for the turbulent work. For most two-phase flow problems, the
internal heating ¢, can be neglected.

The two-fluid model is based on the above six field equations, namely,
two continuity, two momentum and two energy equations. The interfacial
transfer conditions for mass, momentum and energy couple the transport
processes of each phase. Since these nine equations basically express the
conservation laws, they should be supplemented by various constitutive
equations that specify molecular diffusions, turbulent transports, and
interfacial transfer mechanisms as well as a relation between the
thermodynamic state variables.

In solving problems, it is often useful to separate the mechanical and
thermal effects in the total energy equation. Thus from the standard method
of dotting the momentum equation by the velocity, we have the mechanical
energy equation

~2
3[04,@7%“] 2
=X ~ P o

~.2

+7/’;'V'[ak(@+@ip) +akP=kgk"‘/’;+Mk"'/’;”%Fk'

Then by subtracting Eq.(5-35) from Eq.(5-32) the internal energy equation
can be obtained, thus
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aak P
ot

—V~{ak(qkT+@T-'z/);)} S AL A

2 +V- (%Pk%”k) V'(O‘ki)

— 5-36
to, (@ + ) Vg, ©30
1/)\2
+[_;_Fk — M, -v, +Ek]

Here we recall that the virtual internal energy €, includes the turbulent
kinetic energy in addition to the standard internal energy.

For two-phase flow analyses, the enthalpy energy equation is important
and it is frequently used to solve various engineering problems. Thus, in
parallel with Eq.(5-31), we introduce a virtual enthalpy }?k defined by

e

—~ (v; )2 D,
b=+l =g B (5-37)
2 Pk
By substituting Eq.(5-37) into Eq. (5-36) we obtain
8a h =y p—
kaptk P+ V- (ozkpkhk'vk) = —V‘(aqu)
. D —
~V{a (@ + &7 a)} + () (5-38)

= m o2
+O‘k(@ +@;1):V"/’;+[%Fk_Mk"‘/’;+Ek

where the substantial derivative D, /Dt is taken by followmg the center of
mass of k"h-phase or moving with velocity v, , thus D,/Dt
=0/0t+v,-V . These thermal energy equations are extremely
complicated due to the interactions between the mechanical terms from the
turbulent fluctuations and the thermal terms. However, in many practical
two-phase flow problems, the heat transfer and the phase change terms
dominate the energy equations. In such a case, the above equations can be
reduced to simple forms.

As it can be seen from Eq.(5-38), the interfacial transfer in the thermal
energy equation has a special form which is expressed by a combination of
the mass, momentum and energy transfer terms. Thus we define
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_ G o
A=t M, 5 + B, (5-39)
1.3 Diffusion (mixture) model field equations

The basic concept of the diffusion (mixture) model is to consider the
mixture as a whole, therefore the field equations should be written for the
balance of mixture mass, momentum and energy in terms of the mixture
properties. These three macroscopic mixture conservation equations are
then supplemented by a diffusion equation that takes account for the
concentration changes.

Mixture Continuity and Diffusion Equations
From the mixture general balance equation, Eq.(5-16), with the
definitions of p,, and v, , we obtain the mixture continuity equation

Op
S v = 0. 5-40
o+ (PuV,) (5-40)

The above equation has exactly the same form as that for a continuum
without internal discontinuities.

The diffusion equation, which expresses the changed in concentration ¢,
can be derived from Egs.(5-21) and (4-89)

-a%lle + V- (up,) =T = V- (V). (5-41)

It has a mass source term [ that appears only after the continuity equation
being averaged over the time interval because it accounts for the mass
transfer at the interface. In addition, Eq.(5-41) has a diffusion term on the
right-hand side, since the convective flux has been expressed by the mixture
center of mass velocity v,, .

Mixture Momentum Equation
By applying the general balance equation (5-16) to the conservation of
momentum we obtain

8'05—:'"+V-(pmvmvm)= ~Vp, +V-(T+T" +T°)

+0,.9, + M,

(5-42)
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where we have

Py

2
P =D

k=1
o 2
T = Zak@

k=1

2
T" =) opuy, (5-43)
k=1
2
I YA
k=1

2 =
Zak Pr 9k
g, = k=l
Pm,

Furthermore the interfacial momentum source M is given by Eq.(5-24).

Three tensor fluxes & , &7 and &° represent the average viscous stress,
the turbulent stress and the diffusion stress, respectively. It is evident that if
the surface tension term is neglected, then there are not direct interfacial

terms in the mixture momentum equation.
Mixture Total Energy Equation

The mixture energy equation can be obtained from Eq.(5-16) applied to
the balance of the total energy, thus
2
v
e, +1—1{ (v,

0 v?
= +HE| H+v-
aJ'Om € [2]m} {p’”

=-V-([@+q" +9°) =V (pv,) + V(T v,) (5-44)

2
+:0mgm ' 'Um + Zakp_kgk : Vkm + Em
k=1

where we have

a=> oq, (5-45)
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And, by definition, we have following mixture properties

: S
AN Z%Pk Uy +7
= _ =
K Pr Prm
2 ~2 2 2
=1, =V,
o, p, o, p,
o - &Pk n ’U,z,, kzz; L
I J— :__+
2), Pm 2 Pm

105

(5-46)

(5-47)

(5-48)

(5-49)

The interfacial energy source E is given by Eq.(5-29). The important
special case is when the body force field is constant

9. =9,=9,=9

Then the diffusion body work term becomes zero, thus

2
Zakp—kgk Vi =0
k=1

where we used the identity, Eq.(4-94).

(5-50)

(5-51)

Hence, under the standard condition of the constant body force field, the

total mixture energy equation reduces to
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v v
e, +|— e, +|—| |v

9

ot |’

=-V-(@+9" +9°) - V-(p0,)+ V(T v,) (5-52)
PG UV + E,,.

+V-ip,

It can be seen that the form of Eq.(5-52) is quite similar to the single-
phase flow energy equation. The differences appear as additional heat fluxes,
namely, the turbulent flux g and the diffusion flux ¢°, and the interfacial
body source E,,. However the most interesting characteristic of the mixture
can be found in the kinetic energy term, Eq.(5-49). We see from the
equation that the total mixture kinetic energy consists of the kinetic energy
of the center of mass plus the diffusion kinetic energies of both phases. It
also should be remembered that the turbulent kinetic energy has been
included in the virtual internal energy due to the great difficulties in
separating it from the thermal effects. We also point out that if the surface
tension effects are neglected, then the interfacial term does not appear in the
mixture total energy equation (as in the case with the mixture momentum
equation).

Mixture Thermal Energy Equation

In a single-phase flow, the separation of the mechanical and thermal
energy can be carried out quite easily by subtracting the mechanical energy
equation from the total energy balance. Exactly the same method could be
used in the two-fluid model formulation, if we would include the turbulent
kinetic energy in the virtual thermal energy as we have done in Egs.(5-36)
and (5-37). In the diffusion model formulation, however, it is further
complicated by the existence of the diffusion kinetic energy transport.
Consequently, there is no clear-cut method to obtain a corresponding thermal
energy equation for the mixtures. In the following, we demonstrate two
distinct methods which give quite different results.

The first method is to subtract the sum of the kinetic energy equations of
both phases from the total energy equation (5-44). In this way, the diffusion
kinetic energy can be eliminated. Thus, from Eqgs.(5-35) and (5-44), we
obtain

% + V- (pmhmvm) =~V (?j—{—qT)

2 e D 2 J— .
-V [Z akpkhlcvkm] + szm + Zak@ Vo
k=1

k=1

(5-53)
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+ki;/1k +Z{Vm V(ah) - V- (&)}

Here from the definition, the mixture enthalpy h,_ is given by

p = k= - : (5-54)

The same equation (5-53) can also be obtained by adding the enthalpy
equation of each phase, Eq.(5-38). The form of the equation is reasonably
simple except the last term, but we should realize that the interfacial term

2
Z A involves complicated exchanges between the total and the mechanical
k=1
energies.

It is noted that by using the mixture kinetic energy equation in terms of
the center of mass velocity v, , this difficulty in the interfacial term can be
avoided. The resulting thermal energy equation, however, has additional
terms from the diffusion kinetic energy. By subtracting the mixture
mechanical energy equation, namely, the momentum equation (5-42) dotted
by v, , from Eq.(5-52), we obtain

8thm +V. ( mhm,vm)=_v,(a+qfr)

ot
2.~ Dy,
—V'[;akpkthm] + Dt |
D oy Py V2 2, =V
— +V- ——V 5-55
N SR W 559

+(@+€”): Vv, +(B, - M, -v,)~v,-(V-T")

+v-[zzjakZ-Vkm].

k=1

In view of these two thermal energy equations, namely, Egs.(5-53) and (5-
55), it can be concluded that the mixture energy transfer is highly
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complicated due to the diffusion of each phase with respect to the mass
center. The form of the right-hand side of each equation suggests that if the
effects of the mechanical terms originated from the diffusion are important,
then the constitutive laws for the diffusion (or mixture) model cannot be
simple. Thus, in such a case, the two-fluid model may be more suitable.
However, in most two-phase problems with large heat additions, these
mechanical effects from the diffusions are insignificant. The only important
effect to be taken into account is the diffusion transport of thermal energy
because of the large difference on the phase enthalpies, namely, the latent
heat.

14 Singular case of v,=0 (quasi-stationary interface)

In the preceding analyses it has been assumed that the interfacial
displacement velocity v,; is non-zero, however in reality it can be zero at
isolated singularities. For example, it happens when an interface is
stationary or the motion of the interface is purely tangential to it. Since
v,; = 0 is an important singularity associated with all the interfacial terms
in the balance equations such as I, and I, we study it in some detail.

In connection with this singularity, we first introduce a surface area
concentration per volume. By considering only one interface it can be given
as

2¢c.
4y 1t s 1)1 (5-56)
L At -0 4 At

m']'

whereas the total area concentration is given by

1 1 1 1 1
Ly Sdt=—5 |
a, LS At 51£1;)l \/[‘At]s P} At 7 [,Um' ]j

1 1
——;Lj —;%‘

(5-57)

The reciprocals of the area concentrations have the dimension of length and
they are denoted by L, and Lg for a single interface and for combmed
interfaces, respectlvely a; is the surface area concentration for the ;-
interface. We note here that the total interfacial length scale Ly has an
important physical significance comparative to those of the molecular mean
free path and the mixing length. Consequently all the interfacial terms
appearing in the field equations, I, and I, are expressed as an addition of
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contributions from each interface with a,; as a weighting factor. This fact is
clearly demonstrated in Eqs.(5-13) and (5-14). Furthermore, the derivatives
of the time fraction «y, are closely related to the area concentrations, as it
can be seen from Eqs.(4-61) and (4-62). The importance of the interfacial
area concentration a, or the length scale Ly should be noted. a, has the
physical significance of the interfacial area per unit volume and it is the most
important geometrical factor affecting the interfacial transfer. The inverse of
a, given by L, is the internal length scale of the two-phase flow. This
variable is discussed in detail in Chapter 10.

Now we return to the singular case of v,, = 0. In view of Eqs.(5-56)
and (5-57), it can be said that the transport length L, becomes also singular
in such a case and, thus it loses its physical significance. As a consequence
all the interfacial terms in the balance equations, I, and I, are also
singular and the time fraction oy or its derivative may suffer discontinuities.
In order to cope with this difficulty, we first recall that o is the time
fraction of the interfaces. We note here that from Eq.(4-14), the case of
v,; #= 0 corresponds to ag = 0. Furthermore, if the normal velocity of an
interface v, is zero, then it may stay at @, for some finite time. Thus we
have

_ Aty

= >0 5-58
Qg At © ( )

where Atg is the total time occupied by interfaces in the interval of At.
And therefore

2
At = Atg + ) At (5-59)
k=1

or in terms of the time fractions
=04+ +a, (5-60)
Now it is clear that we have two distinct cases of singularities, namely

l. v, =0 and o4 = 0;
2. v; =0 and o4 >0.

As the definition of oy, shows, Case 1 does not bring discontinuities in «,
but only in its derivatives in the microscopic sense. However, it has been
explained in the Section 1.3 of Chapter 4 in connection to the fundamental
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hypothesis on smoothness of mean values, these microscopic singularities
should be neglected when macroscopic problems are concerned. Thus,
unless an interface stays at a point for a finite time interval, the field is
considered to be occupied by two continua with continuous interfacial
transfer and source term [, and I, . Hence the singular surface of the
interfacial origin appears in the macroscopic formulation only when ag > 0.

The above discussion also clearly indicates that the interfacial terms I,
and I given by Eq.(5-13) and Eq.(5-14) are not the constitutive relations to
be used in the macroscopic formulation. These equations still retain all the
details of the local instant variables which should not appear in the averaged
formulation. Consequently, it is necessary to transform these equations in
terms of the macroscopic variables.

We note that the macroscopic interface represented by Case 2 is most
easily exemplified by the stationary interface such as a solid wall. Since for
og > 0 it is not possible to consider the average of the volumetric balance
equation, the correct form of the macroscopic balance is simply the time
average of the jump condition in the time interval of At . Thus we have

1. _
— lim [At]S(Bsé)dt_o. (5-61)

Case 2 in normal two-phase flow corresponds to the discontinuity in o, , and
therefore, it can be treated as a concentration shock, see Eqs.(4-61) and (4-
62). For most of the flow field it is assumed to be continuous. As the time-
averaged macroscopic formulation is intended to be applied for such two-
phase flows, these interfacial singularities can be neglected in most
applications.

1.5 Macroscopic jump conditions

We have discussed the singularity related to a quasi-stationary interface
in the preceding section. Now we study important singularities related to
macroscopic shock discontinuities in the time averaged field. The essential
part of the analysis can be developed in parallel with the Section 1.2 of
Chapter 2 where the standard jump conditions at an interface have been
derived.

In single-phase flows as well as in two-phase flows, the existence of
regions where various properties suffer extremely large changes is well
known. It can be exemplified by shock waves due to compressibility effects
or by concentration shocks in mixtures. The unusually high gradients in
these regions require special considerations on the constitutive laws in order
to treat them as a part of continuum mechanics. However, as it has been
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Figure 5-1. Macroscopic discontinuity (Ishii, 1975)

mentioned in the Section 1.2 of Chapter 2, for most practical flow problems
replacements of these regions by surfaces of discontinuity with the jump
conditions yield sufficiently accurate models. Hence in this section we
derive macroscopic jump conditions which stand as balance equations at a
surface of discontinuities in the averaged field. By considering the time-
averaged macroscopic field as a continuum, the analysis of the Section of
Chapter 2 can be directly applied here. The velocity of the surface U is
defined in analogy with v, of Egs.(2-49) and (2-50), thus its normal
component is the surface displacement velocity, whereas its tangential
component is the mean mixture tangential velocity in the region with the
thickness 6. By denoting each side of the region by + and -, we have from
Eq.(2-64)

d

(—;t'(pmawms) + pmadjmsvs ' U

=> {putpan- (v, —~U)+n-J,} (5-62)
+’7

_—glnAaﬂ (t:JZa) '3 +loma¢ms + Ima

where the summation stands for both sides of the region, the subscript a and
s represent the mean values in the region as defined by Eqs.(2-45) to (2-54)
and the surface derivatives have the standard significances. Equation (5-62)
is a balance of %), at the region of a shock. The lefi-hand side of the
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equation accounts for the change of the matter v/, in the region, and each
term on the right-hand side represents: the flux from the bulk fluid; the flux
from the periphery with the thickness ¢ ; the body source; and the interfacial
source term.

It is evident that the balance equations similar to Eq.(5-62) can be
obtained also for each of the two phases, thus

S {0, B} + (@), v, v

= Z{akp:k@n'(ﬁ; _U)+n'[ak(']=k+"]5)
-

} (5-63)
- gmAaﬁ (tZJ;ﬁa) 18 "‘(ak?—;)a Q/b; + Iy,

From the definition of the mean values at the region it is easy to show that if
each term in Eq.(5-63) is summed up for both phases, the resulting term
becomes that of the mixture appearing in Eq.(5-62).

Since Eqs.(5-62) and (5-63) introduce new variables associated with the
discontinuities, namely, the surface properties and the line fluxes, it is
necessary to make some specific assumptions on these terms or to give
sufficient constitutive laws. A simple result of practical importance can be
obtained by considering the limit of 6 — 0 and, furthermore, by neglecting
the surface energy of shocks and the associated thermodynamic tension.
Under these conditions, we have for the mixture

S {puthun (v, —U)+n-J,}+1,, =0. (5-64)
—

And for each phase with k=1 and 2

| Z{akpzk{p;n-({;;—U)—kn-ak (Jzk—I—JkT)}—i—Ika =0. (5-65)

+

Here, we note the importance of the terms I, and I,, that permit the
exchange of mass, momentum and energy within the shock layers. It is
incorrect to neglect these terms simply because they appear as volumetric
sources. Depending on the constitutive laws expressing them, it is possible
that they take a form of fluxes. Furthermore, from the physical points of
view it is natural to have these interfacial transfer terms I,, in the
macroscopic jump conditions because of the highly non-equilibrium state of
two-phase shock layers.
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1.6 Summary of macroscopic field equations and jump
conditions

The field equations for the mixture and for each phase were given by Egs.
(5-16) and (5-17)

0
pg;/’m + YV (ppthuy) ==V I + puty + 1, (5-16)
and
60%/)“/% = T
Sk 4V (0472 ) =~V - [ak (7 +97) .
‘o p; ¢k + 1.
The mixture total flux has been defined by
J, =T +J°+J" (5-15)
with
— 2 =
J=> o, (4-24)
k=1
2 —_—
I? =" 40, b Vim (4-103)
k=1
2 2
J' =" d) = oyppidiv) (4-105)
k=1 k=1

And the interfacial transfer condition was

I,=>1I. (5-18)
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The macroscopic jump conditions at shock waves in their simplified forms

were
(5-64)

S {puttan (v, ~U)+n-J }+1,,=0

and
Seditin @ -v)+n-a [+ 41, =0 69

+-
where n (with + and -) is the outward unit normal vector at each side of the

surface, and U denotes shock surface velocity.

1.7 Alternative form of turbulent heat flux

The energy equations in the Sections 1.2 and 1.3 of Chapter S are derived
Here, an

based on the definition of turbulent heat flux of Eq.(5-30).
alternative definition of the turbulent heat flux of Eq.(5-30)’ may be possible

as

(5-30)’

2
T v
at = o ful+| ] Lot -7

Then, we can recast the stagnation internal energy equation, Eq.(5-32), the
internal energy equation, Eq.(5-36), and the stagnation enthalpy equation,

Eq.(5-38) as given by Egs.(5-32)’, (5-36)’, and (5-38)’, respectively.

~2

= U |~
e Py [ek +—§"]"’k

+V-

QP

ot
=-V- [O‘k (ZI_—k + ‘1/5)] -V (O‘kpzk"/’;)

+akﬁg;'{);+Ek

_ o2
A+

(5-32y

V|0, (G +7) 5
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80% Pk
ot

BV 5+ (G +87): V5,

% +V- (akpkekvk) -V (akzl_-l:) -V (%qgw)

7 (5-36)’
+Fkhu+fm+wlv:ir (M '”F”lm)( ""'vk)
0 A
—Dii %‘*"vm"vak
8a’°pkh’”+v (azl/f'{)\)"—v-(az)—v-(a T)
ot P Uy | = Dk Tk
+ %’;(aka) + o (Z + @,;T) : Vo, (5-38)°

~2
+[3’;—an ~M, 5 +Ek].

We can also recast the total mixture energy equation, Eq.(5-44), and the
mixture stagnation enthalpy equation, Eq.(5-53) as given by Egs.(5-44)’ and

(5-53)’, respectively.
0 v v
e, + + V. e, +|—| v
&[pm . [2]} 3] }

=-V-(g+4q" +4°) -V (p,v,)
ISP T

Pm

(5-44)’

2
+z P Vin + B,

k=1

where we have
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2 2 o !
g’ = Zaqu = Zak 01Uy + [7’“] v, — & v, (5-46)°
=1 =1
D D 2 =
qg =J" — Zakﬂ “Vin
k=1
; . (5-47y
= e+ v (T +&7).v
= Eak k|6 Tt 5 | Vem r T & km

2 e D 2 — N
-V [Z akpkhkvkm] + Ftpm + Zak (@1; + qT) Vo, (5-53)
k=1

+k§: A + Z{Vk’" V(421 )}

Correspondingly, Egs.(5-52) and (5-55) can be recast as given by Egs.(5-
52)’ and (5-55)’, respectively.

9 o |e —|—[U—2] +V-ipnle +[£] v
ot """ ol2), oz
=-V-(@+q" +4°) —V-(p,v,) 2
+V'{(@+@T)'”m}+pm9m'”m+Em
M.{_V-(pmhmvm):*v'(a'{”qT)

(5-55)’
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. D Z%Pk Vkm
™ Dt 2

m

2 V2
+V- Zak_ 5 Vkm}
+(@'+@T+@'D):vfom

+(B, — M, -vm)+v-{gak@+w)-vm}.

With the alternative definition of the turbulent heat flux such as Eq.(5-
30)’, the energy equations become symmetrical about the stress tensor term.,
The energy equations with the definition of Eq.(5-30)’ are identical with
those with the definition of Eq.(5-30). However, the energy equations with
the definition of Eq.(5-30)° may be controversial and misleading on the
following grounds. For example, the apparent energy dissipation term due to
the turbulent stress such as o, @, : Vv, appears in the internal energy
equation of Eq.(5-36)’. Since this term is due to convection or turbulence, it
may take a negative or positive value. Thus, the term due to turbulent work
may not be regarded as the energy dissipation, which should invariably be
positive. In order for the term due to turbulent work to be invariably positive,
some additional constraints may be applied to the entropy inequality. Thus,
the energy equations with the definition of Eq.(5-30)’ are questionable to
explain irreversible thermodynamics.
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CONNECTION TO OTHER STATISTICAL
AVERAGES

1.1 Eulerian statistical average (ensemble average)

The basic concept of the Eulerian statistical averaging has been explained
in Chapter 3. By considering a set of N similar samples or systems, a
statistical mean value is defined by a simple arithmetic mean among them,
Eq.(3-7). Thus, the mathematical operation of integration for the time
averaging should be replaced by that of summation in the statistical
averaging. It is evident that the entire derivation of the field theory based on
the statistical averaging can be carried out in parallel with Chapters 4 and 5
by simply substituting the finite statistical mean operator, Eq.(3-7), in the
place of the time averaging, Eq.(3-2).

The most important parameters are N, and N which represent the
number of occurrences of the A™-phase and the interfaces if the interfacial
thickness is 6. Then the void fraction can be defined as a ratio of N, to N
and taking the limit 6 — 0. The general function (F') and (ﬂ )n can be
defined in space-time domain in analogy with Eq.(4-8).

Since the derivation of the statistically averaged equations follows
exactly the same steps as in the case of the time averaging, we only list the
most important and characteristic relations between them. In Table 6-1 we
see four basic parameters of averaging, namely: the void fraction ¢ ; the
average of the two-phase general function F ; the average of the k™-phase
general function £ ; and the interfacial area concentration in a unit volume.

It is evident that the general balance equations of the form of Eqs.(5-16)
and (5-17) can be obtained from the statistical averaging applied to a set of
N similar samples. We note here that important differences between the
time and statistical averaging exist not in the resulting form of the balance
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Table 6-1. Relations between time and statistical averages (Ishii, 1975)

Variable Time Average Statistical Average
oy Aty lim —%
At -0 N
F lim - Fadt lim LZ (F)
=0 At Jlat), =0 N "
Enl .1 1
B | img ) B | Imy ),
L1 1 o1 &1
o | ma S | imy(y)

equations but in the interpretation of the variables with respect to an actual
flow, as it has been discussed in detail in the Section 1.3 of Chapter 3.

1.2 Boltzmann statistical average

Because of its unique characteristic among various averaging procedures,
we discuss in detail the Boltzmann statistical averaging applied to two-phase
flow systems. First we recall that f(,,£) is the particle density function
where &,% and £ represents the position, time and velocity of a particle,
respectively. In the standard analysis of the kinetic theory of gases, the
particle mass of each component is considered to be constant because it
represents the molecular mass. However, in applications to two-phase
highly dispersed flows, it may be necessary to assume that the particle mass
varies. Thus, by taking into account the existence of variable particle mass,
we define

o = Ju (@,1,6) (6-1)
where f_, is the particle density function of k®-phase particles having my,
mass. It can be said that m,, is a multiple of the single molecular mass.

The total number of K®-phase particles in the phase space element dzd€ at
Z and & is given by

S fu (= 1,€) dwde. 62)
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The Boltzmann equation for the m,, particles can be obtained by
introducing g, , the external force field, and taking the balance on the
number of particles, thus

O
ot

? ? o _
+ g (6 + 3¢ (9u) = G = C, (63)

where C}. and C,,, represent the source and sink terms, namely, the gain
and loss of the m,, particles caused by the changes in the particle mass and
by the collisions that throw the particles in and out of the phase element d£.
If g,, is independent of the velocity, then we have

O O afkn_ + -
_—_+£'73—a—:—+glm'8—€-_olm _Clm' (6-4)

The above Boltzmann transport equation with the collision terms expressed
by the simple model of Maxwell’s binary collision integral is called the
Maxwell-Boltzmann equation. 1t is the foundation of the kinetic theory of
gases. A similar approach can be used for neutron transport.

The partial density of the m,, particles is given by

P = fmlmfkndé (6-5)

Thus, the expectations based upon the probability f can be defined as

Since the total mass is the sum of the mass of each particle, the partial
density of the K™-phase is given by

o= =2 [ Minfndé. (6-7)

It follows that the mass weighted mean value is defined by
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n (m, t) — = - (6-8)

> [ mefde e

Denoting the mean velocity by v, , the peculiar velocity of each particle is
given by

V. =&, — 7. (6-9)

If we multiply the Maxwell-Boltzmann transport equation, i.e. Eq.(6-4), by
my, Y, » integrate it over the phase velocity £ and then sum it up for all
kinds of particles of the k”-phase, we obtain Maxwell’s equation of transfer
in terms of mean values. Hence,

_Q(p—k@)w-(p—k@@) =-V-> 0utiVer

ot
Ot
_;fmknwkmglm 8—£ 3

+meknflm
+3 100" = Cu Iyt de.

(6-10)

K ¢ ]d
S € VY,

We note here that each term in the right-hand side of Eq.(6-10) represents
the transfer due to inter-particle diffusions, the source due to the body force
field, the multi-molecular particle effect which arises when the transport
property 1, is a function of the phase velocity £, and the source due to
phase changes and/or collisions.

Conservation of Mass

The mass field equation can be obtained by setting 1), =1 in Eq.(6-10),
thus we have

Op, e
8—”;+v-(pkvk)=rk (6-11)

where
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L,=3 100" = Cu Imdt. (6-12)

The assumptions of over all conservation of mass gives

2
I, =0. (6-13)

Opp, v 0
—+ V- V)= 6-14
pe PV (6-14)
where
2 2 —
Pn=> P and v, =) (6-15)
k=1 =1 Pn

Recalling that p, is a partial density of the K™-phase, we find complete
similarity between the results of the time averaging, Eqs.(5-21), (5-22) and
(5-40), and those of the Boltzmann statistical averaging, Eqs.(6-11), (6-13)
and (6-14).

Conservation of Momentum
The linear momentum equation can be obtained from Eq.(6-10) by
setting v, = &, thus

55,5,
ot

+V - (5,9,9) =~V B + 7.4, + M, (6-16)
where the partial pressure tensor _PZ is defined by
P = ZpanIkam (6-17)

and the momentum supply M, by

M, =Y [[Ca" - C |mytde. (6-18)
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We note here that if the negative of the partial pressure tensor, — /1, , is
interpreted as the combined stresses acting on the k™-phase, the momentum
equation (6-16) has exactly the same form as that obtained from the time
averaging, namely, Eq.(5-26). However, the physical meaning of the flux
term and the momentum source M, in this equation can be significantly
different from those of the time-averaged equation.

As an example, let us consider a dispersed two-phase flow system with
phase 1 as a dispersed phase. If the particle sizes are considerably small and
the continuous phase is a dilute gas, then the formulation essentially reduces
to that of reacting gas mixtures. In this case, the effects of the collisions of
particles with the molecules and/or particles that lie outside of a particular
volume element in real space can be neglected. Thus, the total collision term

2
Z M, can be taken as zero. Hence, as we can see from Eq.(6-18), the
k=1
collision term of each phase consists of the momentum source due to mass

transfer and the drag forces resulting from the momentum exchange during
collisions.

Furthermore, if the particles have definite volumes in contrast to the
previous point mass assumption, the multi-collisions of particles with
molecules and with other particles whose centers lie outside of the volume
element become important. In this case, the collision term for the dispersed
phase can be split to three different parts: the internal momentum transfer
due to collisions; the effects of the changes of phases; and the external
collision effect. Consequently, the introduction of the void fraction «; in
the formulation is necessary, where ¢, is the ratio of the volume occupied
by the particles to the total volume element and thus o, =1-— ¢ .
Nevertheless, in order to integrate the momentum collision term, it is
necessary to introduce models of molecule-particle and particle-particle
collision processes. Because of the multi-collisions between a particle and a
cloud of molecules and of the effects of the phase changes, these models will
be extremely complicated. Thus we do not go into the detail of the collision
integrals here. If the standard fluid mechanic viewpoint is introduced, it is
possible to interpret the momentum source M, into relevant physical terms.
From the above discussion, we expand the total collision term of each phase
in the following form

M, =M, +M, +M;. (6-19)

Each term on the right-hand side represents the internal collision force
interaction, the momentum source due to phase changes and the external
collision force interaction because of the finite particle size, respectively.
The first term can be considered as the standard drag force and the pressure
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effect due to the void fraction gradient, whereas the last term gives extra flux
from the particles having their centers outside of a volume element.
2
For the mixture, the total collision term Z M, is not zero due to the

external effects M, . Thus, we can write apprko=)1<imately

2
S M, =M, - [V : —O‘—IF;] (6-20)

k=1 o2}

where M, can be considered as the inter-particle collision effect. The
second term is the effect of the continuous phase on particles which lie on
the boundary of a volume element. The real pressure tensor for the
continuous phase 2 should be

5

P, ==2. (6-21)
Q,
Then the mixture momentum equation becomes
00V,
8t + v : (pmvmvm)
(6-22)

— 2 —
=-VAB+ B+ 0VeVin |+ PuGn + M,

k=1

Thus, the mixture total stress consists of the partial stress of the dispersed
phase, the real stress of the continuous phase and the diffusion stress due to
the relative motion between two phases. Here, the definition of the average
diffusion velocity V  takes the form of Eq.(4-89). It is evident that
significant differences exist between the physical meaning of the stress
tensor term of the present mixture momentum equation based on the
Boltzmann transport equation and that of the one obtained from the time
averaging, namely, Eq.(5-42). This basic difference arises because, in the
former approach, the stresses are defined from the motions of the particles.
Thus, the stress inside the particles has no place in the analysis. In the latter
approach, however, the stresses are defined everywhere in the system. We
may add here that the Boltzmann statistical average can be easily extended
to include the turbulent fluctuations in the continuous phase by considering
the eddy transports as the particle transports.
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Conservation of Energy

In contrast to the simple kinetic theory, the energy transfer by multi-
molecular particles is considerably complicated due to the internal freedom
of the energy state of the particles. It is obvious that the kinetic theory
translational temperature based on the diffusion kinetic energy is not useful
if each particle consists of a large number of molecules.

Now let us suppose that 1), is the total energy carried by the k"-phase
particles having mass m,, , thus

1
Yy = 55,; + Uy, (6-23)

where the first term is the translational kinetic energy and u,, the internal
energy contained by molecules in the particles. Since the term u,, is not a
function of &, , the transport equation (6-10) is not a velocity moment of the
Boltzmann transport equation.

We introduce the average energy and the flux of the X®-phase as

15 -
S b Ve + 5
/; = -1 — (6-24)
Pr
and
_ 1., e
q. = Zplm [EVI; + ulm]VIm (6-25)

where the definitions of the right-hand side averages follow Eq.(6-8).
Substituting Egs.(6-23), (6-24) and (6-25) into Eq.(6-10), we obtain the total
energy equation for the k™-phase

O—(. 1 - (e 1 _5) ~
E{Pk [ek ’*‘_Z‘vkz”'i‘v'{f’k [ek +§ kz]vk}
=—V-g,-V-(B-%) + 587 (6-26)

+5 [ mu |2+ -9, Jde + B,
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The average internal energy €, is the sum of the random thermal
translational energy and the true internal energy of the particles. This
definition is in complete analogy with Eq.(5-31) of the time averaging. The
most important characteristic appears in the last two terms of Eq.(6-26). It is
evident that the change of the individual particle internal energy given by the
second term from the last is coupled with the collision term £, since, in the
absence of the long range energy exchanges, the particle internal energy
changes only by the interactions with the surrounding molecules and
particles. Thus, in analogy with the momentum exchange given by Eq.(6-
20), the total energy interaction can be given as

ilE +me,mfm[ 3 Vu,m]dg}

k=1

(6-27)
~_V. [ (@ +7- vz)}+Em.
R

Here the first term of the right-hand side of Eq.(6-27) takes into account the
particle-molecular collisions for finite volume particles. The term denoted
by E,, represents such effects as the inter-particle collision transport of
energy. By adding two energy equations for each phase, the mixture
equation can be obtained

s, v? v’
2 + &) 4V +Z v
ot [pm € [ ) Jm Pm |€m [ 2 ]m m}
= . 7
=-V- q1+q2+zpk(ek+k7]vkm +pmgm"vm (6'28)

V. [P 5+ P, 0,

|___|

+2Pk9k Vi + B,

Here, we again note that phase 1 is the dispersed phase. The physical
significance of each term of the total energy equation parallels that of the
momentum equation. The partial fluxes g, and 7, for the dispersed phase,
and the real fluxes g, and P, for the continuous phase appear because of
the finite volume occupied by the particles of phase 1.

As in the case of the mixture momentum equation, significant differences
between the Boltzmann statistical model and the time-averaged model
appear in the total flux terms of heat and work. Since the heat transfer and
work inside the particles are not considered in the former model, the partial
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heat flux and the partial pressure tensor for the dispersed phase represent the
transfer due to inter-particle diffusions. The molecules of the continuous
phase 2 are treated as the point mass, thus the fluxes of each phase do not
appear symmetrically.

The interest of the Boltzmann statistical average applied to two-phase
flow systems lies mainly on the study of constitutive equations from a
simple model for the collision terms together with stochastic assumptions. It
is highly improbable that this can be a general model for a dispersed two-
phase flow system, since the inclusion of the effects of particle shapes and
deformations in the Boltzmann transport equation brings considerable
difficulties in the analysis. Even without these effects, it is anticipated that
the collision terms for each phase are very complicated due to three effects:
1) the inter-particle collisions, coalescences and disintegrations; 2) the multi-
collisions between a particle and a large number of molecules; 3) the
existence of phase changes. Furthermore as it can be seen from Eq.(6-27),
the dispersed phase energy transfer term requires a special constitutive law
for the heat transfer between particles and fluid.

In summarizing the section, it can be said that the Boltzmann statistical
averaging is useful for a highly dispersed flow where each particle is
considered as a lumped entity rather than as a distributed system itself. For
example, the mixture stress tensor for a particle flow has a more natural form
in the present model than the one from the time averaging. This is because
in such two-phase flow it is not practical to introduce stresses inside the
particles. However, the number of particles in a volume element should be
significantly large for a statistical treatment of the number density to be
realistic. Furthermore, if the deformations of the interfaces and the changes
of properties within the particles are important, the Boltzmann statistical
method cannot be used. In contrast to the case of dilute gases, the collision
integral terms for a dispersed two-phase system with finite particle sizes are
extremely complicated, thus to obtain constitutive laws from the statistical
mechanics is very difficult. In many cases these collision terms should be
supplied from the continuum mechanics considerations. It is, therefore, also
possible to construct a model on a combination of the continuum theory and
the Boltzmann statistical method. For example, we take the statistical
average only for the dispersed phase with the drag forces included in the
body force. Then we use the standard volume averaged field equations for
the other phase with the corresponding interaction terms. Such a
formulation is useful to dispersed two-phase systems as well as to fluidized
beds. Furthermore, the Boltzmann statistical method can be very useful for
obtaining some constitutive laws as demonstrated in Chapter 10.



Chapter 7
KINEMATICS OF AVERAGED FIELDS

1.1 Convective coordinates and convective derivatives

The time-mean values are consistently expressed by the spatial
description as shown by the definitions (4-15) and (4-16), and the idea of the
particle coordinates for the averaged two-phase flow fields is not clear nor
trivial due to the phase changes and the diffusions. The phase change
corresponds to the production or disappearance of fluid particles for each
phase throughout the field. The difficulty arises because each phase itself
does not apparently obey the corollary of the axiom of continuity, namely,
the permanence of matter. However, the diffusion of each phase permits the
penetration of mixture particles by other fluid particles. It is clear that the
material coordinates, which is the base of the standard continuum mechanics,
is not inherent to a general two-phase flow field obtained from the time
averaging. However, it is possible to introduce mathematically special
convective coordinates which are useful in studying the kinematics of each
phase and of the mixture.

The path line of each phase is defined by the integral curve of the system

dz = v, (z, t)dt (7-1)
with the initial condition

z=X, att =% (7-2)

where we define X, as the convective coordinates of the k™-phase. Hence,
upon integration of Eq.(7-1), we obtain
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z = z(X,,t) 7-3)

This equation gives the path line of the fixed point on the convective
coordinates X, , which are moving with the particle velocity v, .

With the standard assumption of smoothness, or the existence of the
Jacobian, we can transform Eq.(7-3) to

X, =X, (m>t) (7-4)

This equation expresses the position of the imaginary particle that moves
with the local mean velocity of the k™-phase ¥, . The formulation of
problems in which & and ¢ are taken as independent variables is called the
spatial description, whereas if X, and ¢ are taken as the independent
variables, it is called the convective description. In general, the contents of
the particles occupying the neighborhood of £ = @ (X e t) can be different
from the initial particles due to phase changes. Thus, it is not possible to
consider the change with fixed particles. However, it is simple to observe a
process with fixed X, . The velocity of the k®-phase, for example, can be
given in analogy with a single-phase flow as

o0z

£ ot)y,

k=1and 2. (7-5)

The above analysis can also be applied to the mixture center of mass,
thus we define the mixture path line by

de = v, (z,t)dt (7-6)
with £ = X at t = {,. By integrating Eq.(7-6) we obtain the path line

z=z(X,,1) (7-7)
and with the inverse transformation we get

X, =X, (z1). (7-8)

Hence, if the mixture convective coordinates are fixed in Eq.(7-7), the
observer moves with the local mixture velocity v,,. However, due to the
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diffusion of each phase with respect to the mass center, the particles at fixed
X, are continually changing along the path line.

Furthermore, it is interesting to note that if the flow field is homogeneous,
or ¥, = v, = v, , then the mixture convective coordinates become the
material coordinates regardless of the phase changes. From Eqs.(7-6) and
(7-7) the mixture velocity can be given symbolically as

v = 9z) (7-9)
ot )x.

It is easily seen from Eqs.(7-1) and (7-6) that the path line for each phase
and for the mixture can intersect each other.

Since the Eulerian time mean values are in spatial description, the time
rate of change at fixed point is denoted by

o _(o _

However, the rate of change seen from the observer moving with the fluid
velocity is called the convective or substantial derivative. It is given by

D, a] o

- = =—+v -v 7'11

Dt Ot)y ot ° (11
and

D 0 0

Z =" =40 V. 7-12

Dt 6t]x ot " (7-12)

The convective derivatives of Eq.(7-11) and Eq.(7-12) are taken by
following the center of mass of the k"-phase and that of the mixture,
respectively.

If the phase convective derivative is applied to express the left-hand side
of the field equation (5-17), we obtain

Ocy, P__ﬁj};
ot

Dy,

Dt + I, (7-13)

+V: (%E@@) =P
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where we have used the continuity equation (5-21). Similarly for the
mixture, we get from Eqs.(7-12) and (5-40) the following result

Fon¥m 4 7. = Ztm 7-14
vl (P ¥onV) = Pr i (7-14)

We note here that the contribution of the mass source term appears in Eq.(7-
13), since the amount of mass within a volume having the surface velocity of
U, is not constant. By combining the corollary of the fundamental identity,
Eq.(4-111), and above two relations, we have an important transformation
between the mixture and phase convective derivatives, thus

D 2 ( D, —
. I;btm +V.-JP = Z[akp,clk)—‘f'wrrkzpk]. (7-15)

k=1
1.2 Streamline

The stagnation point is defined as a point where all velocities vanish, thus

o~

v=0,=v,=0. (7-16)

And the point where ¥, is zero for one of the phases is called the k®-phase
stagnation point. If the mixture velocity v,, is zero at a point, we call it as a
pseudo-stagnation point. At such a point the motions of two phases are pure
diffusions. The flow is completely steady if each of the phase velocities is
independent of time as

v, = v, (@) for both k=1 and 2. (7-17)

The mixture motion is steady if v, = v, (@), however it does not
correspond to the complete steady motion because the diffusion velocities
can be a function of time.

The vector line of a vector field is a curve that is everywhere tangent to
that vector. In particular, the vector line of the velocity field v, is called the
streamline of the k™-phase. Thus it can be given by an integral curve of the
simultaneous equations

de =v,dl at t =, (7-18)

where [ is a parameter along the streamline. In general, the streamline is a
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Figure 7-1. Streamlines (Ishii, 1975)
function of time and does not coincide with the path line. The two
streamlines for each phase are also different because two velocity fields are

not parallel. The streamline of the mixture can be defined similarly as

de=v_dl att=t, (7-19)

The relations between various streamlines are illustrated in Figure 7-1. We
also note here that the coincidence of the streamlines of each phase does not
signify the homogenous flow field.

1.3 Conservation of mass
Formulation Based on Center of Mass Velocities

The continuity equations for each phase have been derived in the Section
1.2 of Chapter 5, thus we have

&gtpk + V.(akpqu’);) =1, k=1and 2 (7-20)

and the interfacial mass transfer condition is given by

2
YI, =0 (7-21)

k=1

Equation (7-20) simply states that the local time rate of change of the partial
density «, p, per unit volume equals the net mass influx of the K"-phase
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-V (ak_,é—;'l/); ) plus the mass source due to the phase changes. As it has
been shown in the Section 1.2 of Chapter 5, by adding these three equations
we obtain

0p., 0
— 4+ V- - 7-22

which is the equation of continuity for the mixture.

In order to specify the conservation of mass in two-phase mixtures, it is
necessary to employ two continuity equations. We have expressed these
relations through the center of mass velocity of each phase in Eq.(7-20),
however, it is interesting now to consider alternative forms of the continuity
equations by introducing different views of observations. If the observer
moves with the mixture center of mass, the diffusion terms explicitly appear
in the phase continuity equations, thus we have

aakp:k
ot

+V- <akﬁ’vm) =1, =V (%Wm)- (7-23)

Formulation Based on Mass Fractions
Instead of using the time fraction «v,, we may also express the above
equation in terms of the mass fraction ¢, defined by Eq.(4-63) as

dc, I, 1
—+wv, Ve, =4t ——V-(¢,0,Vin) (7-24)
ot Prm

m

in which we have used the mixture continuity equation. Furthermore, the
diffusion coefficient ), may be used to express the diffusion flux in
analogy with a heterogeneous single-phase mixture, hence we set

CePr Vi = P D Ve,. (7-25)

We note here that Eq.(7-25) is correct only when the diffusion is due to the
concentration gradient and it can be expressed by a linear constitutive law.
However, it is expected that Fick’s Law of Diffusion may not hold for a
general two-phase flow system because the interfacial geometry, the body
force field and the interfacial momentum transfer term are the significant
factors affecting the diffusion of phases. The linear constitutive law given
by Eq.(7-25) is in complete analogy with Newton’s Law of Viscosity and
with Fourier’s Law of Heat Conduction. These linear constitutive laws are
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applicable for the molecular transport phenomena. However, it has to be
remembered that the latter two constitutive equations express the
microscopic molecular diffusions of momentum and energy, whereas the
diffusion of phases in two-phase flow is macroscopic.

By considering a very simplified form of Eq.(7-24), it is possible to show
that the diffusion equation with the linear constitutive law of Eq.(7-25)
exhibits the diffusive characteristic of the concentration ¢, due to the second
order derivative of ¢, in the equation. This is in direct contrast with the
formulation based on the kinematic wave velocity in the later part of this
section, which exhibits the characteristic of propagations.

Formulation Based on Volumetric Flux

The continuity relations also can be expressed through the volumetric
flux j and the drift velocities V};. Thus, from Eqs.(7-20) and (4-91) we
have

ey
ot

+ V- (04 pd) = Iy = V- (04 0V ) (7-26)

The last term on the right-hand side of the above equation represents the drift
of K®"-phase mass with respect to the mixture volume center. By
differentiating by part of the left-hand side of Eq.(7-20), we get

Ox ==
_k+v.(ak{,;) :é_%% (7-27)

ot pr P Dt
where the substantial derivative is defined by Eq.(7-11). The above equation
can be considered as the continuity equation in terms of the time fraction or
the void fraction, therefore it represents the volumetric transport. Thus, from
the point of view of ¢, , the continuity equation has a source term due to the
mass transfer and a sink term due to the true compressibility of the phase.
Furthermore, if we use Eq.(4-87), we obtain

?gk—-l-V'jk z_l;_k_gk_&_p_—i

= (7-28)
ot Py P Dt

By adding these two equations for each phase, we get
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2 al =
Vi Z{I—zk %%} (7-29)
o P Dt

which describes the divergence of the center of volume velocity. The first
term of the right-hand side is the volume source due to the phase changes
and the second term is the volume sink due to the compressibility.

The formulation based on the volumetric fluxes is important if each
phase undergoes the incompressible or isochoric process defined by

D.py

=0 k=1and 2. (7-30)
Dt

In this case Eq.(7-29) reduces to

i=3 2k

k=1

(isochoric) (7-31)

= IILTJ

which simply states that the divergence of the volumetric flux is proportional
to the amount of phase changes and to the difference between the specific
volumes of each phase. We recall that for an incompressible single-phase
flow, the divergence of the velocity is zero. Thus, the two-phase flow
equivalence is expressed by the velocity of a center of volume instead of that
of mass and, furthermore, it has a source due to phase changes. It is seen
that in the absence of the mass transfer, the above equation reduces to
V-3=0. Since in many practical two-phase flow problems the
incompressible fluid assumption is valid and the rate of phase change I,
can be expressed as a known function of position and time, Eq.(7-31) can
play an important role in solving these problems.

Kinematic Wave Velocity and Void Propagation Equation

As in the thermomechanical theory of diffusion for single-phase mixtures,
it is one of the basic assumptions of drift-flux (or mixture) model
formulation that the relative motions between two phases can be expressed
by a constitutive law rather than by two momentum equations. In this
connection we already discussed Fick’s Law of Diffusion which effectively
eliminates one of the two momentum equations. It is quite clear from Eq. (7-
25) that the constitutive law gives special kinematic relation between v,
and v,,, thus the K®-phase momentum equation becomes redundant in the
presence of the mixture momentum equation.
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However, we have noted there that in general, the use of Fick’s Law for
two-phase mixtures is not correct and thus a different type of constitutive
laws for diffusion should be used as in the drift-flux (or mixture) model
formulation. One of the more useful constitutive laws for the relative
motions between phases is to express it in terms of the drift velocity ij
(Zuber et al., 1964, Ishii, 1977, Kataoka and Ishii, 1987, Hibiki and Ishii,
2003a, 2003b; Hibiki et al., 2003, Goda et al., 2003; Hibiki et al., 2004).

In particular if the drift velocity is a function only of the time
concentration c, , one of the very important theories in fluid mechanics,
namely, the theory of kinematic waves (Kynch, 1952; Lighthill and
Whitham, 1955; Hayes, 1970), can be applied to the two-phase flow systems.
It was shown by Zuber (1964b) that such was the case for many flow
regimes of practical interest and it was particularly useful for a dispersed
flow regime.

Under the incompressible fluid assumption, Eq.(7-27) can be expressed
by J and V;; in the following form

0w, ) ( ) P .
4 i Vo, + V- (V. )=k _
ot Jr V% %"y P1 Pa (7-32)

And if the drift velocity can be approximated as a function of o, only, then

Substituting Eq.(7-33) into Eq.(7-32) we obtain the void propagation
equation

Oay,

ot

+C, - Va, = Lol (7-34)

1 P2

s

where the kinematic wave velocity C; is defined by

. 0
C,=j+ 87(oz,Uij). (7-35)

k

Hence, denoting the special convective derivative following the kinematic
wave by
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t=—4+Cy-V (7-36)

the void propagation equation reduces to

__D__c_ _ mek _
Dt(a’“)_pzlﬁ—;' (7-37)

Thus if we observe the time rate of change of o, by moving with the
kinematic wave velocity, it is proportional to the source term due to phase
changes. In the absence of mass transfer between the phases, the disturbance
of o, propagates with the kinematic wave velocity. Furthermore, under the
condition of constant p, and p,, we can express Eq.(7-34) in terms of the
mixture density as follows

6pm 2 =
T+CK'va = Ln Zpkpk

0 P Py
or (7-38)
d(lnp,) 1 &=
— 224 Cy-V(np,)===> Iin
ot 1 P2 k=1

which is called the density propagation equation.

Kinematic Shock Wave

It has been shown that if the drift velocity is a function only of ¢, the
void fraction equation can be transformed into the void propagation equation.
In contrast, if the diffusion of phases can be expressed by the constitutive
equation having the form of Fick’s Law of Diffusion, the field exhibits the
characteristic of diffusive media and the clear-cut void propagation cannot
be observed due to the second-order derivative in space.

The former phenomenon of the void propagation is known for several
types of mixtures. For example, they are important in open channel, bubbly
two-phase and highway traffic flows. In such systems, it is observed that
under certain conditions these kinematic wave propagations lead to a
formation of a concentration shock. Because of its origin and a necessity to
differentiate it from a shock wave due to compressibility effects, we refer it
as a kinematic shock wave. As it has been shown by Lighthill and Whitham
(1955) and Kynch (1952), this phenomenon can be analyzed by a kinematic
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consideration with a simple constitutive law for the flux of matter which
depends on the concentration. However, without going into a detailed
discussion, it is possible to write conditions that should be satisfied at the
kinematic shock wave. This can be done by utilizing the macroscopic jump
conditions of the Section 1.5 of Chapter 5. Thus we apply Eqgs.(5-64) and
(5-65) to the balance of mass at the shock front, then

> pan-(v, —U)=0 (7-39)
-

and

Y oypen- (v, —U)+ 1}, =0. (7-40)
o

It is evident that Eq.(7-39) expresses the conservation of total mass, whereas
Eq.(7-40) gives the balance of k™-phase mass across the shock. Here I’ o
denotes the amount of phase changes within the shock layer. Thus Eq.(7-40)
states that the k™-phase mass fluxes from each side of the shock wave
balance with the mass production due to phase changes in the shock.

By solving Eq.(7-40) for the displacement velocity of the shock, we
obtain

— = e
(aljpk vk+_akpk Yy )'n++Fka
n"-U=

(o5 o) e

where + and - denote each side of the shock layer. It should be remembered
that the condition given by Eq.(7-41) is applicable not only to a kinematic
shock wave but also to a dynamic shock wave due to compressibility effects.

By limiting our case to a strictly kinematic phenomenon, we assume here
that the phase densities are continuous across the shock and there is no
change of phase in the layer. Thus we have

Or = P (7-42)

r, =0. (7-43)

Hence Eq.(7-40) reduces to
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S ayn (5~ U) = 0. (7-44)

It follows that the kinematic shock wave velocity U should satisfy
n’|of " — o 5 |
(o — )

If we use the definition of the volumetric flux j, defined by Eq.(4-87), we
have

nt .U =

(7-45)

ntU=——2% <t/ (7-46)

From Eq.(7-46) it can be shown
nt-jT+n -5 =0. (7-47)

This means that across the simple kinematic shock, namely, the phase
densities being continuous and no phase changes in the shock, the total
volumetric flux j is conserved. In view of Eq.(7-47), we can transform
Eq.(7-46) into the following form

nt (o] Vi — o Vi)

(o — )

Here we see the close connection between the kinematic wave velocity given
by Eq.(7-35) and the displacement velocity of the shock given by Eq.(7-48).

nt-U=n* j+ (7-48)

1.4 Dilatation

The Jacobian of the convective and spatial coordinates of the Section 1.1
of Chapter 7 is given by

J@ 8(-7717 Ly :U3)

) 0( Xy Xy Xy,)

(7-49)
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Since X, denotes the initial position, the Jacobian J, gives the relation
between the initial and the present volumes if the surface of the volume
element moves with the center of mass velocity ¥, . Hence we have

dV, = J,dVy, (7-50)

where V, and V,, denotes the present volume and its initial volume,
respectively. In view of Eq.(7-5) we have

J. Dt

=V.7, (7-51)

which gives an important physical interpretation of the divergence of the
phase velocity. Recalling the continuity equation for the k™-phase, it also
can be expressed as

Pr Dt

V.5 = [Fk - M]. (7-52)
O Py,

These two equations show that the divergence of v, is directly related to the

dilatation of a volume element rather than the density changes within the

volume. Furthermore, we see that the dilatation is cause by three effects,

namely, the phase change I, the phase redistribution D, v, /Dt and the

real compressibility of the fluid D, p, / Dt.
For a mixture as a whole, the characteristic of the dilatation and of
V - v,, basically reduces to that of a single-phase flow. Thus we have

1 DJ, 1 Dp,

Ve, =— = (7-53)
J. Dt p, Dt
where J_ is the Jacobian between & and X given by
0@
_ , (7-54)




Chapter 8
INTERFACIAL TRANSPORT

The exact forms of the interfacial transport terms J, and I for mass,
momentum and energy interchanges have been given in the Section 1.2 of
Chapter 5. However, they are expressed by the local instant variables, thus it
is not possible to use them as the constitutive laws in the averaged field
equations. It is evident that we need to understand the physical meaning of
these terms in detail before constructing any particular constitutive equations
for two-phase flow systems. With this in mind we clarify different physical
mechanisms controlling these terms as well as to identify important
parameters on which they depend. Furthermore, it is important to accept that
not all the characteristics inherent to the local instant two-phase flow can be
brought into the time-averaged model. We consider that the averaged field
equations express general physical principles governing the macroscopic
two-phase flows while the constitutive equations approximate the material
responses of a particular group of systems with simple mathematical models.
In this connection, we make a number of assumptions in the interfacial
transfer terms in order to both distinguish the dominant transfer mechanisms
and also eliminate some of the complicated terms that have insignificant
effects in the macroscopic field.

1.1 Interfacial mass transfer

The interfacial mass transfer term [, has been given by Eq.(5-19), thus
in view of Egs.(2-70) and (5-57) we have

1 1 .
Iy = _ZXtv—{nk TGS vi)} = —Z T (8-1)
J ni J

where 7, is the rate of mass loss per interfacial area in unit time from &"-



144 Chapter 8

phase, and a;; (E 1/ Lj) is the surface area concentration for the j®-interface.

We define the surface mean value as

Z ai].F
J

F(i) = LS =

(8-2)

>

i

a;

Hereafter, we use the subscript (i) only for the variables that may be
confused with the bulk fluid properties, and we omit it for the variables that
appear only at the interface, for example o and H,,, etc. The mean value
defined by Eq.(8-2) corresponds to the phase average of Eq.(4-23), thus we
use the same symbol with the subscript i.

Similarly it is also possible to define a surface mean value in analogy
with the phase mass weighted mean value of Eq.(4-28). However, at the
interfaces these variables of the extensive characteristic appear always in the
flux terms, thus it is more convenient to define a mean value weighted by the
mass transfer rate 77, rather than by the density. Hence we have

U, = -2 i A (8-3)
> Ait Lm,c D> ayt,
ki vm'

By using the definition of Eq.(8-2), the mean mass transfer per unit surface
area becomes

Z L
-4

a.

7

k

3.

(8-4)

From Egs.(8-1) and (8-4), the interfacial mass transfer condition can be
rewritten as

2 _
Y I',=0 with I, =—am, (8-5)

k=1
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1.2 Interfacial momentum transfer

We recall that the macroscopic interfacial momentum transfer term M,
has been obtained in the Section 1.2 of Chapter 5. Thus, in view of Egs.(2-
9), (2-70), (5-23) and (5-57), we have

M, = “Z a; (mk"’k + Dy — Ty @) (8-6)
J

where the term inside the bracket is the rate of the interfacial momentum loss
per area from the k"-phase. Since M , represents the net interfacial
momentum gain, it is weighted by the surface area concentration a;; .
Similarly, the mixture momentum source from the interfaces is given by

M, = 0, {4 (t,),, 0 + 47, @),,} -7
J

in which the two terms on the right-hand side of the above equation
represent the effects of the mean curvature and of the surface-tension
gradient.

Before we study the vectorial form of the interfacial momentum transfer
equation, let us examine the normal component of the momentum jump
condition, Eq.(2-91). This is because the original jump condition, Eq.(2-72),
contains two distinct pieces of information; one in normal direction and the
other in the tangential direction. We should pay special attention in order to
preserve this characteristic in the interfacial transfer equation. By dotting
the normal jump condition, Eq.(2-91), by a unit normal vector 7, and taking
the time average we obtain

22

A

P2
—(Tnnl - Tnn2) + 2H210} =0.

(8-8)

Now we express this equation with the surface mean values defined by
Eq.(8-2). In order to simplify the result, we assume

Py~ P att € [AL]. (8-9)

3
Q
%
Qi

m, =~

Thus the mass transfer rate m, , the surface tension o and the density at the
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interfaces remain approximately constant during the time interval of
averaging At . Then by neglecting the normal stress terms, we obtain

rrr 1 — =\ ===

“l=—=|+(ps — Py)+2H, 0 =0. (8-10)

a; \Pu Py

We note here that under similar assumptions we should be able to recover
Eq.(8-10) from the vectorial interfacial transfer equation. By using the
surface mean values, the k"-phase interfacial momentum gain M, becomes

M, =M, + M} +p,Vo, + M; — Vo, - &, (8-11)
where
M] =I5,
M} = Zaij (E— p,c)'n,,c (8-12)
j

M; = Z%‘nk : (q - Z)

It is noted here that the shear at the interface can be decomposed into the
normal and tangential components, thus n, - & = 7, + 7, . However,
the normal stress is negligibly small, therefore it can be assumed that
n, - & = T, . The first three terms on the right-hand side of Eq.(8-11) are
originally the normal components, whereas the last two terms are essentially
tangential components. Here the concentration gradient appears because of
Eq.(4-62).
The mixture momentum source M, becomes

M, =2H, 5V, + > " 2a, (H21 - H:m)gnl
g (8-13)
+> 6, A7, (@),
J

The second term takes into account the effect of the changes of the mean
curvature. However, the gradient of o in the microscopic scale is
considered to be small and its vectorial direction is quite random, thus the
last term may be neglected. Hence we approximate
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M, =2H, oVo, + M~ (8-14)

where M is the effect of the change of the mean curvature on the mixture
momentum source.

It is easy to show in view of Eq.(8-11) and Eq.(8-14) that the normal
component of the interfacial momentum transfer condition, Eq.(5-27), can be
given by

2 — e N
Z{[ +pkz]\70¢k + M; |~2H21 oVa, —Mn’f =0. (8-15)
pkz )

k=1

Hence, by comparing the scalar form of the normal component Eq.(8-10) to
the vectorial form Eq.(8-15), we obtain

2
> M; =M. (8-16)
k=1

Here M represents the form drag and lift force arising from the pressure
imbalance at the interface. M, represents the skin drag due to the
imbalance of shear forces. The shear components, thus, should satisfy

ﬁ I

2 = —
> M =0 with & =T, =

k=1

(8-17)

Equation (8-17) shows that there exists an action-reaction relation between
the skin drag forces of each phase as well as between the interfacial shear
forces.

For simplicity, we combine these two drag forces and define the total
generalized drag forces M, by

M, = M} + M; (8-18)
where
= Z;% (Ps — P
- zjjaijnk (&-%).
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Hence,

2
> M, =M. (8-19)

k=1

Furthermore, from the straightforward analysis on the mass transfer rate ?k
with the relations given by Eqgs.(4-61) and (4-62), we can show

—~ o~ r
Uy =0, + =5V (8-20)

Pril;

which enables us to replace ¥;; and v,; by a single parameter , .
As a summary of the interfacial momentum transfer condition, we have
the following relations

M, = M{ + E—Wak + M, —Va,- % (8-21)

where M, includes the effects of form drag, lift force and skin drag.

M, =2H, oVa, + M~ (8-22)
2
> M, =M, (8-23)
k=1
with
r_ =~ ~ I
Mk :vk'iFk = 'vi+_—:——Vak Fk (8—24)
Pril;
2
> M, =M. (8-25)
k=1

If we assume that Tki, E,an’ , a;, I, and zm are known, then three

constitutive laws should be specified for H,,, ¥, and M, identifying the
interfacial geometry, motion and generalized drag forces. Furthermore, we
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note that the total generalized drag force consists of the form drag, the skin
drag as well as the lift force.

1.3 Interfacial energy transfer

The macroscopic interfacial total energy transfer for the k™-phase is
denoted by E, which appears only after the phase energy equation has been
averaged, whereas the mixture interfacial energy source term is £ . These
three terms should satisfy the interfacial energy transfer condition that is a
balance equation at the interfaces. Since the relations for E, and E,_ given
by Eqgs.(5-28) and (5-29) are expressed by the local instant variables, they
cannot be used in the macroscopic formulation in their original forms. Now
we transform these relations in terms of the macroscopic variables as a first
step to establish the constitutive laws at the interfaces.

Because of its practical importance, we start from the analysis on the
interfacial thermal energy transfer term /i , then we proceed to the study of
E, . From the definition of Eq.(5-39) and Eqs.(5-19), (5-23) and (5-28), we
have

—2
Akz%‘rk_Mk"‘/’;+Ek

11 v o,
=y ——1{-m |y +—=—v, -0, +—— 8-26
;At%l k[k U, 2] (8-26)
+nlc'];c'(vk_{);)_nk'qk}'

We define the virtual internal energy at the interfaces in analogy with Eq.(5-
31), thus

&= : . (8-27)

And the heat input per unit interfacial area is defined by

= 1
QIZ = - [Z a,mn, - Qk];- (8-28)
J

i
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Then Eq.(8-26) can be rewritten as

A = ( I + aiq:,;{) +> a7, (v, — ;) (8-29)
J

In order to examine the second group on the right-hand side of the above
equation, we introduce fluctuating components defined by

D =D, — Dy} Uy = U, — U, (8-30)

Then we have

Za’ijnk T (v, — %)
J
= o {- B (0 - )+ Yoy {m, T 31)
J J

1, (G~ ) + (7 - p)m ) (0 - 7).

Since we have

. Do, T
Z o, (v, — ) m, = lk)tk —= (8-32)
j Pri
the first term on the right-hand side of Eq.(8-31) becomes
— I Doy
01— D \V ‘n ——1. 8-33
z}: ’L]{ pkz( kT k} pkz[ph Dt ( )

The second term can be rearranged to the following form
Z% {'"’k 1y (@1; %) ( pk)nk} ('Uk “"/’;)
=M, (v; - 9,)- Vak‘@'(@"‘/’;)

""; Gy {(Mik)/ + ("'i)/}' 7/’;

(8-34)
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where (M, ), and (T, )/ are defined by

/

(M) = (M) + (ML)
(3) = ~(p, ~ o) — 2

o = (& E) - M4 &9

(Ti)/ =N, ‘Z;'_

Thus, it represents the fluctuating component of the total drag force.
Consequently, we define the turbulent flux of work due to drag force W,f as

WE = e {(00,) + (r) ) oL 30

Substituting Eqs.(8-33) and (8-34) with Eq.(8-36) into Eq.(8-31), we obtain

.\ =T D
Zj:a’ijnk 'ﬂ'(”k _'”k)z Dy [%_Ik);.;k]

+Mik'(6;_’vk) Vo, - % ('U/m "/’;)"'WmT

(8-37)

In view of Eqs.(8-29) and (8-37), the macroscopic interfacial thermal energy
transfer /i, becomes

I, D,
Ak=(erm+aqm)+p [:_ ak]
Pw Dt (8-38)

+M,, - (9 —9,) — Vo - & - (9, — 5,) + Wy

Now we introduce the virtual enthalpy of the k™-phase at interfaces in
analogy with Eq.(8-27) and Eq.(5-37), thus

by =+ 2, (8-39)
Pri
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Then we have

~ =\ —Da« -
A :(Fkh’ki +a¢qg’)“1’m lk)tk +Mik'(vk~i _'”k) (8.40)
_vak'Z'("/’;_"/’;)"'W;-

It is straightforward to obtain E, from the relations for A, , M, and I,
therefore we have from Eqs.(8-21) and (8-40) the following result

—~ 1’};2 = =8ak
B, =T hlci"*‘”m'”k"‘?"*'ai%_pm—g (8-41)

+M¢k-'5,;i—Va,c-%-f);+W§.

The expressions for A, and E, give the k™-phase interfacial fluxes of
thermal energy and the total energy in terms of the mean values at the
interfaces.

Now we proceed to the analysis of the mixture energy source term £ .
By assuming that

99, constant (8-42)
dT

Eq.(5-29) can be approximated by

Em = Z aij {Tz [‘;i—;;‘J VS Y, + (tuAaﬁU),ﬁ v, } (8—43)
J

We recall here that the surface divergence of the interfacial velocity is the
surface area dilatation (Aris, 1962). Therefore, we have

—)%(dA) =V, v, (8-44)

1
(dA

Hence, together with the assumption that the surface tension gradient is
small, we may approximate Eq.(8-43) by
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do ) D, — _0a
Em_T[dT] (a)+2H2103t~+EH (8-45)

where the convective derivative D, /Dt is defined by

D, 0
= 4§V, 8-46
Dt ot (8-46)

We note that the first term on the right-hand side of Eq.(8-45) takes into
account the effects of the surface energy change associated with the changes
in area, whereas the second and the last terms stand for the average work
done by the surface tension. The last term represents the effect of the

changes of the mean curvature on the mlxture energy source. By combining
Eqgs.(8-21) and (8-26) we have

S = ZF[ ] ZM“C 5

+Z(@;;—_ v, — ﬁﬂ) Vo, +E,_.
k=1

(8-47)

As a summary on interfacial energy transfer we have the following relations.

Total energy transfer condition

—~ {);2 = =8ak
By =1, hki+vlvi'vk__i— +aiQki_pki—5t_
+Mik-@—Vak-Z-6;+W,§ with (8-48)
2 D a
+2H, —+EH
; [dT]D () 2%

Thermal energy transfer condition

— Doy Y
i + M, —v
o Dt (5 =%) (8-49)

~Va, - &, - (v — ;) + W] with

A, —(Fh +aq,m)
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Since these relations are now expressed by the mean values of the bulk fluid
and of the interfaces, they can be considered as having the macroscopic
forms. The constitutive equations can be obtained by relating the interfacial
variables to the bulk fluid mean values and other characteristics parameters
such as a;.

In view of Eqs.(8-5), (8-21) and (8-48) we recognize considerable
differences between the necessary interfacial constitutive laws for the two-
fluid model and those for the drift-flux (mixture) model. For the former
model it is necessary to specify I, M, E;, M_ and E_ by constitutive
equations, whereas for the latter model it is sufficient to supply only /7,

2
M, and E,, (or " 4, ). Indeed this makes the drift-flux model quite

simpler than the two-fluid model. In the diffusion or drift-flux model we
supply the relation between the velocities of each phase, thus only one
momentum equation is required. However, in the two-fluid model we
specify the momentum exchange term M, and then solve two momentum
equations simultaneously. We also note that the sum of A, for two phases
does not reduce to a simple form as £, without making assumptions, thus it
is expected that special attention should be paid in using the thermal energy
equation in the drift-flux model.



Chapter 9
TWO-FLUID MODEL

The two-fluid model (Ishii, 1975, Ishii and Mishima, 1984) is formulated
by considering each phase separately. Thus, the model is expressed in terms
of two sets of conservation equations governing the balance of mass,
momentum and energy in each phase. However, since the averaged fields of
one phase are not independent of the other phase, we have interaction terms
appearing in these balance equations. The terms denoted by I',, M, and
E, are the mass, momentum and energy transfers to the £”-phase from the
interfaces. As these quantities also should obey the balance laws at the
interfaces, we have derived the interfacial transfer conditions from the local
jump conditions. Consequently six differential field equations with three
interfacial transfer conditions govern the macroscopic two-phase flow
systems.

In the two-fluid model formulation, the transfer processes of each phase
are expressed by their own balance equations, thus it is anticipated that the
model can predict more detailed changes and phase interactions than the
drift-flux (or mixture) model. However, this means that the two-fluid model
is far more complicated not only in terms of the number of field equations
involved but also in terms of the necessary constitutive equations. It is
evident that these constitutive equations should be accurate to display the
usefulness of the model. This is particularly true with the interaction terms
I'., M, and E, since, without these interfacial exchanges in the field
equations, the two phases are essentially independent. These interaction
terms decide the degree of coupling between the phases, thus the transfer
processes in each phase are greatly influenced by these terms.

The real importance of the two-fluid model is that it can take into account
the dynamic and non-equilibrium interactions between phases. This is
accomplished by using the momentum equations for each phase and two
independent velocity fields as well as the two energy equations in the
formulation. Thus, it is expected that two-fluid model can be useful to the
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analyses of transient phenomena, wave propagations and of the flow regime
changes. Particularly if the two phases are weakly coupled such that the
inertia of each phase changes rapidly, the two-fluid model should be used to
study these phenomena.

However, if the two phases are coupled strongly (in which the responses
of phases are simultaneous such that two phases are close to mechanical and
thermal equilibrium or the wave propagations are firmly interlocked), the
two-fluid model brings into the system unnecessary complications for
practical applications. Furthermore, it can be said that the two-fluid model is
well suited to the studies of the local wave propagations and related stability
problems. However, if one is concerned with the total response of the two-
phase mixture in a system rather than the local behaviors of each phase, the
drifi-flux model is simpler and in most cases effective for solving problems.
For general three-dimensional flow, the two-fluid model is better than the
mixture model because the relative velocity correlation is extremely difficult
to develop in a general three-dimensional form.

In what follows, we study a general formulation of the two-fluid model
as well as various constitutive equations that are necessary to close the
system of equations. It should be noted, however, that closing the system of
differential equations by making the number of unknowns and equations the
same does not imply the existence of a solution nor guarantee its uniqueness.
However, it is a necessary condition for a properly set mathematical model
that represents the physical systems to be analyzed.

It should also be remembered that mathematical models of two-phase
flow systems are in no sense firmly established and some additional research
is required to complete the three-dimensional model for a general two-phase
flow. In order to appreciate the difficulties confronting us, we recall that
even in a single-phase turbulent flow, the general constitutive equations for
turbulent fluxes are not developed yet. In view of the present state of the art
on the three dimensional two-fluid model formulation, the necessary form of
the model is discussed in general terms first. This chapter, therefore, should
be considered as a framework and guidance to formulate the constitutive
equations from them. The following diagram summarizes the establishment
of the two-fluid model formulation.

1.1 Two-fluid model field equations

Two-Fluid Model Continuity Equations

The two-fluid model is characterized by two independent velocity fields
which specify the motions of each phase. The most natural choice of
velocity fields is obviously the mass-weighted mean phase velocities v, .
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LOCAL INSTANT FORMULATION ]
Phase 1 Interface Phase 2
Field Equations Jump Conditions Field Equations
Constitutive Laws | Interfacial B. C. Constitutive Laws

Y

{ TIME AVERAGING

Y

L INTRODUCTION OF MACROSCOPIC VARIABLES

AXIOM OF . ]
CONTINUITY

TWO-FLUID MODEL FORMULATION

Vr Y A 4

Phase 1 ) ' Interfacial | Phase2
Field Equations " | Transfer Conditions " Field Equations

¥ 3 r 3 {
Macroscopic Constitutive Laws Macroscopic
Constitutive Laws p for Interactions > Constitutive Laws
for Phase 1 for Phase 2

Thus the suitable form of the continuity equations to be used in the model
should be Eq.(5-21)

Ocv, p,. =
—8":'“ +V. (akpk'vk) =1 9-1)

with the interfacial mass transfer condition from Eq.(5-22)

2
Y I, =0. 9-2)
k=1
Thus, the term denoted by I', represents the rate of production of k®-phase
mass from the phase changes at the interfaces per unit volume. It appears
because the local continuity equation has been integrated in time to obtain a

macroscopic field equation. Furthermore, it can be said that Eqs.(9-1) and
(9-2) are the general statements of the conservation of mass in the
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macroscopic field, as a result they hold regardless of the mechanism of phase
changes.

In terms of the convective derivative of Eq.(7-11) the continuity equation
becomes

D — =
D_I:f(akpk) +apV -9, = I ©-3)
And thus we have
kazk — D« —_
%Dy T zk)tk tapV v =1 (9-4)

For a steady state flow, the time derivative of Eq.(9-1) drops, hence we have
V- (0 0,8;) = I (9-5)

If each phase is originally incompressible, then the mean density jo—j is
constant. Thus we have

Oa
— 4 V(o7 =

Y (9-6)

2|

And furthermore, if there is no change of phases, the continuity equation
reduces to

Oay, .
-Et‘——'—V'(ak'vk):O (9-7)

which can be used in a low speed two-phase flow without phase changes.
Under these conditions the kinematics of the two-phase system is completely
governed by the phase redistribution, namely, by the convection and
diffusion. The form of the above equation is analogous to that of a single-
phase compressible flow.

The general form of the phase continuity equation has been given in the
vector notation by Eq.(9-1). In view of a practical importance, we express
the equation in rectangular and cylindrical coordinate systems. Thus, in
rectangular coordinates (z,y,z) we have
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'(E)—t(o‘k P/c) + ga:(o‘k Pk”zk) + %—(ak pkvyk) ©-8)

+%(O‘kﬁ@) =I}.

If the flow is restricted to two dimensions, then it represents a plane flow. In
this case, the partial derivative with respect to  can be dropped from Eq.(9-
8). We also note here that, for a steady plane flow with no phase changes, it
is possible to introduce a stream function.

The continuity equation in cylindrical coordinates becomes

o)+ 2+ Lo

5, ©-9)
"f‘gz‘(akp_k@) =I.

Flow is said to be axisymmetric, if there is no dependences on 6 -direction,
thus for such flows we have

7o)+ () + i) = o0

A stream function can also be introduced for a steady axisymmetric flow
with no phase changes, making it is possible to eliminate the continuity
equation from the formulation.

Two-Fluid Model Momentum Equations

In the two-fluid model formulation, the conservation of momentum is
expressed by two momentum equations with the interfacial momentum
transfer condition. As it was mentioned before, the appropriate field
equations should be expressed by the center of mass or the barycentric
velocity of each phase v, , thus from Eq.(5-26) we have two momentum
equations given by

60‘1:P=k"/’; ==
—— tV: (%Pk"’k”}e)
ot (9-11)

=—V(op) + V-[ak @ +@;T)] + 0,29, + M,
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The interfacial transfer condition (8-23) has the form

2
> M, =M, (9-12)

k=1

with
M, =2H, oVa, + M~ (9-13)

We note here that the momentum equation for each phase has an interfacial
source term M, that couples the motions of two phases through Eq.(9-12).

Here, H, and o are the average mean curvature of interfaces and the
surface tension, whereas the term given by M, takes account for the effect
of the changes in the mean curvature.

In view of the Section 1.2 of Chapter 8, Eq.(9-11) can be rewritten as

0/ =_ _ _—

é‘t‘(akpk”k) +V- (%Pk"’k"’k) = _v(akpk)

+V- {ak @ + @;)} + 0,9, (9-14)
+(61;Fk +p:mvak + M, — Vo, Z)

Hence, by using the convective derivative of Eq.(7-11) the k™-phase
equation of motion becomes

4 p =t =~y Vp, + V'lak (% + %T) + oy, P, G,
Dt L (9-15)
+(Ps — Br) Voy + (T — 5) I + My, — Vo, - G,
or by substituting Eq.(8-20) into Eq.(9-15) we have

= ‘Dk’l/); = e T —_—
akpk‘”‘D"t“ =-qVp, +V | (@; +Z, ) + @, 01 Gy,

= = ~ I
+(pk-i - Pk)Vozk + (v, — v, + Z’_—(’; Vak]Fk + M, (9-16)

ki

—Va - Z
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In general the equation of motion is a vectorial equation, thus we have three
components or three corresponding scalar equations. In what follows, we
express them in two coordinate systems of practical importances.

The equation of motion in rectangular coordinates (,y,2) can be given
as follows

I -component

(00U OV, 0ty Oty 0P,
« —+ U, + v + V= oy, ——
£l ot * o * By * 9z ‘oz
+0y 0, Gy + {% QO (ka + Tzzk) + a_yak (Tyzk + T,sz)
; (9-17)
0 — = =% . __
+b—zo‘k (ka + Tz:;k)} + (PM - pk)_87 + (vzkz' - vzk)rlc
day, =— Oop, =— Oa, —
My — | =T + Ty + 7
ik [818 zzki ay Tya:im 82 ki
Y -component
=a@+fa@+fa@;ﬂ?a@ %,
o, p, |—— — = —a, —
£l | o4 Y % oy * Bz oy
04 0 Gy t {%O‘k (Tt + 7o) + N (Toge + 7ot
(9-18)

Z-component

—(00 0ty 0t 01, 0P,
O Py, ot 1T T %%
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—_— 8 psrmaad —— T
TGP Gy T {5‘;% (Tmzk + Tszk) + %ak (Tyzlc + T;Lk)

0 S Ocy, -
+(T?;0‘k (Tzzk + Tszk)} + (pm pk)a— + ( Uzk)rk (9-19)
oy, — Oo, =— O ——
+Mizk - [—8_1.1% T goki + —bj’]—yzki + _a-zi’rzzki .

We note here that for a plane flow, the x -component of the equation of
motion drops. Furthermore, all the partial derivatives with respect to z
should be eliminated from the y and z-components of the equation of
motion, namely, Eqs.(9-18) and (9-19).

The equation of motion in cylindrical coordinates (r,0,z) becomes

T -component

Py —8@ +1T‘—8@ +@—8@ —E—Fi\a@
Pel\Tor T e 0 r o * e
o _—__ (10 ,—

=0 or + Py + {;5?7'% (ka + Tg;k)

+ ;%O‘k (Trok + TrTgk) _;ak (Taek + Tg;k) (9-20)

) _ _ _, Oq L

+‘8—zak (Trzk + Tz;k)} +<pk~i - pk)ﬁ"i— (vrki —vrk)Fk
Oay, __]

82 ZTk'L

Oy = 100y =—
+
ar ™ o8

+M irk [ T rksi +

0 -component
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3 (T )+ (o + )

r 08
— 10 S
+ (pki pk);_gé“ + ('Ue/ci - v&k)Fk + My (9-21)
oo, =— 100, — Oo, ——
_[%‘fﬂem +;‘8‘9‘}C‘Taekz’ +8_;Tzek-i]

Z -component

%P e T T e

2[3@; o w0ty Af%;]

+_1_Qak (Tom + 7o) + %ak (T + quk)} (9-22)

For an axisymmetric flow, the terms with partial derivative with respect to
0 drop from the equations. Furthermore, if the flow is free from the
circulatory motion around the z -axis, then the velocity in € -direction is
also zero, thus the entire 0 -components of the equation can be eliminated.

For many practical problems of two-phase pipe flows, this is a sufficiently
accurate model to be used.

Two-Fluid Model Energy Equations

The most fundamental form of the conservation of energy is expressed by
considering the balance of the total energy. For the two-fluid model
formulation, we have two fotal energy equations with the interfacial energy
transfer condition. Thus from Eq.(5-32) we have
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o~

~2
+V- akb;;[é; +%‘J"’k

0 —(. %’
E%Pk[ek*'%]

V(0@ +a})) + V(0T - 5) 9-23)
+akp:k§; U, + .

Here we have assumed that g, is constant, namely, g, =g, . The
interfacial transfer condition (8-48) couples the energy transport processes of

two phases, thus we have

2
> E,=E, (9-24)
k=1
where
do ) D, = O
E =T, (dT] +2H,, a_a—L + B, (9-25)

These relations show that the sum of the interfacial energy transfer terms
E, for each phase balances with the time rate of change of surface energy
and the work done by the surface tension. We note here that the term given
by E:f takes account for the effect of the changes in the mean curvature. If
we use the detailed expression for F, in terms of the interfacial variables

given by Eq.(8-48), the total energy equation can be rewritten as

0| =~ &
5;%%[%"";_]
:—V'[ak(§+qg)]+v'(akﬁ'@>

B i = (9-26)
+%?’I"/’;‘.‘/J;+’ [h +0- Uk—T]

+V-

QP | € +7 v

+ a,q;,

dOék = P T
’“pm_a‘%“*'Mzk Uy — (Vak'%)'”m"'wm .

By using the transformation on the convective derivative, Eq.(7-13), we can
write
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=D, | ~ vkz — T = __
%Pth +7 =_—V'ak(Qk+qk)+v'(akzrk'vk)

+o, 0 G + D& ~8)+ (35 — 5,) G} +agl 927

Ooy, I,
| 5

M, T - (w,%)-@a—w;.

Equation (9-23) describes the transfer of energy seen from the observer at a
fixed point, and Eq.(9-27) expresses the energy transfer by following the
fluid with the barycentric velocity v, .

In many practical heat transfer problems, it is convenient to use the
thermal energy equation instead of the total energy equation. This is
particularly true for low-speed, two-phase flows with heat additions where
the mechanical terms are insignificant in comparison with the high heat
transfer rates. Thus, by recalling Eq.(5-38) and Eq.(5-39), the thermal
energy equation is given by

Oa pzi/z\ e _

“-%iu + V- <akpkh'kvk) =—V- (Qk + QkT) 9-28)
D —_ = _ __

+1—)k¥(0‘kpk) ~ 0V (a8")+ . Vo, + A,

Substituting the expression for A, of Eq.(8-40) into the above equation, we
get

%(akﬁ—k—}/’;) +V- (akpzkﬁ;'{’;) =V - (i + q,f)

D, - = ___
+— Dt (Ozkpk) v,-V- (ak@;T) +o, & : Vo, 529

—~ =\ Doy
+(Fkhki+aiq,g)—pkz. i + M, - (v, — ;)

~Voy, G, (T — ;) + Wy

This equation can also be transformed in terms of the convective derivatives
as
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o =—V-ak@+qf)—@-v-(aﬂf)

D,
Wy + o DP

v, + I, (h f?k) .30

tagy + (7 - pk,)%%+M (% - 5)

Vo, - G, (v - %)

which is the equation describing the exchanges of thermal energy as seen
from the observer moving with the mass center of the k™-phase.

For simplicity we denote the turbulent energy source by @, and the
viscous dissipation term by &;’, thus

& =0, - V- (o, G" )+ Wy (9-31)

P =, & : V. (9-32)
Then Eq.(9-30) reduces to

__Dh
Ol Py, Dt

+1, (Fe — 1)+ a,gl + (5; — Be)

D,
b= Voo, (g + )+ l’;f’“+@T+q§”

D,y

Dt
+M, (5 - 3) - Voy - G5 - 7).

(9-33)

Now we expand the above thermal energy equation in two coordinate
systems of practical importance. Thus, in the rectangular coordinates
(z,y,2), Eq.(9-33) becomes

_[oh, __on, 8hk ok
k Mk zk zk
R S T W

o (@ + )

= el @) -
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op, o3, Op

o (@ + )|+ o+ 0

—_ _+v -
Oz R
oD,
tig—— |+ B + B+ 1y (hy — By
0z
= 0oy  Ooy Ocy, Oay,
+a,q, + (P — D F U —— A+ Uy —+ Ty ——
i (pk pkz) ot Une 92 ey * 5y
+Mixk (771-; - "7a:\k) + Miyk (1711; - Ey\k) + Mz’zk (@; - 1/’;19) (9-34)
oo, — O« ooy, —|, —
- —é;kTmm' + 5 : vaki T ; Tzzki](vzkz vzk)
O, — Oop =— Oop =]/ —
- (%Ek 7 oyki + 8; 7 yyki + 2 szki](vyk"i Uyk)
oo Oa Oa —
- 8(: lem+ ayk :'/zlm—‘__ai’rzzkz](vzkz vzk)

For a plane flow, the partial derivative with respect to x drops and the z -
component of the velocity is zero.

In the cylindrical coordinates (r,0,z), the thermal energy equation
becomes

ok Ok 5Ok o
+ vk —_
NPy T T T

=20 e, (7 + 48) - L o (@ + a3

T
0 — 0p; __0Op, 8Pk
o (T )| o T (9-35)
dp,
i 6'“ + & + 0 + T, (k1)

3ak __ Oy g Oy Oy
rk a. +

—_/—/- —
o+ (7P|, ot T e T e T,
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8ak —_ 1 8ak 8ak :] o o~
_ N gl Tk oo —

or T rrki Ry T Torki 92 T ri ( ki Urk)

oo, — 100, — Oop =), . __
- 8: roki T — 8; Toori T E&Tzom](vm - Uek)

oo 1804 — Oap =\,
- “(.aTkTrzm' , 80k T ooki i@m}(”m - 'Uzk)-

For an axisymmetric flow, the partial derivative with respect to 6 drops
from the equation. Moreover, if the flow is free from the circulatory motion
around the z-axis, the € -component of velocity is zero. This is a good
approximation for many two-phase flows in pipes, particularly for vertical
pipe flows.

It can be seen that both the total energy equation and the thermal energy
equation are quite complicated in their full forms, and thus several
simplifications are important for solving practical problems. We study
several special cases below. If the heat transfer and phase changes dominate
the energy exchanges, then we may neglect the terms arisen from the
mechanical effects. Under this condition, Eq.(9-30) can be reduced to

—D.h,

b b=V o (G + )+ D —he) T ol 039)
The above equation suffices for many two-phase flow analyses except the
problems of compressible wave propagations and/or at high speed flow
conditions.

In the rectangular coordinates (z,y,2) Eq.(9-36) becomes

_lom _om __0Oh __Oh
akpk8—:+vsz A

+ai§__,;’. ~ {%ak (0 +0i) + (%ozk (@ + ) (9-37)
+%ak (E—i—qfk)}

If we use the cylindrical coordinates (7,6,2) we have
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__[oh, on o= Oh, oh, U
== — Oy ok —~ _ .
GPe| gt Tt e -—Fk(hm- h’k)
= (10 _— 10 —
+a,q,; — {;E”'% (qu + quk) + o0 (on + %Tk) (9-38)

8 = }
T+« + @)t
a2z (qzk q k)
Furthermore, if the flow is axisymmetric with negligible heat transfers in the
axial direction it reduces to the following form

4 g*’%‘gﬁ‘*’%g :Fk(hki_hk)—i_a’iqg

10

_;E{Tak (ﬁ + qﬁ)}

(9-39)

It is a much simplified form of Eq.(9-35), yet the important heat transfer
mechanisms are preserved in the above equation.

1.2 Two-fluid model constitutive laws
1.2.1 Entropy inequality

The general scheme of constructing the two-fluid model has been
discussed at the beginning of this chapter. It is evident that the macroscopic
field equations (9-1), (9-11) and (9-23) and the interfacial transfer conditions
(9-2), (9-12) and (9-24) are insufficient to describe any particular system,
since the number of the variables exceeds that of the available equations.
Additional information which specifies the material and response
characteristics of a particular group of materials is necessary. These are
commonly called as constitutive equations, as explained in detail in Chapter
2.

The purpose of this section is to examine the necessary constitutive
equations to close the system of equations. It is always possible to introduce
more detailed mechanisms and variable to differentiate various effects of
material and transfer mechanisms and then to complicate the set of equations.
Consequently, we will discuss the most important aspect of the constitutive
laws, namely the principle of the determinism, with the simplest and the
reasonably general set of the equations. For this purpose we consider two
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sets of the macroscopic conservation equations of mass, momentum and
energy given by Egs.(9-1), (9-11) and (9-23) and the interfacial transfer
conditions of mass, momentum and energy, Eqs.(9-2), (9-12) and (9-24).

In analogy with Chapter 2, we proceed to study entropy inequality in the
macroscopic field. Thus, by applying the averaging procedures of Eqs.(5-8)
and (5-10) to the inequality (2-23) and (2-85), we obtain

0 =_ —__
b—takpksk +V'<akpk3k'vk)+v' ak[%‘]"‘%ﬂks/ﬁ'vé
¢ (9-40)

TR I oS P +n, | Z|l=A >0

At | T ‘o

and

1 1 |d 2|, q

—y —12ts +8V, - v, — Y |ms, +n, | %
Atz;vm.’dt“ ere ; R [Tk] (9-41)

where we have taken the internal body heating ¢, to be zero.

We recall that in Chapter 2 the interfacial entropy generation A, has
been assumed to be zero in order to obtain simple boundary conditions at the
interfaces. We follow exactly the same approach here, thus we have

A =0. (9-42)

—f-——; = f =Ty,
Uy =0, =T, (9-43)
2
2 .
mk |(vk ’) T’rmk
a:,Lu g — —
Z}: sz=: Tz ’ 2 Pk

However, the last condition can be approximated for most practical problems
by
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(9-44)
P p™ (“—_1) _ 2? ;[_Pzi ]

which is the macroscopic form of Eq.(2-107).

The first and second conditions of Eq.(9-43) can be used to replace the
fluid temperatures and the fluid tangential velocities by two parameters T,
and v, , whereas the last condition remains very important in the
macroscopic formulation to set the energy level of the interfaces. Since at
the lower reduced pressure, the density ratio is large and at the higher
reduced pressure, surface tension effect is small, Eq.(9-44) may be
approximated by

Py — 0™ (T1)=0. (9-45)

Thus, the vapor is almost always very close to the saturation condition at the
interfaces. Equation (9-45) is simple enough and it is widely used even in
the local instant formulation of two-phase flow problems. From the above
discussion, it is seen that the result of Eq.(9-42) can be represented by a
single equation (9-45) because the other conditions of Eq.(9-43) are satisfied
by simply replacing the interfacial fluid temperatures and the tangential
velocities by those of the interfaces, namely, TZ and 'l/); .

Now we study the entropy inequality of each phase given by Eq.(9-40).
If the fluctuations of the interfacial temperature are not important, then we
have in analogy with Eq.(8-9) the following approximation

=

T =~

1

(9-46)

Then Eq.(9-40) can be expressed with the interfacial macroscopic variables
of the Section 1.1 of Chapter 8 as

0 —_ —
aakpksk +V'(%Pk5k'vk) + V-,

—_—

%] + oy Pksii”;
¢ (9-47)
o~ = 1

I8, +a,g,=

i

=4 >0.
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Although the above equation can be satisfied by the local instant
formulation with the positive viscosity and the thermal conductivity, it still
imposes some restrictions on the macroscopic constitutive equations. In
other words, the exact form of Z; which is obtainable from the local instant
formulation satisfies Eq.(9-47), however it does not ensure that the left-hand
side of the equation with various constitutive equations is always positive. It
can be said that the formulation is consistent only if a set of constitutive
equations with constraints imposed by the continuity, momentum and energy
equations satisfy the inequality (9-47) trivially. Before we apply the above
inequality, we will discuss one of the most important characteristics of the
macroscopic model which appears only after the averaging.

1.2.2 Equation of state

It can be said that even if the original local instant formulation has simple
linear constitutive laws with a standard equation of state as given in Chapter
2, the macroscopic model obtained by averaging may not have such simple
constitutive equations. This is because the statistical effects of local instant
fluctuations appear in the formulation. In general, these statistical effects
depend not only on the present state in terms of the macroscopic variables,
but also on the processes in which the present state has been reached. For
example, fluid particles having the same values for the energy %, and the
density p, can have entirely different values for the average temperature or
the pressure. All these suggest that the macroscopic field has the
characteristics of the materials with memory (Truesdell 1969). Thus the
constitutive equations in general are given by the functionals of the past
processes. This makes the analysis on the macroscopic constitutive
equations extremely complicated and difficult. It is evident that the
formulation will result in a set of coupled integro-differential equations. In
order to avoid these difficulties, we have to make several assumptions at the
expense of the accuracy of the model. We know that all materials show the
characteristic of fading memory (Coleman and Noll, 1960). Thus, the
importance of the effects of memory in a formulation depends on the ratio of
the time span of the effective memory to the time constant of macroscopic
processes.

Let us now examine the averaged equation of state corresponding to
Eq.(2-24). We have

Opy
ot

+ V- (o v;) (9-48)
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0,5,
ot

=T, + V- (pkskvk)] —pV - v,

By averaging the above equation we obtain

D, u,
{akpk Dt (%Pk%”k)"‘r ( _um)}

D,
Dt

:ﬁ{ak/’k +V- (%Pksli"’/é)‘i'Fk (51:”“;1;)}

0s
— -V sk] (9-49)

+aoy, Tlgpk ot
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Here we have used the identities

a,B, — A am, -vB, + oA —*
: ot
and (9-50)

AVB, = zv%?k + Azkz aym, B, + oy, AV B,
i
with

A =4, — A, ©-51)

Equation (9-49) shows that, in general, we do not have simple equation of
state in terms of averaged variables. The relation between the internal
energy U, , the entropy 5, and the density p, is influenced by both the
interfacial transfers and the statistical effects of the fluctuations of the
variables.
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A simple static relation between these mean values follows if the
fluctuating components are sufficiently smaller than the macroscopic
changes of these variables in question and thus the linear expansion of the
equation of state is a good approximation. In this case we have

G = (% 7) = u (5% 7) 0-52)
with
_ Oy, R —
T, (5 7) = 55(32, p) =T, (9-53)
and
_ oy, N\
pk(gga pk)=_ (§;> pk)ipk' (9-54)

ofin)

These relations hold for a two-phase flow with each phase itself being in
near equilibrium state in the time interval of A¢. Hereafter we assume that
each phase obeys the static equation of state, Eq.(9-52) in the macroscopic
field. It is a rather significant and practical assumption that enables us to
construct the two-fluid model and its constitutive equations in parallel with
the standard single-phase flow formulation. Under the above conditions, we
have following relations in analogy with Eqs.(2-24), (2-25) and (2-26)

U = Uy (sk7 Pk)

— 0y, _ ou,
E= Ty D= p—
5 o)
G =T5 2 +g, (9-55)
Pk
and

di = T.ds, — ?;d[-i—].

Pk
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The fundamental equation of state can also be represented by the
combination of the caloric and the thermal equations of state, hence
(9-56)

W = (T5. 7 )
7 = b (T ) 9-57)
or if we take the enthalpy as a variable, it becomes
h = ?/:l:(T_l:, pzk) (9-58)
7 = e (T 22 (9-59)
In view of their great practical importance, we now study several
thermodynamic second derivatives. The specific heats at constant pressure
¢, and at constant density c,, are defined by
i, __ 03,
cpk = e = Tk a1 (9-60)
orT, |_ or, |_
P P
and
™ = 08,
0w | 7 7% (9-61)

C, =
vk
T,
Pr

Pk
Similarly, the thermal expansivity (3, and the isothermal compressibility

K, are defined by
9p,
L% (9-62)
k

pr OT, |_
Pr
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Fopp = ——r | = — (9-63)

where ap, is the isothermal sound velocity. Among these four derivatives
we have the following identity

cpk —Cy = =". (9-64)

It is known that if Eq.(9-55) holds, then only three of the thermodynamic
second derivatives are independent and others can be obtained from these
three. Let us introduce the ratio of the specific heat

C
v, = & (9-65)
cv]c

and the isentropic compressibility <,

O,
PSR Wil R (9-66)
P 8pk 5 Pr (as/g)

where ag, is the isentropic sound velocity. Then we have

2 _ (a.svc)z
(aTk) = . :

(9-67)

It shows that the isentropic sound velocity is always larger than the
isothermal sound velocity, since from the stability of the system x,, > 0,
thus -y, > 1. The importance of the thermodynamic second derivatives or
the thermal and the caloric equations of state are related to the possibilities
of measurements. For example, the fluid pressure and temperature are
relatively easy to measure, thus the equations of state in the form of Eqs.(9-
58) and (9-59) can be constructed experimentally.

Saturation Condition
The classical saturation condition is given by
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h=D, =D
. (9-68)
Tl — T2 — Tsat
then
g\l (Tsat, psat) — g; (Tsat’ psat) — gsat' (9-69)
Thus we have the relation
psat — psat (Ivsat) (9_70)

which is assumed to be identical to Eq.(2-99).
1.2.3 Determinism

In the present analysis, we have assumed the existence of the static
equation of state, Eq.(9-55). From the principle of determinism, we should
be able to predict the present state from the past history. The necessary
condition is that the system of equations is closed, or the number of
unknown being same as that of equations. We see that this condition is not
satisfied by the field equations (9-1), (9-11) and (9-23), the interfacial
conditions (9-2), (9-12) and (9-24) and the equations of state (9-55).
Consequently, it is necessary to add several constitutive equations that
express the transfer mechanisms of average molecular diffusion, turbulent
transfer and interfacial exchanges.

By taking the thermal and caloric equations of state, Eqs.(9-56) and (9-
57), the variables appearing in the two-fluid model formulation are:

. Conservation of Mass oy, p;, ¥, [;;

1
2. Conservation of Momentum p,, @, ', g, M,,M_;

3. Conservation of Energy &, q;, 4y » By, E,.;

4. Equations of State ;, T}, T

where k£ = 1 and 2. Hence, the total number of the variables is thirty three.

For a properly set model we should have also the same number of equations.
These can be classified into the following groups.
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1)

2)

3)

4

5)

6)

7

8)

9

10)

11)

Equations

Field equations

mass Eq.(9-1)
momentum Eq.(9-11)
energy Eq.(9-23)
Interfacial transfer conditions
mass Eq.(9-2)
momentum Eq.(9-12)
energy Eq.(9-24)

Axiom of continuity
oq=1-q,

Average molecular diffusion fluxes
viscous stress &, .
conduction heat transfer q,

Turbulent fluxes
turbulent stress &,"
turbulent energy transfer q;;r

Body force fields g,

Interfacial transfers
mass [
momentum M,
energy E,

Interfacial sources
momentum M
energy E

Equations of State
thermal equation of state
caloric equation of state

Turbulent kinetic energy
& — U

Chapter 9

Number of Equations

N NN

N

NS I )

[N\

Phase change condition specifying the interfacial

temperature 7
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12) Mechanical condition at interface specifying
the relation between p, and p,
(Average normal momentum jump condition) 1

This shows that we also have thirty three equations, thus the formulation
is consistent. However, it should be noted that the constitutive equations
shown above are expressed in the most primitive forms, thus it is quite
possible that these equations are coupled with each other through some
additional parameters with the same number of supplemental constitutive
equations. Furthermore, if one is to use the entropy inequality then Eq.(9-
55) should be introduced in the formulation.

1.24 Average molecular diffusion fluxes

Viscous Stress Tensor _ .
The constitutive equations for &, and g, can be studied by using the
identity (9-50). For simplicity, we assume that the fluid is Newtonian and

in ¢t € [At],. (9-71)

Then we obtain from Egs.(2-38) and (9-50)

Z =, [V'u,c V'vk)} —Ot—Zaij(nkv,ﬁ—l—v,ﬁnk) (9-72)
K

where 'v,é is the fluctuating component of the ¥®-phase velocity with respect
to v, . It is easy to see that the second part of the stress tensor becomes
important when the difference between the interfacial fluid velocity and the
mean velocity is large. Thus it takes account for the effects of the interfacial
motions and the mass transfers on the average deformation. Let us define
the interfacial extra deformation tensor by

1 . _
D, = 2—&; j @y {nk ”k)+(”k _'vk)'"'k}

(9-73)

o (o, - %)+ (o - )m

Zak
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The bulk deformation tensor is given by

Dy, = |V +(V5)']: (9-74)

N | =

Consequently, we have

@, = 24, (Dy, + D). (9-75)

If the effect of the extra deformation tensor is included in the formulation,
then a constitutive equation specifying [J,; for each phase should be given.
In general, it is considered to be quite complex due to various mechanisms
affecting 1J,;, however, under special conditions it can be reduced to a
simple form. For example, if phase ¢ is a continuous phase in a dispersed
flow and the motions of interfaces are quite regular with little effects from
the phase changes, then Eq.(9-73) with Eq.(4-62) can be approximated by

D, = —2%6 (Va,)(® - 5) + (5 — 5)(Va,)}

and (9-76)
Dy, =0,

For a more general case, we may approximate Eq.(9-73) by

D, =%
2

c

{(Va,)(@; - 7)) + (9 - 7,) (Vo )} (9-77)

where a represents the mobility of phase c.
Conduction Heat Transfer

The average heat flux g, for a fluid obeying Fourier’s Law of Heat
Conduction, Eq.(2-41), can be given by

B B T W) e

k

in which we have used the identity (9-50) and assumed
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K, ~K, inte [At],.. (9-79)

Furthermore, if we assume the thermal equilibrium at the interface,

T, =T =T,
T, ~T, atte[At], (9-80)

?

then Eq.(9-78) reduces to

% = —T(T[VEF__,C _ Ve (T - Tz)] (9-81)

Qg

where we have used Eq.(4-62). It is interesting to note here that the second
term represents the heat flux due to the concentration gradient and somehow
it resembles the Dufour effect in the single-phase mixtures (Hirschfelder et
al., 1954).

1.2.5 Turbulent fluxes

Turbulent Stress Tensor - Mixing Length Model

The difficulties encountered in writing the constitutive equations for
turbulent fluxes, even in a single-phase flow, are quite considerable. The
essential problem in turbulent flow analyses is to formulate a closure scheme
for the averaged field equations. There are two different methods that have
been used extensively in studying the transport mechanisms of turbulent
flows. The first approach is based on the phenomenological construction of
the constitutive equations for the turbulent fluxes. It is best represented by
the mixing-length hypothesis of Prandtl who proposed a turbulent model by
analogy with the kinematic theory of gases.

The second method is to use more accurate dynamical equations
describing the turbulent transports. This can be done by taking the higher
moments of the momentum equation. In this way, the number of dynamical
equations can be increased as desired. This set is not closed, however,
because a turbulent correlation term that arises as an additional flux in the
moment equation is always one order higher than the other terms. Thus,
these equations can never be closed mathematically. Consequently, it is
necessary to make some approximations and use only limited number of the
dynamical equations. In contrast to the statistical theories based on higher
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moment equations, the phenomenological approach is simple because it
supplies directly the turbulent stress.

For many engineering problems, the mixing length model still remains as
the primary means to obtain a solution particularly for the wall-induced
turbulence. Inclusion of coupled higher-order moment equations almost
always requires extensive computer calculations, whereas in many cases
even the integral method suffices for engineering requirements.

Even in a single-phase flow, the statistical theories for turbulent flows are
not firmly established and the method very often involves a system of quite
complicated equations. Consequently, we do not discuss their applications
to two-phase flow systems except for dispersed two-phase flow in the
Section 1.4 of Chapter 12. Because of its simplicity, we now study the
phenomenological approach for the turbulent fluxes in the two-fluid model
formulation.

Following the standard analysis on the stress tensor (Truesdell and
Toupin, 1960; Aris, 1962; Slattery, 1972), we assume that the local turbulent
stress @'kT can be decided if we know the phase velocity at the point and the
deformation of the phase around it. The above assumption satisfies the
constitutive principle of local action. Furthermore, if we use the principle of
material frame indifference, we arrive to the conclusion that the stress tensor
depends only on the deformation tensor

where the bulk deformation tensor 2J,, and the interfacial extra deformation
tensor are given by Egs.(9-74) and (9-73), respectively. The turbulent stress
which is caused by the bulk deformation can be called as the shear-induced
turbulence, whereas the one that is caused by the interfacial extra
deformation may be called as the bubble-induced turbulence.

In reality, these two constitutive principles may not be fulfilled in a strict
sense even in single-phase turbulent flows as it has been discussed by
Lumley (1970). Since there are very few experimental facts to depend on,
we consider the simple case when above assumptions is valid. Consequently,
the most general form permitted under the conditions is

@T = oyl + ay Dy + a, Dy - Dy (9-83)

where the coefficients a,,, a;,, and a,, are functions of the three invariants
of the deformation tensor D), given by trD, , D, : D, and detD, .
These are, namely, the trace, double dot product on itself and determinant of
D, , respectively. Hence, we have
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0, =a, (,o_—k, o, o0, 0, Byttt D, D, : D,, det/Dk). (9-84)

In addition to the three invariants, the arguments of the coefficients are: the
fluid density p, ; viscosity i, ; void fraction «, ; the distance from the wall
{; the interfacial area concentration g, ; and the mean curvature H,, . The
expression for the turbulent stress tensor given by Eq.(9-83) with Eq.(9-84)
is still very complicated. However, if we use the mixing length hypothesis
similar to the one made in a single-phase flow, the result reduces to a simple
form.

First, we assume that the stress tensor of Eq.(9-83) depends only on the
second term, which is the Newtonian assumption. Then we have

@T =ayDy, = ZNkT Dy, (9-85)

where p; is the turbulent viscosity. Furthermore, here the coefficient g, is
taken to be

Oy = Oy (sza Thes @y £, 0, H—zn Dy, - Dkb)' (9-86)

It is noted here that the bulk deformation tensor 1J,, is used in the place of
the total deformation [J,, since the mixing length model is for the shear-
induced turbulence. Because of its significance, it is discussed in more
detail in Chapter 12. Consequently, from the dimensional analysis, we
define

Oy

P’ 2Dy + Dy .

Then the non-dimensional function ,u,,{ " should depend on four groups as

2" =

(9-87)

™ o+ P=k2 2D, : Dy
o My = y

ta, o
H Uy

L. (9-88)

The final expression then becomes

@' =2(") 5el* 2Dy : Dy Dy, (9-89)
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This is the corresponding mixing length model for the two-fluid model
formulation. The turbulent stress given by Eq.(9-89) with Eq.(9-88) is
sufficiently simple to be a realistic model.

In order to visualize the model, let us consider a very simple two-phase
pipe flow. By taking a fully developed flow with no phase changes, we have

— — * \ ——= d/\ d/\
(Td + Tg),z = {tu'd + (/‘dT )Pd (R— 7')2 ;;d } ;};d
(T +70),
_ _ dv, 1 do (9-90)
_ T* R R S 7 e
dv, 1 de,,
X dr _E;_dr——(vzd - vzc)

where the coefficient ukT* is given by

pu(R—7) d;’zd _
T
ui =l =" g (R ), P,
Hq K
- &, 1da,~ —
. . P, (R_ ) dr o, dr (vzd zc)
M, =, = s (9-91)
K.

If we exclude the region very near to the wall, the first non-dimensional
group, which is a local Reynolds number, may be dropped from the
arguments of the function y; . Thus in this case, the constitutive equation
for the turbulent flux, Eq.(9-88), depends only on the static parameters that
express the mean geometrical configurations at a point in a flow.
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Turbulent Heat Transfer - Mixing Length Model

The turbulent energy flux has been defined by Eq.(5-46). As we can see
from the equation, it consists of three parts, namely the turbulent transfers of
internal energy, of kinetic energy and the work done by the turbulences. For
many practical two-phase flow systems, the latter two effects have less
significant roles than the first effect as in the case of a single-phase flow.
Thus, we construct a turbulent heat flux model by considering mainly the
effect of the thermal energy transport, namely, the first and the last terms of
Eq.(5-46) which give enthalpy transport. In analogy with Eq.(9-81) we
assume

af =k} {7, - YT T

Qg

(9-92)
= = Vo, (= =
— o (Ve - (T
o
where the turbulent energy transport coefficient is expressed by
K = K] (5o Ky s s s @ gy 2D, Dy ). (9-93)
From the dimensional analysis, we introduce
x KT
K == k . (9-94)

N ﬁ;cpk£2 2D, : D,

Here ¢, and £ are the specific heat and the distance from the wall or the
mixing length respectively. Then the non-dimensional parameter K, is a
function of four similarity groups as

. Npeci? 2D, D, .
K= g | BN T, Ha (9-95)

Thus, the turbulent heat flux can be given by

af = —K ' pre, 22D, : D, {VTzk—vo‘k (T T)} (9-96)

Qg
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It can be seen from Eqgs.(9-73) and (9-82) that if a two-phase system
undergoes a changing of phases, then the second invariant of the
deformation tensor can be quite complicated. This effect, due to the extra
interfacial deformation tensor, promotes the heat transfers in two-phase flow
systems.

1.2.6 Interfacial transfer constitutive laws

From the entropy inequality (9-47), thermal energy equation (9-28) and
the equation of state (9-55), it can be shown that the entropy productions
associated with the interfacial transfer of mass I, generalized drag force

M, and heat transfer q,g, become

~1 1| 1g g M, - (v — %)
Fk Yl = — = ==+ =
Tk Ti Tk Ti Tk
(9-97)
+a,qp ;_; > 0.
Tk Ti

Here we have based our analysis on the assumption that these effects satisfy
the entropy inequality independently. The standard theory on irreversible
thermodynamics (De Groot and Mazur, 1962) gives a simple method to
obtain linear constitutive equations. For this purpose, first we should
arrange the terms in the entropy inequality into suitable combinations of
fluxes and potentials (the fluxes are expanded linearly in terms of the
potentials). We should pay special attention here because we have two
inequalities from Eq.(9-97) for each phase; The mass transfer term /', and
the generalized drag force M, should satisfy the jump condition (8-5) and
(8-19). Since in many practical problems the order of magnitude of M f,f
and M are much smaller than the drag force itself, we may approximate

2
Z M, ~ 0 in Eq.(8-19). By taking into account these effects, we have the
k=1

fo_llowing inequality

o G ol PRI N TR (9-98)
T, T.) \T, T




9. Two-fluid Model 187

! %
T, T

1
T, T,

42

T, |t

> 0.

k=1

Furthermore, if we neglect the thrust forces due to mass transfer and the
normal stresses at interfaces, then from Egs.(2-104) and (9-44) we have

= =\ | 2H,0
9 — 9 (Tz) =0y — 9 (T,) = — —pz—p: . (9-99)
15 M2

And the total momentum flux at the interfaces given by Eq.(8-11) can be
simplified to

M, =p Vo, + M, + 5, — Vo, - T, (9-100)

Thus the pressures at the interfaces should be related by

Qi

Dy — Dy = —2H,, (9-101)

which is automatically satisfied by Eq.(9-100) with Egs.(8-22), (8-23) and
(8-25) as the normal component of the interfacial momentum transfer
condition.

In what follows, we assume that the effects of the differences between
the phase mean values in the bulk fluid and at the interfaces are negligible
for the densities and pressures, but not for the temperatures. Thus we take

P = Pe (9-102)

D, = p, (for most cases). (9-103)

Under these assumptions, simple linear constitutive equations for interfacial
transfer terms may be put into the following forms
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n=4 (T, -T) -4 (T, - T (9-104)
M, =b" (v, - 9,) (9-105)
a.q' = b (T,-T,) (k=10r2) (9-106)

in which the transport coefficients b, , b and b7 are considered to be
positive scalars.

Interfacial Mass Transfer Term ‘
We assume that the transfer coefficient b,ﬁ in Eq.(9-104) is a function of
following parameters

—~ =

b/f = blf (p=17 pzza ZAk - Z{k;’ fk + Kl;fa ’Zl\z - i2i7 Hzn a;, ak)' (9-107)

In order to simplify the above equation, we first introduce a non-dimensional
parameter

. Hf-g
b= e ] (9-108)
(Kk + K,z) a?
And the Jakob numbers are defined by
(i1
N, = :L(i—i)- (9-109)

:0;('&'22' - 7'/1:)

N, = M (9-110)

le(il\z - 7:21')

Consequently, the interfacial mass transfer term can be rewritten as
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-

*(71+KE)
roglpr )

-

b — Yy

_ (9-111)
r* (K2 + KZT) (T—; _ ?2)

2

o~ o~

b — by

where the non-dimensional function b,f " can be expressed by four similarity
groups as

bl =" _”_‘,NJk, ﬂ,ak . (9-112)
P2 a

The Jakob number, defined by Eq.(9-109), is the scale of the available
energy. It is known to be an important parameter in the analyses of bubble
growth.

Now let us examine some special cases in which the constitutive equation
for I} can be reduced to a simple form. In many practical engineering
problems, we may assume that the vapor phase is in saturation condition,
thus we may take

P, = }T‘Q(Ti) and T, =T, (9-113)

Under this condition Eq.(9-111) reduces to

r,=-I,= (—I(%;—%—)(T _T, )bf (9-114)

For example, the analyses on the bubble growth in a laminar flow suggest
that for such flow b ;  can be approximated by

3

a.

(3 (]

) . 2N, \H..
- [N _] e+ 2] . o119
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Here, C is a parameter that takes into account the thickness of the boundary
layer. It varies approx1mately from 1 to 0.6 as the size of bubble increases.
The form of the function b for more general case should be obtained from
the analyses on a single bubble dynamics as well as from experimental data.

Interfacial Drag Force
The general expression for M, has been postulated by Eq.(9-105).

Now we further assume that the coefﬁment b depends on the following
parameters.

b = b (a, H,, 5055 — 1?1|,p——,c+“,f,ak,rl). (9-116)

Then from a dimensional analysis, we can rewrite Eq.(9-105) as

M, z(p=1+p=2)l"/’;_"/’\1|("/’;“"/’;)b1wai 9-117)
where
M
i =bl . (9-118)

(P1 + P2)|"/’; - 1/);|a‘i

The dimensionless function blM* depends on the following similarity groups

M* _ g M* _,0_1 H21 % % 4
b =4 |=, s &y Npets Npeay V.

pch (9'1 19)
Py G
Here we have defined the interfacial Reynolds number by
. 2. |05 —
Ni, = p=k|—2T1—| (9-120)
(#k + iy )a’i
and the phase change effect number by
; I
b = == (9-121)

(51-+p=2)|'6;_i’\1|a1.
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The phase change effect number takes account for the mass transfer effect on
the drag forces. If this number is large, then the mass transfer effect
significantly alters the standard drag correlations. This is exemplified in the
field of aerodynamics by variations in the drag forces induced by changes in
the rates of boundary-layer suction or blowing.

For a dispersed flow regime, there are numerous researches on the drag
forces. The analysis is relatively easy for a flow of a dilute suspension with
constant diameter solid spherical particles. However, the problem becomes
increasingly complex as the void fraction of the dispersed phase increases or
as the wall effect becomes important. It is evident that the drag correlations
should depend extensively on experimental data, for a flow with deformable
interfaces, interfacial mass transfer and the turbulences.

Some of the results on the dispersed flow drag law can be found in
Brodkey (1967) , Soo (1967), Wallis (1969), Schlichting (1979), Happel and
Brenner (1965). We discuss important special cases in Section 1.4 of
Chapter 9. More general and complete modeling and discussion are
presented in Chapter 12.

Interfacial Heat Flux

The constitutive equation for heat transfer at the interface has been
postulated by Eq.(9-106). First, we introduce a non-dimensional heat
transfer coefficient b as

- bE
b = o — . (9-122)
(K + KT )a
Then we have
a.q = (?1 + Kf")bf'* (T—j _ f)af. (9-123)
It is expected that blE " depends on the following parameters
E* E* T i i H 21 E
b =b" |Np,, NReI’Npch’a—’al? ;ﬁ (9-124)
(1 2

where the Prandtl number is defined by
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Np, = —=——-". (9-125)

The interfacial Reynolds number NR,e . and the phase change effect
number N have been given by Eqs.(9-120) and (9-121), respectlvely It
is 1nterest1ng to note here that actually the non-dimensional parameter b1
an interfacial Nusselt number. Furthermore, if we give a constltutlve
equation for [, then it is sufficient to supply a constitutive law for only one

of the interfacial heat transfer, a@” . However, it is also possible to give a

constitutive relation for a,q/ and for a,q/, then it is equivalent that I’ is
known due to the macroscopic energy jump condition.

Interfacial Shear Stress

Since bubbles are dispersed in continuous phase shear layer, the
interfacial shear stress is approximated by the shear stress in continuous
phase. Thus, we have

e
Sl

(9-126)

Interfacial Momentum Source

In the original momentum jump condition there are two distinct pieces of
information; the normal jump and the tangential jump balances. Since we
preserved this special characteristic in the averaged formulation, we obtained
the drag force balance (8-19) in addition to the interfacial momentum
transfer condition given by Eq.(9-12). Furthermore, by neglecting the mass
thrust effect and using the assumption, Eq.(9-103), we obtain from Eq.(8-21)

2 2 r—
ZMk =Z(kaak +M]+M, —Vozk-%)

k=1 k=1 (9-127)
=M, =2H, oVo,+MZ.

Thus, in view of Eqs.(8-19), (9-12) and (9-13), we have
Py~ Py =—2H, 0 (9-128)

and
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2 2
S M, =) (M; +M)= ML (9-129)

k=1 k=1

Here we have the thermal equation of state for the interfaces
5= ?(f). (9-130)

Since the normal component of the interfacial momentum transfer
equation (9-129) specifies the mechanical equilibrium condition between
two phases, it is necessary to specify the mean curvature H, by a
constitutive equation. A simple case is to assume that the interfacial
geometries are completely irregular, thus we may take H, =0. For
dispersed two-phase flow, the mean curvature is the inverse of the radius of
a particle. If the fluid particle size is uniform, the radius is given by 3a/a, .
Therefore, the ratio of o and @, is in general an important length scale.
6a/a; is known as the Sauter mean diameter, thus the mean curvature is
essentially proportional to the inverse of the Sauter mean diameter.

The importance of the parameter g, remains in the macroscopic
formulation, however, since it represents the available area of contact
between two phases. It is evident that the interfacial transports of mass,
momentum and energy are significantly influenced by the surface area
concentration per unit volume a,. In general, the constitutive equations for
H,, and g, are extremely complicated because these are the parameters that
decide the local geometric configuration in the macroscopic field. It is
evident that we may supply this information directly or indirectly.

The direct information means that we have a prior knowledge of the flow

structures. Then it is not very difficult to obtain a relation for H_21 and g, in
terms of various variables and initial and boundary conditions. For example,
this can be done easily for a bubbly or droplet flow without phase changes,
coalescences or disintegration of bubbles (or droplets). It is also possible to
give indirect information on the flow structures through the constitutive
equations for H, and g, in terms of various parameters such as «;, o,

U, —,, I, I > L, etc. Then we may solve the whole set of equations
to find a local geometrical configuration. This is difficult because the
geometrical configuration has a long-lasting memory and it does not obey
the principle of local action in most cases. This means that the initial
conditions as well as the wall effects on the flow geometries are very
important.

Because of the difficulties encountered in the general case, let us start our
discussion on the above constitutive equations from a simple case. Now let
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us suppose that phase 2 is dispersed in phase 1. Then we may assume that
the volume occupied by phase 2 in a total volume V' can be given as a
function of the mean curvature H,, . Thus we have

V,=F, (’—}T_;) =aV. (9-131)
The surface area of phase 2 in the volume V' is given by
A=F, ( ) —aV. (9-132)

Exactly the same argument can be carried out in the time domain, hence we
have

Aty = fvz( 21) = a, At (9-133)
and
1 —
Z— = fa (H21) = g, At. (9-134)
J ni

Then we may assume that

fra (ﬁ) _ o Fy, (Hzﬂ) _ 1 (9-135)

faz (HZZI) & Fy (—I};) 301H=21

where C* is a factor to take into account for the shapes and sizes of
dispersed phase. Thus we can write the constitutive equation for H,, as

H,, =—, 9-136
2 3C'a, ( )

Here the factor C"* is 1 for fairly uniform spherical droplets or bubbles and it
does not vary much unless the dispersed phase has quite elongated shapes.
The relation given by Eq.(9-136) is a static or geometric relation and we may
take a more general form given by



9. Two-fluid Model 195

5

= E——;(O‘za a;, |VO‘2‘)

O
=

(9-137)

=
Il
5|
il
ol
NQ :
g
£

We call this relation as the geometric equation of state. From Eq.(9-137) we
see that the mean curvature depends on the void fraction, surface area
concentration and the void fraction gradient.

However, we still should have one more essential constitutive equation
for a,. It is considered that the information on @, in terms of other
parameters is really a part of the solutions for a local instant formulation,
The most general method to include a, in the two-fluid formulation would
be to introduce one more transport equation for the interfacial area
concentration as

0Oq,
ot

+V-(a,9;,) = ¢;. (9-138)

With this method, the source term takes account for the bubble or droplet
expansions or collapses, coalescences, disintegration and the interfacial
instabilities. It is evident that the constitutive equations for v, and ¢,
should be supplied. The interfacial area transport equation is a fundamental
equation describing the change of surface area between phases. Because of
its significance, it is discussed in detail in Chapter 10. In some cases the
balance equation (9-138) may be replaced by a simpler algebraic constitutive
relation such as

0, = 0,(8; — B, pay Ty .|V, 7, 9). (9-139)
The constitutive equation for M ,}: can be given for a dispersed flow by
M? = azv(zﬁj ?) (9-140)

where phase 2 is the dispersed phase. However, in many practical problems
the order of magnitude of this term is small in comparison with M, or
M., . Tn such a case, we may set M7 is to be zero.
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Interfacial Energy Source

The interfacial energy source E_ is given by Eq.(8-45). It is clear that
the inclusion of the interfacial thermal energy term, namely, the terms given
by Eq.(8-45), complicates the formulation significantly. Except for very few
cases, this term can be neglected with respect to the large-energy exchanges
that involve the latent heat at the changing of phases. Consequently, we
approximate Eq.(8-45) by

E

m

do ) D.a, = 804
=T, %o TN LB~ 9-141
[dT] ot 7 ot " (©-14D)

which does not require any additional constitutive equations.

In order to complete the model for the interfacial energy transfer
condition given by Eq.(8-48), we should supply the constitutive equations
for the turbulent kinetic energies, the difference between the mean velocity
and the average interfacial phase velocity, and the interfacial turbulent flux
from the drag force W,WT . As in two-phase flow with phase changes, the
order of magnitude of these terms compared to the thermal terms is
relatively small, therefore, we may assume

by — 1 = )= 0 (9-142)
v, — U, =0 (9-143)
W, =0. (9-144)

h, =1,. (9-145)

Oay,
+ M, v,

’v _
E =TI\, +2|+a
& k[kz 2] zqk D= Py (9-146)
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where we have used Eq.(9-103). And the interfacial total energy transfer
condition becomes

2
> E,=E, ~0. (9-147)
k=1

Then, the thermal energy transfer condition (8-49) can be approximated by

= D, o,
Pe i

A, = (F W +a q,m) (9-148)

and

k=1

~2 —
r[ ] M+ 3 Ve, T
=1

(9-149)

in which we have used Eq.(9-128) in order to eliminate the surface tension
term. By combing Eq.(9-148) with Eq.(9-149) we get

2 0,2 do
L't I, T|— i% E,
R N

, , (9-150)
"ZMik "/’1; + Zvak @61;
k=1 =1

The first group on the right-hand side of the above equation is the effect of
the surface tension, the second group arises from the interfacial drag work,
and the third term is related to the work done by interfacial shear. Thus, we
may assume for relatively low speed flow that

2

Z(Fk{; + az-gg) ~ 0 (9-151)

k=1

which is a well-known relation for a local instant formulation. We have
shown here the conditions under which we can apply this important and
useful formula to the macroscopic two-phase flow problems.
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1.3 Two-fluid model formulation

The most general case of the two-fluid model formulation has been
discussed in the Section 1.2.3 of Chapter 9 in connection with the principle
of determinism. We will now set up a realistic formulation by combining
the results of the previous two sections. We already have made a number of
assumptions on the interfacial variables and the constitutive equations, thus
the present analysis is not a complete mapping of the microscopic field in
terms of the local instant variables into the macroscopic field. Rather, it
should be considered as an approximate theory based on various constitutive
assumptions. The results presented in this section are simplified to an extent
of being realistic, yet it is general enough for most engineering problems
encountered in two-phase flow system analyses.

First, we list all the important assumptions that have been made to obtain
the model.

e Fundamental hypothesis on smoothness of mean values Section 1.3
in Chapter 4
o Existence of the equation of state Eq.(9-55)
o Transport properties y, and K, are constant in the interval of time
average Eq.(9-71)
Eq.(9-79)
o Interfacial variables are approximated by
P N Dy O N T, iy N TRy Eq.(8-9)
T, ~T, Eq.(9-80)
SN Eq.(9-102)
D, ~ D, Eq.(9-103)
¢ Interfacial normal stress and thrust due to mass transfer are neglected
Eq.(9-127)
e Negligible turbulent kinetic energy or energy transfer Eq.(9-145)
e Mechanical interaction terms in the interfacial energy transfer condition
are neglected Eq.(9-148)
o Uniform body force Eq.(5-50)

Under these conditions we have the following field equations

The continuity equations from Eq.(9-1)

%(ak;_,;) + V- (40,0,) = I, (k=1 and 2) (9-152)



9. Two-fluid Model 199

The equations of motion from Eq.(9-15)

=D v, —_ = -
Q. Py, ;)tk =-ouVp, +V- [O‘k (q + qTﬂ + P9
+M, — Vo, - & + I, (0, —5,)+ (P — ;) Voy, (9-153)
(k=1 and 2)

It is noted that the last term in the above equation is retained though for most
cases it is very small, because for some cases such as horizontal flow it can
be important.

The equations of thermal energy from Eq.(9-30)

—D,i, — D.p.
akpk#:_v’%(‘h +q§)+&kl};—tk
+0, @ : V5, + Iy (i — 1) + 0,0 (9-154)

+(M, - Ve, %) (@ — %) (k=1and 2)

Here we have neglected the turbulent work term @, - V - (o, &," ) , since it is
considered to contribute mainly for the turbulent kinetic energy changes
which have been neglected in the formulation. These two sets of three
balance equations describe the physical laws of conservation of mass,
momentum and energy in the macroscopic field.

Two phases that are governed by their own field equations are coupled by
three interfacial transfer conditions given below.

The interfacial mass transfer condition from Eq.(9-2)

N

I,=0 (9-155)

E
1l

1

The interfacial momentum transfer condition from Eqgs.(9-127) and (9-
128)

2 Eewnl = —
Z(B‘;Vak + M, —Va, @) =2H, oVa, + MY (9-156)

k=1

with the normal component satisfying



200 Chapter 9

Qi

Dy — Py = —2H,, (9-157)

The interfacial thermal energy transfer condition from Eq.(9-151)

2 ==
Z(Fkiki + aiq;iﬁ) =0. (9-158)
k=1
Then, from the axiom of continuity we have

oy =1-a,. (9-159)

The equation of state for each phase is given by Eq.(9-55) or by Egs.(9-58)
and (9-59), thus we have the caloric equations of state

=1 (f—;, P;) (k=1and?2) (9-160)

and the thermal equations of state

7 = e( T pzk) (k=1 and 2) (9-161)
whereas the equation of state for the surface is given by Eq.(9-130)
7= ?(?) (9-162)

The interfacial temperature is given by the phase change condition (9-44) as

D, — p™ (?) =20, 5—_[:;5 =] (9-163)
Py — P
where
p = p"™ (?) (9-164)

is the classical saturation condition. For many practical cases we may
approximate Eq.(9-163) by
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7 =p™ (EF) (9-165)

where p is the vapor phase pressure.
The constltutlve equation for the viscous stress @; is given by

T, =2, (Dy, + Dy) = 2D, (k=1 and 2). (9-166)

Here the bulk and interfacial extra deformation tensors 1J),, and [J,; are
given by Eqs.(9-74) and (9-77). Thus we have

D, = %[V@ + (Vm’;;)+] (9-167)

and

i

D, =——{(Va,)(7, - B) + (5, — 5,) (Ve )} (9-168)

20,

The coefficient ak represents the mobility of the k‘h-phase

The constitutive equation for the turbulent stress &, has been obtained
from the mixing length hypothesis of Eqs.(9-85), (9-86), (9-87), (9-88) and
(9-89), thus

@T = 2“1? Dy,

*__ (9-169)
=2 p2\J2(Dy : Dy)D,, (k=1 and 2).

Here the non-dimensional turbulent viscosity u,f* is a function of the
following parameters

™ T* I_O—:kgz\lzpk:pk ", Fz;
[1)

v Mg = s @ y O | (9-170)
i '

We recall here that £ and g, are the distances from the wall and the surface
area concentration, respectlvely If we exclude the region very near to the
wall, then the first parameter may be dropped from the arguments of ,uk .

The constitutive law for average conduction heat flux q, is given by
Eq.(9-81), thus we have
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7= _"j(—_:k{vﬁ Vo (T, - IT)} (9-171)

oy

It is interesting to note that the second term, due to the concentration
gradient, represents the effect of the temperature difference between the bulk
phase and the interfaces, namely, thermal non-equilibrium.

From the mixing length model for the turbulent heat flux q,{ , we have

Va,

k

”Kg*;)_:kcpkez 2Dy : Dy |VT:k - (f - ﬁ)} (9-172)

where the non-dimensional conductivity K ,f " is a function of the following
parameters

—_ 2 N =
a;

K,

(9-173)

We note here that the first dlmensmnless group may be dropped from the
argument of the function K if we exclude the region very near to the wall.

The mass transfer term F | is given by Eqgs.(9-111) and (9-112), thus we
have

(K +&T)a? . —
= e )
b~y
(9-174)
(K +KT) ¢
S (T
le' 7‘21
in which the coefficient b,f * depends on four parameters
b= b,{*[p1 N, —I—{A,ak]. (9-175)
Py a;

The group denoted by N, is the Jakob number defined by Eqs.(9-109) and
(9-110) and it is the most important parameter on the phase changes. A
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simpler case of the above constitutive law has been discussed in the previous
section.

In view of the interfacial momentum transfer condition, Eq.(9-156), we
should supply two constitutive equations that specify the drag force M,
and the effects of surface tension. The interfacial drag force has been given
by Eqgs.(9-117) and (9-119), thus we have

M, = (5, +7,) |5, — B|(5; — 58" (9-176)

where the coefficient b " is expected to be a function of the following
parameters

me x| Py Hy i i i
b =" |=, y @y Npgys Npgas N

=" a och 9-177)
2 i

Here, the interfacial Reynolds number NRek and the phase change effect
number N , are defined by Eqs.(9-120) and (9-121), respectively.

Fulthermore the geometrical equation of state Eq.(9-137), specifies the
mean curvature of the interfaces

A

. 1 o, (0 V], ) (9-178)

1

The interfacial thermal energy transfer condition given by Eq.(9-158)
requires the constitutive equation for the heat transfer at the interfaces.
Thus, from Egs.(9-123) and (9-124) we have

a,q = (K + KT) atef” (T, - ) (9-179)
where
b =" [Ngﬂ, N Nis, H—, o, é]. (9-180)
a; P2

The definition of the Prandtl number is given by Eq.(9-125). In many
practical problems, the dispersed phase can be assumed to be in thermal
equilibrium, then it follows that the constitutive equation (9-179) reduces to
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a trivial form a,q; = 0.
Finally, we should have a constitutive equation for the surface area
concentration a,. In general it should have the form of the balance equation

Oa,
ot

(a9)= ¢, (9-181)

where the source term ¢, is expressed by various parameters that have
already appeared. It is expected that, in general, the constitutive equation for
¢, is quite difficult to obtain unless the flow geometry is very simple,
namely, such as the bubbly or droplet flows. The average interface velocity
v, can be given approximately by

B =T 2t Va, =7, (9-182)

Pa0;

in which the subscript d denotes the dispersed phase.
The constitutive equation for M, ”}f for a dispersed flow can be given by
Eq. (9-140), thus we have

M} = a,V(2H, 3). (9-183)

The basic variables appearing in the two-fluid formulation are

akapk,vkap

Dy @ @ %) w M, >p1m

Zk, qk> qk , a’zqk) T_

sat

’a‘i)p

B
7
al

i 9 i

Thus, the total number of unknown is thirty six, and we have:

¢ Six balance equations Eqgs.(9-152), (9-153) and (9-154);

e Three interfacial conditions Eqs.(9-155), (9-156) and (9-158);

e Mechanical condition at interfaces Eq.(9-157);

e Chemical condition at interfaces Eq.(9-163);
(Phase change)

e Saturation condition Eq.(9-164);
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¢ Axiom of continuity Eq.(9-159);
o Two caloric equations of state Eq.(9-160);
e Two thermal equations of state Eq.(9-161);
o Surface equation of state _ Eq.(9-162);
» Two constitutive equations for & Eq.(9-166);
e Two constitutive equations for &~ Eq.(9-169);
s Two constitutive equations for @ Eq.(9-126);
o Two constitutive equations for g, Eq.(9-171);
o Two constitutive equations for g, Eq.(9-172);
e Phase change constitutive law __ Eq.(9-174);
(or constitutive equation for a,q,, similar to Eq. (9-179))
¢ Drag constitutive law Eq.(9-176);
¢ Geometrical equation of state Eq.(9-178);
¢ Constitutive equation for ai;;?; Eq.(9-179);
¢ Balance equation for surface area Eq.(9-181);
e Constitutive equation for M7 Eq.(9-183);
o Constitutive equation for E (for most cases) Eq.(9-103).

This shows that we have thirty six equations. Hence the total number of
unknown and of equations is the same. Consequently, our description is
consistent and complete in mathematical sense, although this does not
guarantee the uniqueness of the solution of the model nor even the existence
of the solution. These should be checked by solving various simple cases,
then as we have discussed in Chapter 2, the results should be compared to
the experimental data to verify and improve the model. It is very important

to note that I, q_l’f and EZ are related by the interfacial thermal energy
transfer condition that represents the macroscopic energy jump condition.

Therefore, the constitutive relation for ;J;Z can be used in place of the phase
change constitutive law, Eq. (9-174). Since the heat flux can be modeled
more easily than the phase change, this is a much more practical approach.
14 Various special cases

Scaling Parameter

The general formulation of the two-fluid model has been given above. In
the following analysis, we obtain some important scaling parameters from
the field equations. Before going into the detailed study, we recall that
dimensionless groups can be obtained from the conservation equations,

boundary conditions and constitutive laws. The similarity of two different
systems can only be discussed by including all these groups. This will be
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very difficult to accomplish in the model based on the two-fluid formulation
due to the large number of unknowns involved and of the complexity of the
constitutive equations. For such systems, the dimensional analysis is more
important for obtaining scaling parameters of various effects in the field
equations than for making the similarity analysis of the entire system. The
order of magnitude analysis based on these scaling parameters frequently
leads to a much-simplified formulation that can be solved to yield
meaningful answers to various engineering problems. It should be noted,
however, that under certain conditions smaller terms cannot be neglected
from the formulation. Thus, for a system of coupled nonlinear differential
equations, the order of magnitude analysis should be accepted as a general
trend with exceptions. Consequently, since many complicated problems can
be solved only approximately, it becomes necessary to check the results with
experimental data.

In the following analysis, the subscript o denotes the reference
parameters chosen to be constant. The characteristic length is L , whereas
the time constant is 7,. For most problems it is taken as the ratio of L, to
the velocity scale, however, for oscillating flows it can be the period of
oscillations. Below, we define dimensionless parameters whose order of
magnitude is considered to be 1.

o =L ¥ T i,v* =LV,
ko ’vlco To
oL BB Bt
k = ' kg My 3
le0| Ap, Hgo
* M * ?T 1
M;, = ik 7% kb
a’io (plo + p20)(lu20 - Ulo) Azko
L %
¢ Kko i aioKko (Tio - Tko)’
— e T
* H * ; - * (% +@ )
H, =—2 ¢ =—,( + T)=——,
" H210 ao @7: @ :u’kovko/Lo
.\ * = — " q=+qT
(%) :_%—7(qk+q1?) =M7
“’ko ,Uko /Lo KkoATko/Lo

Ll ~ . bRt
AT, Ai,, a

10
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MH

M;Z* = 2
a’io (plo + p2o)(v2o - vlo)

Substituting these new parameters into the field equations we obtain the
following results.

Non-dimensional continuity equations from Eq.(9-152)

+V" (o) = (N,y) Tt (9-185)

Kk

1 aakp;
), o

8l

Non-dimensional equations of motion from Eq.(9-153)

* 1 8”}: * * X * ok
Q. Py, (_‘—_*‘l' v, -V = "(NEu)k 4V p,

N,), 0t
1 * == T * 1 * g;
+ V" + &) |+
(Vo) ™ (% & ) Ve, gl (9-186)
* 1 * =\*
+(Ndrag)k Mi —mv o (%)
k

+(Np), Ts (B = 5) + (V) (5~ 21) Ve,
Non-dimensional thermal energy equations from Eq.(9-154)

* 1 ai}: * v* oK
— T+,
QP ( N, )k By & 2

*

1 * frmm—
:_(7\/'?)_‘7 ‘o (@ +ar)
e Jk
) 9-187
+(NEu)k(NEc)kak (N‘)"a?'*'”k'Vpk
&

sl

o (@) V"0, + (). 5 (6~ i)
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*

+(N4)k a’:q/g* + (Ndmg )k (NEC)}C M:k ' (61; - 6;)

e @le o

Here we have introduced several scaling parameters defined as

Strouhal number (N, )k = TOkao
I |L
Phase change number (N, ). = el Lo
ProUko
Ap,
Euler number (N, ), = ’
pko,vko
Reynolds number (Ny,), = PioYio Lo
l‘l’ko
'U2
Froude number (N, ) = —%
W) =,
2
p0+po Loa’io Uy, — Yy
Drag number ( Ny, )k — ( 1 2 ) 2( 2 1 )
pko ,Uko
Pro Vio A, L,
Peclet number (Np,), = ko ko Tho 0.
K, AT,
’U2
Eckert number (N Ec)k =
Aiy,
Interface heating number (9-188)
Kko (Tio - Tko) Loaizo
(N g )k = Y
pko vko 'L,w

The first two parameters, the Strouhal and phase change numbers, are the
kinematic groups. The Euler, Reynolds, Froude and drag numbers are the
dynamic groups, since they are the ratios of various forces appearing in the
momentum equations. Similarly, the Peclet, Eckert and interface heating
numbers are the energy groups that scale various energy transfer
mechanisms. From the definitions (9-188) and the forms of the non-
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dimensional field equations, the physical meanings of various scaling
parameters are evident. In two-fluid model formulation, the phase change,
drag and interfacial heating numbers are particularly important since they are
the parameters to scale the effects of the interactions between two phases.

Before we discuss various special cases that can be obtained by
considering limiting conditions in terms of the scaling parameters, let us
study the non-dimensional form of the conditions of interfacial transfer,
mechanical state between phases and phase change (or chemical state).
Non-dimensional interfacial mass transfer condition can be obtained from
Eqs.(9-155) and (9-184), thus

2
> Iy =0. (9-189)

From Eqgs.(9-156), (9-157) and (9-184) the interfacial momentum transfer
condition is given by

2
> M, =M (9-190)

and the condition of the mechanical state by

*

p —p, =-2N,H,0. (9-191)
Similarly, the phase change condition (9-163) becomes

*

P
p—pi /N,

*

p2 . psat* — 2]v'(7

*

H,o . (9-192)

Furthermore, the energy transfer condition (9-158) becomes

2

Iy (), i — (), 6} =1+ Z( (A)“h) 1% g/ =0. (9-193)

In these equations, we have introduced the following scaling parameters

Hy o,

Surface tension number N, =
Ap,

(9-194)
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Density ratio N, = P (9-195)
plo
Converted enthalpy ratio (N,), = —= (9-196)
b T b

By combining the surface tension and Euler numbers we obtain the Weber
number as

2
1
N, ), = Leb% _ . 9-197
( We)k H2100'0 Na (NEu,)k ( )

This shows that we obtain two Weber numbers in the two-fluid formulation,
thus using the surface tension number is more convenient.

The converted enthalpy ratio scales the phase enthalpy change to the
latent heat. This number is normally small, if the pressure is well below the
critical pressure. However, the most important simplifications can be
obtained by studying Eq.(9-192). If the surface tension number or the
density ratio is very small we have

N, <<l
7~ p™ (:T) for {or (9-198)
N, <<1.

Then from Eq.(9-157) we get

P~ —2H, &+ p* (?) (9-199)

?

The simplest case happens, if the surface tension number is small, then

P =p, =p* (f) for N, <<1 (9-200)

which indicates that the two phases are in mechanical equilibrium.
Now we study some of the important special cases.
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Flow without Phase Changes
If the flow is without phase changes, we can set

(N, )k =0 (9-201)

Then all the terms weighted by the phase change number in the field
equations drop out from the formulation. In this case it is usually more
convenient to transform the thermal energy equation in terms of ¢, and T,
Thus, from the caloric equation of state (9-58), we have

diy = ¢, dT, +11+T Ope

Py Py 8Tk
or (9-202)

dp,

P

o~ —_— 1 = —
di, = ¢, dT, + E(1 + Tkﬂk)dpk.
Pk

Consequently, we have the following set of field equations from Eqgs.(9-152),
(9-153) and (9-154)

0 = = _
S P+ V- (04 ) =0 (9-203)
=D, v, PV = T T =_
Py —— Di = - Vp, +V'{ak(q +€, )}+%Pkgk (9-204)
+M,; — Vo Z
and
— DT, T. 05.| D.p.
QX PeCor — 7 D =—-V-q (Qk +q; ) o === lk)tk
t Py 0T, ) (9-205)
+%E Vo, + ai—q—g +(Mz'k — Vo, @)('b\z ~ 7).

Here we have substituted Eq.(9-202) into Eq.(9-154).
Now we can define the Prandt] number as
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Corold
N, = phorko -2
(M), == (9-206)

0

And the Peclet number should be modified to

ProVroCrroLo
(Nz.), = ’“—Q{k’“— = (Ngo); (Neo), - (9-207)

Furthermore, we note that the second term on the right-hand side of Eq.(9-
205) reduces to a simple form for an ideal gas or for an incompressible fluid

2 = D y—p_j :
a .T;k_ 6& Dyp, _ | De (ideal gas) (9-208)
P BT,C o Dt 0

(incompressible).

A simple form of the energy equations of a practical importance can be
used if the Eckert numbers are very small, or the heat transfer dominates the
energy exchanges. Then we have

— DT,

O PrCog Dt =-V- {ak (ﬁ + qg)} + a;Z (9-209)

where the compressibility effect and the viscous dissipation term have been
dropped from Eq.(9-205). In addition, if the two phases are incompressible
with the temperature independent transport properties, the energy equations
can be decoupled from the continuity and the momentum equations.

Isothermal Flow with No Phase Changes
Under the condition, the entire energy equations may be dropped from
the formulation. And we have

e = P; (Pe) (9-210)

thus the flow is called barotropic. Furthermore, if the change of pressure or
the isothermal compressibility is small, the flow can be considered as
incompressible. Then we have

p, = constant. (9-211)



9. Two-fluid Model 213

Under this condition, the pressure p, is independent of the density p, and
it represents the hydrodynamic pressure. Moreover if the effects of the
viscous stresses can be neglected, then we have

%—Fv'akf);:()

N (9212
P_kP_k_:~—_l:VfT_+g+Mi’°_. )
Dt 5 T an

In addition, if the system has a fixed interfacial geometry, the formulation
reduces to a simple form due to the geometrical constitutive laws. Equations
(9-178) and (9-181), as well as the drag law Eq.(9-176), can be obtained
without much difficulties. Some of the results on the dispersed flow regime
given below can be applied for this case.

Dispersed Flow with Fluid Particles
In the following analysis, we use subscript ¢ and d for the continuous and
dispersed phases, respectively. Thus we set:

phase 1 — phase c; continuous phase;
phase 2 — phase d; dispersed phase.

For simplicity, we assume that the dispersed phase has spherical geometry
with fairly uniform diameters at any point and time. Then, from the
geometrical equation of state (9-136) or Eq.(9-137), we have

R =2 Cay (9-213)
ai
where
o=
“ R (9-214)
C'=1

Thus E—; can be considered as the mean radius of the fluid particles. The
volume balance equation can be put into the following form
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2 2
—%[36;% ] +V- [367“3% @] = (Vi —V;) (9-215)
where
2
-;— = 36;2% (9-216)
d i

is the free volume available per each fluid particle, where n, is the particle
number density. The right-hand side represents the volume source due to
coalescences and the sink due to disintegrations of particles.

We demonstrate the derivation of Eq.(9-138) for a simple case without
the source or sink terms. Thus, by considering a fluid particle of average
properties, we can approximate

D, (4 =3—) .
F’Z[g”Rd PdJZFd

:2
4n R,

a;

(9-217)

By substituting Eq.(9-136) for R=d , then using the dispersed phase continuity
equation (9-152) to eliminate [, , we have

2 2
9 [3672% ] +V [3672% @] =0. (9-218)

ot aq ;
We note here that if the particle diameters vary considerably then the
coefficient C" is not a constant. In this case, we should have an additional
term due to the changes in C" because the average surface area and volume
of fluid particles are not exactly the same as those calculated from the mean
diameter.

Now let us study the drag constitutive equation in the fluid particle
systems. The well-known Stokes’ Law was extended by Hadamard to
creeping motion of a spherical fluid particle in an infinite Navier-Stokes
fluid (Brodkey, 1967; Soo, 1967). Thus, the total force acting on a fluid
particle is given by

Zl’l’c + 3/“’(1

. (9-219)
3(p, + 1)

F = 67r,“l’c (,Ucoo - Ivd)Rd{
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Then we define the drag coefficient C,, by
F

Cp =7 2 (9-220)
= Pe (vcoo - vd) WR;

and the particle Reynolds number by

p. (v, —v,)2R
(Re), = ( )28y . (9-221)
He

Here v, and v, are the undisturbed flow velocity and the particle velocity.
From the above, we have

2/'l’c + 3l‘l’d
3(/'60 + /“l’d)

c, = 24

* = (Re) ; (Re), <1. (9-222)
d

The drag law given by Hadamard is good up to a Reynolds number of about
1. For higher Reynolds numbers we have the results of Levich (1962) and
Chao (1962) given by

48

C,. = ; (Re), <100 9-223
Doo (Re)d ( e)d ( )
1+ 4, / 1,
e =2y ba ol 40l b (9-224)
(Re)d y’c (Re)d

respectively. We also note the review work done by Clift et al. (1978) in
these connections. At still higher Reynolds numbers, the value of
Cp., ~ 0.44 given by Newton can be used for droplets. For bubbles,
however, the interfacial deformations lead to ellipsoidal or spherical cap
bubbles.

By combining these results, we can set that the drag coefficient as a
function of the Reynolds number (Re), and the ratio of the two viscosities,
thus
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Cpr = Cpy [(Re)d, -&]- (9-225)
Hy

The above relation summarizes the ideal cases of a single fluid particle in
infinite media.

In general cases, we have postulated that the interfacial drag force can be
given by the constitutive law having the forms of Eqs.(9-117) and (9-119).
For a dispersed flow restricted by Eqs.(9-213), (9-214) and (9-218), we may
simplify the general drag constitutive law by introducing a drag coefficient
C), defined by

_ 7|
T—

C -
L Als -l (R

(9-226)

In view of Egs.(9-221) and (9-226), we redefine the appropriate particle
Reynolds number by

Pe vc _vd| 2Rd

He

(! —
Ni.. =

(9-227)

And the Reynolds number for the dispersed phase is redundant if we use the
viscosity ratio as a non-dimensional group.

Thus, in view of Eqgs.(9-119) and (9-227), we postulate that the drag law
can be given by

Cp =Cpy [Nf%w MEJ f [é, N, ac] (9-228)
My Pa

where f* is the correction factor which takes into account for the effects of
other particles and the changes of phase. It can be said that if N, is large
then the linear correction of Eq.(9-228) cannot be applied because of the
rapid expansions or collapses of fluid particles. A detailed discussion of the
drag force in multi-particle systems is given in Chapter 12.



Chapter 10
INTERFACIAL AREA TRANSPORT

The interfacial transfer terms are strongly related to the interfacial area
and to the local transfer mechanisms, such as the degree of turbulence near
the interfaces and the driving potential. Basically, the interfacial transport of
mass, momentum and energy is proportional to the interfacial area
concentration and to a driving force. This area concentration, defined as the
interfacial area per unit volume of the mixture, characterizes the kinematic
effects; therefore, it must be related to the structure of the two-phase flow.
The driving forces for the interphase transport characterize the local
transport mechanism and they must be modeled separately.

Since the interfacial transfer rates can be considered as the product of the
interfacial flux and the available interfacial area, the modeling of the
interfacial area concentration is essential. In two-phase flow analysis the
void fraction and the interfacial area concentration represent the two
fundamental first-order geometrical parameters. Therefore, they are closely
related to two-phase flow regimes. However, the concept of the two-phase
flow regimes is difficult to quantify mathematically at a local point, because
it is often defined at the scale close to the system scale. This may indicate
that the modeling of the changes of the interfacial area concentration directly
by a transport equation, namely interfacial area transport equation. This is a
better approach than the conventional method using the flow-regime
transition criteria and regime-dependent constitutive relations for interfacial
area concentration. This is particularly true for a three-dimensional
formulation of multiphase flow.

In this chapter, the detailed derivation and the necessary constitutive
relations of the interfacial area transport equation is presented to establish
the dynamic closure relation for the interfacial area concentration in the two-
fluid model. Accounting for the substantial differences in the transport
mechanisms in small spherical and large cap bubbles, the two-group
transport equation is derived.
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1.1 Three-dimensional interfacial area transport
equation

The Boltzmann transport equation describes the particle transport by an
integro-differential equation of the particle-distribution function. Since the
interfacial area of the fluid particle is closely related to the particle number,
the interfacial area transport equation can be formulated based on the
Boltzmann transport equation (Kocamustafaogullari and Ishii, 1995; Ishii
and Kim, 2004).

Consider a system of fluid particles in a continuous medium, where the
source and sink of the fluid particle exist due to the particle interactions such
as the coalescence and disintegration. Let f(V,z,v,t) be the particle
number density distribution function per unit mixture and bubble volume.
This is assumed to be continuous and specifies the probable number density
of fluid particles moving with particle velocity v, at a given time ¢, in a
spatial range 6x with its center-of-volume located at & with particle
volumes between V and V + 6V . Assuming that the change of particle
velocity within the time interval ¢ to ¢ + 0t is small, the particle number
density distribution function per unit mixture and bubble volume can be
simplified to be f(V,z,t). This assumption of a uniform particle velocity
for a given particle size is practical for most two-phase flow. However, for
neutron transport, the energy of neutrons spans over many orders of
magnitudes and is the essence of the transport theory. Therefore, the
velocity dependence cannot be neglected. Then, we can write for a two-
phase flow system

f(V + 6V, @+ 6yt + 6t)6,u - f(V,a:,t)(S,u

= (z S; + Sphjé,u&t
i

(10-1)

where Ou is a volume element in p space. In the right-hand side of the
equation, the Sj and Sph are the particle source and sink rates per unit
mixture volume due to j-th particle interactions (such as the disintegration or
coalescence and that due to phase change, respectively). Expanding the first
term on the left-hand side of Eq.(10-1) in a Taylor series in ¢ and dividing
it by ouét, Eq. (10-1) reduces to

o | y. _5_[ ﬂ]: !
8t+V (fv)+8V f " ZSj+Sph (10-2)

J
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which is analogous to the Boltzmann transport equation of particles with the
distribution function f(V,z,t) . Here, d/dt denotes the substantial
derivative. In the following sections, we present the detailed derivations on
the transport equations for fluid particle number (7 ), volume fraction (¢, ),
and interfacial area concentration (a, ).

1.1.1 Number transport equation

In two-phase flow applications, the particle transport equation given by
Eq.(10-2) is much too detailed to be employed in practice, therefore, more
macroscopic formulation is desirable. This can be done by integrating
Eq.(10-2) over the volume of all sizes of particles from V. to V, _ and
applying the Leibnitz rule of integration. We obtain the particle number
transport equation as

P4V (m0,,) = SR, + R, (103)
J

where the distribution function for the bubbles of volume V, . and V_ are
assumed to be approximately zero. Here, the left-hand side of the equation
represents the time rate of change of the total particle number density and its
convection. The two terms in the right-hand side represent the number
source and sink rates due to particle interaction (such as particle
disintegration or coalescence) and the number source rate due to the phase
change, respectively.

In Eq.(10-3), the total number of particles of all sizes per unit-mixture
volume and the number source and sink rates are defined respectively by

Vinas
n(z,t) = j; F(V,z,tdV (10-4)
and
Vinas
R(z,t) = f S(V,z,t)dV. (10-5)
Also, v,,, is the average local particle velocity weighted by the particle

number and is defined by
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[ £Vt (V,2,0)dV
v, (@,t)= " .
[ f(v.tv

(10-6)

1.1.2 Volume transport equation

The particle volume (or void fraction) transport equation can be obtained
by multiplying Eq.(10-2) by particle volume V' and integrating it over the
volume of all sizes of particles. Then, considering that the two-phase flow
of interest consists of the dispersed bubbles in a continuous liquid medium,
the void fraction transport equation is given by

o e O(FV
o)+ [V

(10-7)

min F;

where V denotes the time derivative of volume V. Here, the void fraction
and the average center-of-volume velocity of the dispersed (or gas) phase are
defined respectively by

Vocs
a, (z,t) = fv ~f(V,m t WAV (10-8)
and

[ £V, 2tV (V,2,0)dV
v, (@,t) = : (10-9)
fv "V tyav

In Eq.(10-7), the third term on the left-hand side attributes to the change
in the particle volume (by expansion or contraction) due to the change in the
pressure along the flow field. To better represent this term, we assume

—“;7: F(V) (10-10)
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such that the time-rate of change in relative particle volume is assumed to be
independent of its volume. If evaporation effect is small compared to the
compressibility effect, the dominant contribution in the change in a particle
volume attributes to the changes in the pressure. Therefore, this assumption
is valid in most two-phase flow conditions. It should be noted, however, that
the evaporation effect is not completely neglected in the average transport
equation development as will be shown later in Eq.(10-14), Then, the third
term on the left-hand side of Eq.(10-7) reduces to

fVmV—ade ~ K]ag (z,1). (10-11)
Vonin oV |4

Furthermore, since the mass transfer by the evaporation process is given by

dng . (Fg B nphpg)v
dt o

9

(10-12)

where I’ is the total rate of change of mass-per-unit mixture volume and
7, is the rate of volume generated by nucleation source per unit mixture
volume, defined by

Vinaz
o = fV S,y (10-13)

The volume source can be written as

1dv _1(L,=nup, dpg]

Vdt p, Q, dt (10-14)
1 |0a

= a—y{ 8; +V'(Oég'"g)“77ph]’-

Thus, combining Eq.(10-14) with Eq.(10-11), and substituting them into
Eq.(10-7), the final form of the void fraction transport equation is obtained
as



222 Chapter 10

0
V(o) -

= [ [Zsjv +Sphv]dv
o |5

(10-15)

where the first two terms on the left-hand side of the equation represents the
time rate of change and convection of v, and the rest of the terms represent
the change rates in «t; due to volume change, particle interactions and
phase change, respectively.

By rearranging Eq.(10-15), it is interesting to note that we have

! {3%%

o, | 0t

+V-(agpgvg)~Fg}=fVV'f” > SVdv.  (10-16)
w45

Here, it is noted that conservation of mass requires

dap,
ot

g

+V-(apy,)— I, =0. (10-17)
Therefore, from Eqs.(10-16) and (10-17), we obtain the identity

fv’"”ZSdeV = 0. (10-18)
7

Vmin

Equation (10-18) satisfies both the volume and mass conservation,
simultaneously.

1.1.3 Interfacial area transport equation

The transport equation for the interfacial area concentration can be
obtained through a similar approach applied in the previous formulations.
Hence, multiplying Eq.(10-2) by the surface area of particles of volume V,
A (V), (which is independent of the coordinate system) and integrating it
over the volume of all particles, we obtain
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Oa, V| Ve
L4V (aw)—|= dA,
8t ( ) V] fVmin fV A7

Vines
= [ [Zstrsph
mn ]

(10-19)
AdV

where the average g, of all fluid particles of volumes between V. and
V_ . and the interfacial velocity are given respectively by

o (z,t) = f;vmf(V,m,t)z% (V)dav (10-20)
and

. j;::”f(V,w,t)Ai(V)v(V,w,t)dV
T [Trvamamiay

(10-21)

Now, in view of furnishing the third term on the left-hand side of Eq.(10-
19), we define the volume-equivalent diameter, D),, and surface-equivalent
diameter, D,, of a fluid particle with surface area A, and volume V', as

V= %D: and A = wD>. (10-22)

Therefore, combining them with Eq.(10-19) and recalling the volume source,
given by Eq.(10-14), the interfacial area transport equation can be obtained
as

. |0
da, +V-(a) _3[&_]{_9‘1+ V- (a,9,)~n,

ot 3\a, ot
(10-23)

= J;Vm [Zsj + Sph]AidV

where the third term on the left-hand side represents the change in the
interfacial area concentration due to the particle volume change. In deriving
Eq.(10-23), the ratio (D, /D,} is assumed to be constant in view of
simplifying the equation. ile this approximation may not be appropriate
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Coalescence Break-up

Figure 10-1. Ilustration of fluid particle coalescence and disintegration process in view of
AA; (Ishii and Kim, 2004)

for the bubbles in distorted or slug shape, it is a good approximation for the
spherical and cap bubbles. Essentially, this diameter ratio is a shape factor
and for similar particle shapes this factor can be considered as constant.

To close the system of equations, the right-hand side of Eq.(10-23),
which represents the source and sink rates of the interfacial area
concentration, must be specified by the constitutive relations. In view of this,
we define

Vm
[y 8,av
Vmin :

g (10-24)
= ZRj: particle number source and sink rate

J

and

Vma:z
[0 ,4av
mn (10-25)
= Zqﬁj: source and sink rate for q,.

]

Furthermore, noting that ¢; can be expressed in terms of the change in
surface area of a fluid particle after a certain particle interaction process, we
can write
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¢; = RjAAi (10-26)

where Rj can be mechanistically modeled for each interaction mechanism,
and AA, depends on the given interaction mechanism; such as the
disintegration or coalescence processes.

In order to specify AA,, consider a coalescence and a break-up processes
as illustrated in Fig.10-1 for the spherical particles. Here, it was assumed
that the given process is a binary process between the particles of same size.
Then, since the total volume of the particles should be conserved, we can
write

V, =2V, or D, =2°D, (10-27)

where the subscripts 1 and 2 indicates the particles of smaller and bigger
volumes, respectively. Hence, by assuming that the interaction process is a
binary process, the change of surface area after one interaction process can
be obtained for near spherical particles as

AA = —0.4134;: for a coalescence process (10-28)
and

AA, = +0.2604;: for a break-up process (10-29)

where the minus and plus signs are used to indicate the reduction and gain of
the surface area after one interaction process, respectively. Furthermore,
recalling the definition given by Eq.(10-4), the particle number density n
can be specified through a; and «, by

a; =n4; and oy = nV (10-30)
such that
a
n = (10-31)
ag

with a shape factor defined by
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3
__1 [ Dy, i
V= 367r[ D ] (10-32)

e

where the bubble Sauter mean diameter is given by
D, =—*L. (10-33)

Thus, combining these with Eq.(10-26), the surface source and sink rate, ¢,
can be given by

2
_ 1l ]
¢ = 3w[a,-] R.. (10-34)

Similarly, for the nucleation process, ¢,, can be given by
¢,, ="DLR,, (10-35)

where D, is the critical bubble size. This should be determined depending
on the given nucleation process; namely, the critical cavity size for the bulk
boiling or condensation process, and the bubble departure size for the wall
nucleation. For most two-phase flow, wall nucleation is the dominant
mechanism.

After combining the constitutive relations given above and substituting
them into Eq.(10-23), we obtain the interfacial area transport equation as

et

—|—31¢[ ] ZR + nDpR,,

L . 2|
or TV lew) =313

(10-36)

where the left-hand side represents the time rate of change and convection
of the interfacial area concentration. Each term on the right-hand side
represents the rates of change in the interfacial area concentration due to the
particle volume change caused by the change in pressure, various particle
interactions and phase change, respectively. As can be seen in Eq.(10-36),
R, ’s should be modeled independently, based on the given particle
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interaction mechanisms. Hence, the mechanistic models of the number
source and sink rates for the coalescence and disintegration mechanisms, or
those for the bubble nucleation and condensation phenomena, should be
established as constitutive relations to solve the transport equation.

1.2 One-group interfacial area transport equation

When the transport phenomena of the fluid particles of interest do not
vary significantly in a given two-phase flow system, and the particles remain
similar in shape after the particle interactions, their characteristic transport
phenomenon is similar and can be described by one transport equation.
However, when fluid particles of various shapes and size present
simultaneously, their transport mechanisms can be significantly different. In
such cases, it may be necessary to employ multiple transport equations to
describe the fluid particle transport.

In view of this, we first consider the two-phase flow system of the
dispersed bubbles in a continuous liquid medium (namely, bubbly flow),
where all the present bubbles can be categorized as orne group. In such flow
conditions, it is assumed that the bubbles are spherical in their shapes, and
they are subject to the similar characteristic drag on their transport
phenomena. Hence, accounting for the spherical shape in the one-group

~ transport, 1 defined in Eq.(10-32) can be approximated by

RS % =885x10": for dispersed bubbles (10-37)

6
because the bubble Sauter mean diameter is approximately equal to the
volume-equivalent diameter. Furthermore, noting that critical bubble size

due to nucleation is much smaller compared to the average bubble Sauter
mean diameter, we may assume

{&] ~ 0. (10-38)
DSm

Also, since 17, can be approximated as

Vinas s
M = " S,VdV =~ R, D, (10-39)

the interfacial area transport equation for the dispersed bubbles, or the one-
group interfacial area transport equation, is given by



228 Chapter 10

R

+31ﬁ[ ] ZR +7TD,,26Rph

(10-40)

The left-hand side represents the total rate of change in the interfacial area
concentration, whereas the right-hand side represents the rates of change in
the interfacial area concentration due to the change in particle volume,
various particle interactions and phase change, respectively. It is noted that
the effect of 7),, can be neglected because the departure size is smaller than
the Sauter mean diameter.

1.3 Two-group interfacial area transport equation

In a gas-liquid two-phase flow system, a wide range of bubble shape and
size exists depending on the given flow regime. Therefore, to develop the
interfacial area transport equation describing the bubble transport in a wide
range of two-phase flow regimes, the model must account for the differences
in the transport characteristics of different types of bubbles. These
variations in shape and size of bubbles cause substantial differences in their
transport mechanisms due to the drag forces. Furthermore, the bubble
interaction mechanisms in such flow conditions can be quite different
compared to those in the one-group transport.

In most two-phase flow conditions, bubbles can be categorized into five
types: spherical; distorted; cap; Taylor; and churn-turbulent bubbles.
However, in view of their transport characteristics, they can be classified
into two major groups, such that Group 1 includes the spherical and distorted
bubbles, while Group 2 includes the cap, Taylor and churn-turbulent bubbles.
Thus, in the present analysis, the approach employing two transport
equations is given in describing the bubble transport over a wide range of
two-phase flow conditions. That is, Group-1 transport equation describes
the transport of spherical and distorted bubbles, and Group-2 transport
equation describes the transport of cap, Taylor and churn-turbulent bubbles.

In the one-group formulation, the transport equation was averaged by the
integration process over the volumes of all sizes of particles because the
shape of the particles and their transport phenomena were assumed to be
similar over the given range of particle volume. In the two-group
formulation, however, the integration limit for each transport equation
should be bounded by the bubble volume, by which the bubble group is
determined. In view of this, we define V, as the critical bubble volume
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given by 7D, . /6 with the maximum distorted bubble limit, D,
specified by Ishii and Zuber (1979) as

,maz ?

D =4 /—Z—: maximum distorted bubble limit (10-41)
gap

over which the bubble becomes cap in shape and the drag effect starts to
deviate from that on the smaller bubbles due to the large wake region.
Therefore, the Group 1 bubbles exist in the range of V, ,, to V_, whereas the
Group 2 bubbles exist in the range of V, to V.

1.3.1 Two-group particle number transport equation

The two-group particle number transport equation can be readily
obtained by integrating Eq.(10-2) over the different ranges of integration
limit bounded by V,; namely, from V,,, to V,, for Group 1 and from V to
V.. for Group 2. In two-group formulation, as in the one-group
formulation, f(V,&,t) describes the particle-number density distribution
function per unit mixture and bubble volume. This is assumed to be
continuous, specifying the probable number density of fluid particles moving
at a velocity v, at a given time ¢, in a spatial range 6@ with its center-of-
volume located at & with particle volumes between V' and V' + dV . Then,

the number transport equations for Group 1 and Group 2 are given by

) 1%
LTI LATS S I RS
j
and
5] V
J

where the subscripts 1 and 2 in the equations denote Group 1 and Group 2,
respectively, and v, and v, are the average local particle velocity
weighted by the particle number for each bubble group, such that they are
defined by
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[ 1V, tp(v,a,6)dv

Uyt (z,t) = 7
[ 1v,atav
[ (10-44)
f’"“f(v,:c,t)v(v,m,t)dv
vme (m)t)E £
TV, AV

In Eqgs.(10-42) and (10-43), the left-hand side of the equations represent the
time rate of change and convection of fluid particle number for each bubble
group. Each term on the right-hand side represents the rates of change of
particle number through inter-group transfer by particle volume change,
particle interaction and phase change for each bubble group. Here, it is
interesting to note that in the two-group formulation, there are terms
accounting for the inter-group transfer caused by particle volume change that
did not appear in the one-group formulation. This is due to the fact that
when two groups of bubbles present, the change in the particle volume in
one group may serve as the number source in another due to the changes in
bubble distribution function. These inter-group transfer terms disappear
when the two equations are added together to obtain the total fluid particle
number transport equation.

1.3.2 Two-group void fraction transport equation
The two-group void fraction transport equation can be obtained in a

similar manner. Multiplying Eq.(10-2) by particle volume V , and
integrating it over the specified limits for each group, we obtain

2 19 (opm)+ [V (14 av
—f [ZS+ ,,]Vdv

(10-45)

and
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8ag Vinas 0 dVv
6t2 +\7-(%2v92)+fv£ {Va—‘-;[f—]}dv

= [ [Zsj +Sph]VdV.
¢ J

(10-46)

For Group 1 and Group 2, respectively, the third term on the left-hand side
of the equations represents the rate of change in void fraction due to particle
volume change. They are given by

Vmin

! i {Véa?[f %]}dv = [g] {~an +V.(£V.)} (10-47)

and

chm {V%[f %]}‘W = [%] {ron—V.(fV)} (o4

for Group 1 and Group 2, respectively, where f, is the distribution function
of a bubble with critical volume V_, or f(V,).

Here, the volume source (V/V| can be expressed by the total mass
transfer rate as shown previously in the one-group formulation. However,
due to the presence of the two groups of bubbles and their interactions, the
rate of mass transfer between the two groups must be considered. Hence, by
denoting the subscripts ij as the inter-group transfer from group i to group j,
the volume sources for each group are given by

L[ﬂ]zi Iy — A, dm]_zv_ph_

Viidt ) Py Qg dt Qg (10-49)
1 a

~ {10y

and
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L[ﬂz]_i Lg + Aty _dpQ]

V., dt dt

2 ) Ps %02 (10-50)
1 (&%)

- E;z"{ 6: +V-(ag2vg2)}

for Group 1 and Group 2, respectively, where A, represents the inter-
group mass transfer rates from Group 1 to Group 2. The constitutive relation
for the mass transfer between groups Am,, will be discussed later. Hence,
Eqgs.(10-49) and (10-50) require the following identities

Oa,,p
9179
——=+V-a,p,v
ot a1l (10-51)
= I',, — Am,;:  Mass Balance for Group 1
and
oa,p
927
—— 4+ V- v
ot 92002 (10-52)

= I, + Am,,: Mass Balance for Group 2.

Furthermore, by adding the two equations, we obtain the continuity equation
for the gas phase as

Oayp,

ot +V: (agpyvy) =TI (10-53)
with the following constitutive relations
Q, = 0y + 0y (10-54)
rn=r,+r, (10-55)
and
_ 2% F Ol (10-56)

9
X1 + X2
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The term fV, on the right-hand side of Eqs.(10-47) and (10-48) represents
the rate of change in the void fraction due to inter-group transfer, and it can
be expressed in terms of other two-phase flow parameters. For convenience,
the detailed discussion on this term will be presented in the following section.

The two-group void fraction transport equation for each group is then given
by

Oa,p .
{ 9 4L V. ( glpg'vgl)—Fgl +Am12}
py L Ot

%47 aym)

+[ S syav
ia

3
D, ] (10-57)
DSml

and
1 |Oa,p .
pg{ e TV ( gngvgz)_ng_Am”}
3
8a DSC
{ v L+ Ve (g, )~ nph}x Dsml] (10-58)

+ fV ZJ:S].VdV

for Group 1 and Group 2, respectively. Here, D is the critical bubble size
for the group boundary with surface area and volume of 4, and V.. Also,
x is the coefficient accounting for the contribution from the inter-group
transfer, which will be discussed in detail in the following section.

In Eqgs.(10-57) and (10-58), the left-hand side of the equations represents
the time rate of change and convection of void fraction for each group and
the right-hand side represents the rates of change in the void fraction due to
the volume change. This includes the inter-group transfer and various
particle interactions. Furthermore, since the left-hand side of the equations
corresponds to the continuity equations for each bubble group, it requires the
following identities;
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O
{ 3:1 +V ( glvyl)—“nph}

=0

D,
DM] +f Zs ViV 050
and

aag D,
{ 8t1 .(agl’vgl)—nph] [Dsm] +f ZS vdv (10-60)

=0

for Group 1 and Group 2 respectively, which indicates the conservation in
bubble volume. Here, the first terms in Eqgs.(10-59) and (10-60) represent
the inter-group transfer at the bubble group boundary, and the second terms
represent sources and sinks due to various fluid particle interaction for the
given bubble group.

1.3.3 Two-group interfacial area transport equation
Similarly, as in the one-group interfacial area transport equation
formulation, multiply Eq.(10-2) by the surface area of particles with volume

¥, which is independent of the coordinate system. Then, after integrating it
over the volume within which each bubble group is defined, we obtain

e o o

(10-61)
v,
= fvmm [}J:Sj +Sph]AidV for Group 1
and
da,, Vinax o (,dV
_z—I—V-(anvn)—i-f {4—[f_]}dv
ot v ov\ dit (10-62)

= [ S.AdV  for Group 2
S sa
¢ J

where the average interfacial velocity for each bubble group is defined by
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v,
| f(V.atAv(V,a,t)dv

v, (z,t) =
[ 1,044V
o (10-63)
[ 1,2, t40(V,2,t)dV
v, (x,t) = = .
fvcvm”f (V,2,t) AdV

In Eqs.(10-61) and (10-62), the third terms on the left-hand side of the
equations represent the changes in the interfacial area concentration due to
the particle volume change, such that

A=) 2] oo

and

i ) o

J: V)3

c

where A, £V is attributed to the inter-group transfer as a result of bubble
interactions between the two groups of bubbles. Hence, when f — 0,
there is no contribution due to the inter-group interaction. In reality,
however, when two bubble groups present f, is finite, and this inter-group
transfer term plays an important role as sources or sinks of the interfacial
area concentration for each group.

In order to incorporate the contributions from this inter-group transfer,
the particle distribution function should be specified. However, the accurate
mathematical description for the particle distribution function in two-phase
flows with various sizes of bubbles requires the use of the original
Boltzmann transport equation and statistical mechanics. For our purpose, we
need to develop a simple integrated transport equation. Hence, in the present
analysis, a linear profile or a uniform profile is assumed in the particle
distribution for simplicity as shown in Fig.10-2. In this, V}, is the peak
bubble volume in Group 1 bubbles specifying the value f, and is defined by

Vi, = &V, where % <E<l. (10-66)

[
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h

L

len le Vc Vmax

Figure 10-2. Linear approximation on profile of fluid particle distribution function (Ishii and
Kim, 2004)

Then, the number density for Group 1 bubble can be expressed as

1
n = ”z‘fi(vc ~ Vi) + ch (1-¢) (10-67)
which yields
i, =2 Ve V) )y (10-68)
[ A ke 1 l—£ 1(1“‘ ) 1141

Now, consider three limiting cases as shown in Figs.10-3(a) through 10-
3(c) such that

Casel: f = f = constant, hence
n =5V, = Vaw) = £ (V. ~ Vi) (10-69)

Case II : £—>me/Vc,or Vi, = Vi

1p min ?

hence

=%(f1 + £V, = Vo) (10-70)
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S
fo I JS=f,=constant
Group1 4___;-——> Group 2
. | 4
len Vc me
(a) Casel
S
h
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: 1 24
len Vc Vmax
(b) Case I
S
Je=h
- a4
len Vc anx
(c) Case I1I

Figure 10-3. Limiting conditions for fluid Particle distribution (a) f~constant, (b) £&— V'V ,
(¢) £&—1 (Ishii and Kim, 2004)
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and
Caselll: £ —1; V,, > V; fi — [, hence

1 1
=2 A Ve = Vi) = 25 (Ve = Vi), (10-71)
Therefore, assuming that V, >> V. | and defining an arbitrary coefficient
X as
ALV, = x4, (10-72)

we obtain, for each limiting case

1 for Case I
V
x=12—-=f for Case II (10-73)
n
L2 for Case III

and from Eq.(10-68)

X = {1 Eg — n (1VC_ 9 fl] in general. (10-74)

Thus, recalling that there is no inter-group transfer contribution when
f. — 0, the constant x should be bounded by

0<y<2. (10-75)

In providing the analytical solution for 'y, we have three unknowns with
three equations, such that

m = f(f £:Vy)
Qg = f(fia s le) (10-76)
a; = f(fi’ f;aVIp)

where «, and @, defined by Egs.(10-8) and (10-20), can be obtained
through experiment, and n, can be furnished by Eqs.(10-31) and (10-67).
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Therefore, if necessary, the analytical solution for x can be obtained.
Furthermore, since the g, can be written in terms of the average surface area
of the particles A, and the particle number density, n as

a; = n4, (10-77)
and since D ~ Dg |

2
~ [_D_] (10-78)

A, [2_
DSml

A’il a ‘Dsl

we can rewrite Eqs.(10-64) and (10-65) as

fV:; {A”' %{f%’—]}dv - [i‘;] G {‘% +X

2
—’Q] (10-79)
DSml

and

= faaple) e

V 2 a’il Dsc ’
=l %y 5 X | 5
|4 3 @i \ Doy
respectively.

Thus, combining above equations, the two-group interfacial area
transport equation is given by

(10-80)

da. 2 a, |Oa
Oitﬂ—i_ v'(aﬂ"’il) = —&{—gl_’_ v'(a!ﬂvgl) B n”h}

3a,| Ot
D ’ Oa
8C aq’l gl
XDy ) a1t Tt 10-81
. DSml] Oégl{ ot (agl yl) nph} ( )

+f [Z S, + Sph]4dV
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Da, _ 2a, |0y,
D ’ lole"
a,
+X 5 sc ] azl { 8tgl + v . (aglvgl) — nph} (10—82)
Sml g1
Viaas

for Group 1 and Group 2, respectively. In this, the left-hand sides of the
equations represent the time-rate of change and convection of a, for each
group. Each term on the right-hand side represents the rate of change in g,
due to the particle volume change, inter-group transfer, various particle
interactions and phase change for each group. The total interfacial area
transport equation can be also obtained by adding the two equations, such
that

Oa. Vioax

o e s v
2 2 a gk

Zg—{ +V- ( ykvgk)_nph}

k=

(10-83)

where the subscript k£ denotes the bubble group.

In this analysis, we demonstrate the inter-group transfer as a result of
bubble interactions between the two groups of bubbles by assuming a liner
profile or a uniform profile in the particle distribution. However, in two-
phase flow applications, the uniform profile in the particle distribution may
be assumed to be employed in practice.

1.3.4 Constitutive relations

In this section, the necessary constitutive relations in solving the
interfacial area transport equation are summarized, and they are as follows:

Vioax
f Zde V =R;: source and sink rate
Van %5 (10-84)

for particle number
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Vmax
fv. ZSJ.AidV = ¢;: source and sink rate for a,  (10-85)
ey

2 .
P, = "D, R 1 source and sink rate for g

(10-86)
by phase-change
o 1 (D,
n = ¢~ where ¢ = — | =5 10-87
v agz 4 367r[ D, ] ( )
6
D, =—*2 (10-88)
a;
a, = a, + oy, (10-89)
r,=r,+r, (10-90)
and
_ 0y Uy + Q0 . (10-91)

g
X1 + g2

For the continuity equations, the net-mass transfer rate between Group 1
and Group 2 bubbles due to bubble interactions at steady state without phase
change effect can be obtained from the modeling of the two-group bubble
interactions as

3
D,
Ariv, _pg[§ M2 +X| 5 ]V-(Ozgl'vgl)]. (10-92)
Sm1

In this, 7, is the net volume transfer from Group 1 bubbles to Group 2
bubbles due to the j-th interaction between the two groups of bubbles, such
as bubble coalescence and disintegration. .
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Among the constitutive relations given above, the number source and
sink rates defined by Eq.(10-84) should be established through mechanistic
modeling of the major particle interactions that contribute to the change in
the interfacial area concentration. Accounting for the wide range of gas-
liquid two-phase flow, the major bubble interaction mechanisms that lead to
the particle coalescence or disintegration can be summarized as follows:

e Random Collision ( Ry ): coalescence through random collision driven
by turbulent eddies;

e Wake Entrainment ( Ry, ): coalescence through collision due to
acceleration of the following particle in the wake of the preceding
particle;

Turbulent Impact ( R;; ): disintegration upon impact of turbulent eddies;
Shearing-off ( Ry, ): shearing-off around the base rim of the cap bubble;
Surface Instability (R, ): break-up of large cap bubble due to surface
instability;

e Rise Velocity (R ): collision due to the difference in the bubble rise
velocity;

o Laminar Shear (R, ): breakup due to the laminar shear in viscous fluid,
and;

e Velocity Gradient ( R, ): collision due to the velocity gradient.
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CONSTITUTIVE MODELING OF INTERFACIAL
AREA TRANSPORT

The two-fluid model is widely used in the current two-phase flow

analysis codes, such as nuclear reactor safety analysis codes RELAPS,
TRAC, and CATHARE. In the conventional model, the interfacial area
concentration is given by empirical correlations. The correlations are based
on two-phase flow regimes and regime-transition criteria that do not
dynamically represent the changes in interfacial structure. There exist the
following shortcomings caused by this static approach.

1.

The flow-regime transition criteria are algebraic relations for steady-state,
fully-developed flow. They do not fully reflect the true dynamic nature
of changes in the interfacial structure. Hence, the effects of the entrance
and developing flow cannot be taken into account correctly, nor can the
gradual transition between regimes.

The method based on the flow-regime transition criteria is a two-step
method that requires flow configuration transition criteria and interfacial
area correlations for each flow configuration. The compound errors from
the transition criteria and interfacial area correlations can be very
significant.

The transition criteria and flow-regime dependent interfacial correlations
are valid in limited parameter ranges for certain specific operational
conditions and geometries. Most of them are obtained from simple air-
water experiments and phenomenological models. Often the scale effects
of geometry and fluid properties are not correctly taken into account.
When applied to high-to-low pressure steam-water transients, these
models may cause significant discrepancies, artificial discontinuities and
numerical instability.
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In Chapter 10, a physics-based approach, namely the interfacial area
transport equation, was introduced to dynamically obtain the interfacial area
concentration. In bubbly flow regime, bubbles may be assumed close to
spherical in shape and with similar size, and thus a one-group interfacial area
transport equation is sufficient to describe the interfacial area transport
phenomena. However, in more generalized gas-liquid two-phase flows such
as cap bubbly, slug and churn-turbulent flows, there exist bubbles with
different sizes and shapes such as spherical, distorted, cap, slug, or churn-
turbulent bubble. These variations in bubble size and shape substantially
affect the bubble transport phenomena due to the differences in drag force
and bubble interaction mechanisms. In developing the transport equation
applicable to a wide range of two-phase flow, the differences in the shape
and size of bubbles and in the characteristic transport phenomena should be
accounted for. In view of this, the bubbles are categorized into two groups:
spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles
as Group 2. In Chapter 10, a general approach to treat bubbles in two groups
was presented and the two-group interfacial area transport equation was
formulated. In implementing the two-group interfacial area transport
equation to the two-fluid model, some modifications of the conventional
two-fluid model are required. This is mainly because the introduction of the
two groups of bubbles requires two gas velocity fields while the
conventional two-fluid model only provides one gas velocity through the
momentum equation.

This chapter presents the modified two-fluid model that is ready to be
implemented in the approach of the two-group interfacial area transport
equation. Two momentum equations can be written for the two groups of
bubbles, although it is not yet very practical to solve two gas momentum
equations. However, for fully three-dimensional flow this may be necessary,
whereas for one-dimensional flow a simplified approach is proposed. In this
case, the momentum equation for the averaged velocity of the gas-phase is
retained by combining the two gas momentum equations. Additional terms
related to the velocity difference between Group-1 and Group-2 bubbles
should be specified. This velocity difference can be estimated based on the
simplified momentum equations for both Group-1 and Group-2 bubbles by
accounting for the pressure gradient and general drag force. Furthermore, in
one-dimensional simplification, a modified drift-flux model may be applied
to solve for the velocity difference. In addition to this, this chapter
demonstrates the modeling of sink and source terms in one-group and two-
group interfacial area transport equations.
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1.1 Modified two-fluid model for the two-group
interfacial area transport equation

1.1.1 Conventional two-fluid model

As discussed in Chapter 9, a three-dimensional two-fluid model has been
obtained by using temporal or statistical averaging. The model is expressed
in terms of two sets of conservation equations governing the balance of mass,
momentum and energy in each phase. However, since the averaged fields of
one phase are not independent of the other phase, the interaction terms
appear in the field equations as source terms. For most practical applications,
the two-fluid model can be simplified to the following forms (Ishii, 1977,
Ishii and Mishima, 1984) from Chapter 9.

Continuity equation for the gas phase

G

e +V. (agpg'vg) =TI (11-1)

g

Continuity equation for the liquid phase

5[(1 — ag)pf}

——+V: (1—e,) o] =1 (11-2)

Momentum equation for the gas phase

0(ayp,2,)
ot
V- {O‘y (@;" + %T)] T g (11-3)

+V- (aypgvyvy) = _avag

+I,v, + M, — Vo, - &, +(p, — p,) Ve,
Momentum equation for the liquid phase

o|(1 —;étg)pfvf] +V-[(1-a,) o0, = ~(1-a,) Vp,

V(1)@ + G+ (1 - ) s (11-4)
+L o5+ My = V(1 0a,) @ + (ps — p,) V(1 o)
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Thermal energy equation for the gas phase

0 h
Loh)os foppp) -l v
+agD£g+(p pm)Détg—i—Fh +agl + ¢,

Thermal energy equation for the liquid phase

8[<1_ag)pfhf]

+ V-1 a,) pyvshy]

ot
=-V-[(1-0o,)(af +4q) +(1—ag)Dl{)—lt’f (11-6)
+(pf—pﬁ)Df(1—_a—>+Fh + a,q; + &

Dt

Here, I',, M, , &, g, and ¢, are the mass generation, the generalized
interfacial drag, the interfacial shear stress, the interfacial heat flux, and the
dissipation, respectively. For simplicity, in the above equatlons the

mathematical symbols of averagmg are dropped, and @ % and g, are

represented by &, @, and q; .
In Egs.(11-1) to (11-6), the generation of mass per unit volume, the

generalized drag force per unit volume, and the interfacial energy transfer
per unit volume constitute the interfacial transfer terms. The jump
conditions for the interfacial transfers are given as

r,+T,=0
M,+M, = (11-7)
(aal + T1,) + (adf + Tyhy) =0

1.1.2 Two-group void fraction and interfacial area transport
equations

The two-group void fraction transport equation is given by
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9 (O‘ kP ) koA
Bgt SV (agkpgvyk) =TIy + (=1) Ari, (11-8)
where k=1 and 2 for Groups 1 and 2, respectively. [’ 4 is the mass
generation rate of Group-k bubbles due to phase change, and Am,,
represents the net inter-group mass transfer rate from Group-1 to Group-2
bubbles due to the bubble interactions and the hydrodynamic effect given by

«\3 |0
an,z + X(Dcl)3 { (;;gl +V- (%1"’91) — nphl}
M

Ariy, = p, (11-9)

where 7);, and 7, are the net inter-group void fraction transport from
Group-1 to Group-2 bubbles and the source and sink term for the gas volume
due to phase change, respectively. x is the inter-group transfer coefficient
and D, is the non-dimensional bubble diameter defined by

D,
o 11-10
D (11-10)

Sml

D,

C

where D_ ., is the volume-equivalent diameter of a bubble at the boundary
between Groups 1 and 2.
The two-group interfacial area transport equation is given by

Oa,
—(%l— + V- (aﬂvgﬂ)

2 * \2 a; Oa
= {§_X<‘Dcl) }a;ll— —ﬁ—l—v-(aglvgl)—?]phl] (11"11)
+Z¢j,1 + (pphl

i
Oa, 2 g, [Oa

. |0
—+—X(Dcl)2 Zﬂ %-FV'(%{%)—%M] (11-12)
g1

+ 050+ b
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where ¢;, and ¢, are the source and sink terms for the interfacial area
concentration due to bubble interactions for Group-k bubbles and phase
change, respectively.

1.1.3 Modified two-fluid model

In what follows, the two-fluid model is modified for two-group
interfacial area transport equation (Sun et al., 2003). The general form is
given by the multi-field model for the gas phase. In general, the pressure
and temperature for Group-1 and Group-2 bubbles can be assumed to be
approximately the same. However, the velocities of two groups are not the
same, therefore it is necessary to introduce two continuity and two
momentum equations in principle. Based on the above assumption, the
density of the gas phase is the same for Group-1 and Group-2 bubbles. This
leads to the gas phase continuity equations as

Continuity equation for Group-1 bubbles

8(0;;%) + V- (app,on) = Ty — i, (11-13)

Continuity equation for Group-2 bubbles

0 (agng)

otV (oo, vy0) = Iy + Aty (11-14)

Here, Am,, is the inter-group mass transfer due to hydrodynamic
mechanisms. Furthermore, if the following identities are introduced,

ayl + ay? =Gy
\Iy+1,=T, (11-15)
(aylvyl + ay?vy?)

Qg

'Ug':

then the summation of Eqs.(11-13) and (11-14) recovers the conventional
continuity equation, i.e. Eq.(11-1). The continuity equation for the liquid
phase remains the same as Eq.(11-2) with



11. Constitutive Modeling of Interfacial Area Transport 249

Iy=-T,=-(Iy+T,). (11-16)

The momentum equation is more complicated due to the introduction of
the two groups of bubbles. Unlike the continuity equation for the gas phase,
it is not desirable to have two momentum equations for Group-1 and Group-
2 bubbles due to the complicated nature of the momentum equation at least
for the one-dimensional formulation. If we assume Group-2 bubbles as the
“third phases” in addition to the liquid phase and Group-1 bubbles and
neglects the direct momentum interactions between the Group-1 and Group-
2 bubbles, then two momentum equations may be written for both Group-1
and Group-2 bubbles as

0
—% +V- (aglp yvylvgl) = —0u;VPy
+V- [0‘1 (@;f + @;f )] ta,p,9+ (Fgl - Amlz)'vgu (11-17)

—Va, - %1 + Migl + (pg'il - pgl)vagl
and

8(%2/)9'092)
Bt
+V |0y (@ + )| + g + (T + Arivy ) v (11-18)

=V, Gy + My, + (P — 9,2 ) Vs,

+ V. (agngvﬁ'vﬂ) = ——a2Vpg2

Then, combining Eqs.(11-17) and (11-18) yields

0
(agt)gvg) tV: <a9pyvgvy)
==V-|p, —a%.fgl(vyl o v.«ﬂ)z o (aglqul + ay?vp«ﬂ)
9
+V o (G + T )+ 0y (T + & )|+ 0,09 (11-19)

+(pm‘1 - pgl)Vagl + (pgn - pgz)vagz
+[(F91 - Aml?)vyil + (Fyz + Ale)vgfiZ]
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—(Val : %1 + Va, - %2) + (Mz'gl + MigZ)
with the definitions in Eq.(11-15). It is interesting to note that the first term
on the right-hand side of Eq.(11-19) is an additional diffusion term due to
the difference between the bubble velocities in different bubble groups.
However, Eq.(11-19) is too complicated to be applied in general
applications. As mentioned earlier, for most of the practical applications, the
pressure for the two groups of bubbles can be approximated as the same such
that

Pp R Dy = Dy3 Py & Py = Pyiv (11-20)

Furthermore, the interfacial shear for both groups of bubbles may be
assumed to be very similar such that,

(8

il

~T,=0C. (11-21)

9i2 gi

We also have the following definition to further simplify Eq.(11-19)

@; = agla;l + agZ%Z — mgy + @;T
«
9
T+ = ayl@;f + ayZay’g
(] a
; 11-22
T’ = aglmng + agZ@;; ( )
9 a
C,=C'+T;
g,=a;+3].

Therefore, Eq.(11-19) can be simplified as

o 2
g1"g2
Pq (vyl o ng)
aﬂ

0(a,p,v,)
ot

—a,Vp, + V- [ay (@;# + %T)] T a9

FV )=V (11-23)




11. Constitutive Modeling of Interfacial Area Transport 251

+KF91 - Ale)'vgﬂ + (ng + Amm)vm] — Vo
+(M1'91 + Migz) + (pm - pg>Vag.

9

It may be reasonable to assume that the averaged stresses in the bulk fluid
and at the interface are approximately the same. Thus,

T, ~ (T +a). (11-24)

Then, Eq.(11-23) is further simplified as

ola,p,v
———( gtg g) +V- (ozgpg'vg'vg) =-V-ip, a—g;'c:ﬂ(vﬂ "’g2>2
~0,Vp, + V(G + &' )+ ayp,g (11-25)

+[Fglvgl+Fg2v92 + Amy, ('vgz - vgl)] + (M 1+ Mig2)

ig
+(pm‘ - pg)Vozg.

The generalized interfacial drag terms, M, and M,, , should be
individually modeled for Group-1 and Group-2 bubbles.
Furthermore, the momentum equation for the liquid phase has the same

form as Eq.(11-3). Thus,

6[(1 —;Z)Pf”f] n V'[(l _ ag)p,'vf’v,} = ——(1 —ag)fo

+V-(1-0) (@ + &) +(1-q,) 0.9 (11-26)
v+ My =V (1~ ,)- @ +(ps — ;) V(1 -0,

with
Mif = —Mz'g == (M'igl + Mig2)’ (11-27)

It may be reasonable to assume that the averaged stresses in the liquid phase
and at the interface are approximately the same. Thus,
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T, ~ (@ +a’). (11-28)
Then, Eq.(11-26) is further simplified as

a[(1~§:)pfvf] + V(1) o0, = — (1 a,) Vp,

+(1-a) V(" +&")+(1~0,)ps9 (11-29)
+L g + My + (ps — 2 )V (1= )

In the above derivation, it is assumed that the pressures and the
temperatures for the two groups of bubbles are essentially the same. Then,
similar to the momentum equation, the thermal energy equation for the gas
phase can be expressed as

8(04 p.h )
99" . c T
et +V (aypyhy'vg) =-V- [ay (qg +q, )]
(11-30)
Dgpg 1’1 h "
+ay Dt + 9"gi +a’iqyi +¢g
where the following definitions have been applied
¢ = 0y +
g ag
¢’ = O‘g1qu1 + O‘gﬂ;;
378 @, (11-31)
v %qgl + %q;ﬁz
Qs =
o
a; = a; + 0.
The operator D, / Dt is defined as
D, 0  auv,+a,v, 0
L =4 V=—+uv,-V. (11-32)
t Ot g, + oy ot
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Similarly, the thermal energy equation for the liquid phase is written as

8[(1 — ay)pfhf]

+ V. [(1 — ozg)pf'vfhfl

ot
—~V-[(1—ag)(qf0+qu)]+(1 ag)Dg;f + I'hy, (11-33)
+azqﬁ + &

with the interfacial heat transfer at the liquid-phase side as

" "
0,495 + 0,45
gl = ﬂa_iqﬂz (11-34)

]

Note that the following interfacial energetic condition should be satisfied
(agl + I')hy ) + (agy + I'yhy) = 0. (11-35)

In the above derivation, very complicated interfacial transfer terms are
introduced. To solve the modified two-fluid model with the two-group
interfacial area transport equation, various constitutive relations, interfacial
transfer terms, and boundary conditions should be specified for the
additional variables. These variables can be summarized as

FglﬂpgwrfaAmm,

ghre' e e'\ M, M, , M, T,.T,v,,v

igly IV igo5 VL i €0y €y Vi1 s Vgioy Uiy 9 and

O P N PN A Y

1.14 Modeling of two gas velocity fields

For strongly one-dimensional flow, the introduction of two gas
momentum equations may bring in unnecessary complications. In this case,
the gas mixture momentum equation and an additional constitutive relation
specifying the relative velocity between Group-1 and Group-2 gas velocities
is sufficient. It is important to ensure that doing so will not over-specify the
unknowns since the number of unknowns should equal the number of
available equations.
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The difference of the bubble velocities may be related to the local slip as
Uy, — Uy = ('vg1 - vf) — (vg2 — 'vf) =v,, —V,. (11-36)

To obtain the local relative velocity between the gas phase and liquid phase,
a similar approach to Ishii (1977) may be taken along the drift-flux model
formulation.

' The momentum equation for Group-1 bubbles, i.e. Eq.(11-17) can be
written in the following form by substituting the continuity equation and
considering the assumptions of Eqs.(11-20) and (11-21) and p, = p,;.

ov,,
+ogp,9 + (Fgl - Aml?)(vgil - 'vgl) + M,

Similarly, we obtain the momentum equations for both Group-2 bubbles and
the liquid phase as

v,
Fg2Pyg "ot T 0 - VU, | =~V +a,V - &, (11-38)
togep,g + (ng + Amm)(vgiz - 'ng) + M,,
and
ov
1—a)p [—f—+v Vv ]:- 11—« |Vp
(1—a,)p, 5¢ TV VU (1-a,) vy, (11-39)

+(1-0,)V-& +(1-a,) p;9 + T (v — v,) + M.

To obtain the local relative velocity correlation, we consider a special
condition such as steady-state condition without phase change and with
negligible-transverse pressure gradient. Without phase change effect, the
interfacial velocity and the phase velocity for each phase can be considered
equal, i.e.

Uy Y5 Uy Vg5 Uy R U (11-40)

And the pressure for each phase may be approximated as
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Dy R Py R Dy (11-41)

Under these approximations, for a nearly one-dimensional flow, the above
momentum equations can be expressed as

M, ~a,Vp, —a,V-&, —a,p.g (11-42)

Mig2 N VP, —a,V- @;2 — P9 (11-43)
and

M, ~(1-0a,)Vp, —(1-0,)V-& —(1-a,)p9.  (11-44)

From the interfacial force balance, i.e. Eq.(11-27), the summation of the
above three equations yields

vp,-M,_, -p,g~0 (11-45)
in which M is the force associated with the mixture transverse stress
gradient and given by

MTmE(aglv'@;l+ay2v'@;2)+(1wag)v'@} (11-46)
=a,M, , +o,M, ,+ (1 — o )M

with

“ 25 f = V'@; (11-47)

while p,, is defined as

Pm = (agl + ag?)py _*_(1~ ag)pf = XPy +(1_ asi)pf' (11-48)

Equation (11-45) also assumes that Eq.(11-28) is valid for most applications.

Furthermore, from Eq.(11-45), the gravitational force field may be

replaced with the pressure field, which is an unknown in the momentum
equation, as
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g~ (vp, M) 149

™
Pm

This allows the approach to be applied in microgravity conditions. In steady
state, the generalized interfacial drag force is approximated by neglecting the
virtual mass force, the Basset force and non-drag force such as lift force as

KYe”
M, ~ _STglODle"’m I'vrll (11-50)
a1

where 7, and C),, are the drag radius and the drag coefficient of Group-1
bubble, and the relative velocity for Group-1 bubbles is defined as

U =V, — Uy (11-51)

r

Thus, in steady state, by using Eqs.(11-49) and (11-50), we can rewrite
Eq.(11-42) as

3,

87,

CD1Pf'”r1 U

(11-52)

~ Qg [1 - -;—)g—] me + 1 [%_ M7m - M'rgl]

or in the following form

L — ﬂ_
3CD1Pf

v, Y

r

Pm

m

[1 - ﬁ] Vp, + [ﬁ M._ - MMH. (11-53)

Similarly, for Group-2 bubbles, we have the following formulation

A2
3Cpapy

v, |V

T

(11-54)

Pm

m

[1 _ -”g—] Vp, + [—pg— M_ - Mm]

where 7, and C), are the drag radius and the drag coefficient of Group-2
bubbles, respectively, and the relative velocity for Group-2 bubbles is
defined as
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Uy = Uy — Vs (11-55)

From Eqgs.(11-53) and (11-54), together with Eq.(11-36), we can solve the
local slip between the two groups of bubbles, i.e. v, — v,,.

In the case of one-dimensional flows, the one-dimensional drift-flux
model to be discussed in Chapter 14 can be utilized to specify the velocity
difference. The one-dimensional drift-flux model is modified for two-group
interfacial area transport equation as

«ng >> = G (4) + <<Vwk>> (11-56)

where <<vgk>> , Cy, and <<V i >> are the void fraction weighted mean gas
velocity, the distribution parameter, and the void fraction weighted mean
drift velocity of Group-k bubbles, respectively. Then, the velocity difference
is given by

(o)) = {{oa)) = ({(2)) = (@) = ({{a)) ~ ()
= [(001 -1{)+ <<Vw‘1>>] B [(002 ~10)+ <<Vw'2>>]‘

(11-57)

The distribution parameters for both groups of bubbles should be
obtained from experimental data for certain flow geometry. Furthermore, if
we assume that the distribution parameters for both groups of bubbles are
essentially similar for certain flows, then the following simplified form can
be approximately obtained as

(o)) = () = (Vi) = {(Ve))- (11-58)

1.2 Modeling of source and sink terms in one-group
interfacial area transport equation

To model the integral source and sink terms in the interfacial area
transport equation caused by particle coalescence and breakup, a general
approach treats the bubbles in two groups: the spherical/distorted bubble
group and the cap/slug bubble group, resulting in two interfacial area
transport equations that involve the inner- and inter-group interactions as
shown in Fig.11-1. As shown in Fig.11-2, the mechanisms of these
interactions can be summarized in five categories: the coalescence due to
random collisions driven by liquid turbulence; the coalescence due to wake
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Coalescence Breakup

Group 1
(1+1& 1)

Inter-group
(1+2 & 2)

Inter-group
(1+1 & 2)

Group 2
(2+2&2)

Figure 11-1. Classification of possible interactions of two-group bubbles (Hibiki and Ishii,
2000b)
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Figure 11-2. Schematic illustrations of two-group bubble interaction (Ishii et al., 2002)
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entrainment; the breakup due to the impact of turbulent eddies; the shearing-
off of small bubbles from cap/slug bubbles; and the breakup of large cap
bubbles due to flow instability on the bubble surface (Kocamustafaogullari
and Ishii, 1995; Wu et al., 1998). Some other mechanisms such as laminar-
shearing induced coalescence (Friedlander, 1977) and the breakup due to
velocity gradient (Taylor, 1934) are excluded because they are indirectly
caused by the distributions of the flow parameters and void fraction, and the
direct mechanisms still follow the above five categories.

In practice, when the void fraction of a two-phase bubbly flow is small,
no cap or slug bubbles exist. The two-group interfacial area transport
equation is then reduced to one group without the involvement of the
interactions between the two groups as

oa, +V. (azf'”i)

ot
9
&y

2
In this section, some models of source and sink terms in one-group
interfacial area transport equation are explained briefly.

Sor (11-59)
—2L 4+ V- (ag'vg) — Nph + Z(b] + prh'
J

3 ot

1.2.1 Source and sink terms modeled by Wu et al. (1998)

Wu et al. (1998) considered three mechanisms of the interfacial area
transport in an adiabatic bubbly flow, namely coalescence due to random
collisions driven by liquid turbulence, coalescence due to wake entrainment,
and breakup due to the impact of turbulent eddies. Then, Eq.(11-59) is
further simplified as

%a; +V-(a)

2

2 &]
a!]

(11-60)
0
_gf_ tV (agvg)

3 + (¢nc + bwe + Pry)-

A. Bubble coalescence due to random collision

To model the bubble coalescence rate driven by turbulence in the
continuous medium, the bubble random collision rate is of primary
importance. These collisions are postulated to occur only between the
neighboring bubbles because long-range interactions are driven by large
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Figure 11-3. Geometric definitions of two approaching bubbles (Wu et al., 1998)

eddies that transport groups of bubbles without leading to significant relative
motion (Prince and Blanch, 1990; Coulaloglou and Tavlarides, 1976).
Between two neighboring spherical bubbles of the same size as shown in
Fig.11-3, the time interval for one collision, At,, is defined as

Aty =L, (11-61)

Here, u, is the root-mean-square approaching velocity of the two bubbles,
and L, represents the mean traveling distance between the two bubbles for
one collision. This is approximated by

L, ~ D, 6D, x 1?/3 _s'p,| =2 (1—5’ ‘/3) (11-62)

1/3

in which D, is the effective diameter of the mixture volume that contains
one bubble, and D), is the bubble diameter. Since the bubble-traveling
length for one collision varies from Dy to (Dy — D,), a factor § is
introduced in Eq.(11-62) to feature the averaged effect (whereas &’ is a
collective parameter in considering the sign of proportionality between D
and D, a *). For small void fraction, §' plays a minor role due to the fact
that DE is much larger than D,. However, it is important if the traveling
length is comparable to the mean bubble size. When void fraction
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approaches the dense packing limit (a aao" ) the mean traveling

g,max
length should be zero, which leads to &' equal to a, 1/ } Using this
asymptotic value as the approximation of ', the mean travehng length is
reduced to

D, 13
L, 1—[ %

1/3 (11-63)
ag,ma,z

Accordingly, the collision frequency for two bubbles moving toward each
other, fp, is given by

1/3
1 U, 13 Oy mas
fRC = _—Atc X Hbag [m] . (1 1-64)

Since the bubbles do not always move toward each other, however, a
probability, P, , for a bubble to move toward a nelghborlng bubble is
considered here to modify the collision rate. By assuming a hexagonal
close-packed structure, this probability is given by

D} 23
P, ~ D—”z = ag/ y oy <oy and By =1, o) > . (11-65)
F

where . is the critical void fraction when the center bubble cannot pass
through the free space among the neighboring bubbles. In reality, the
neighboring bubbles are in constant motion and the critical void fraction can

be very close to the dense packing limit. This leads to

2/3
(87
P, C([ ’ ] . (11-66)

(87

9,maz

Subsequently, the collision frequency for a mixture with bubble number
density, n,, is given by

o 1
Fb 13 (ax/s _al/B)

(11-67)

g max g,max g
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2 1
ox myu, D, 13 13 3\ [
O mae \ Xgmaz — ag

The functional dependence of the above collision rate agrees with the model
of Coulaloglou and Tavlarides (1976) proposed for a liquid-liquid droplet
flow system, analogous to the particle collision model in an ideal gas. The
difference is that the present model contains an extra term in the bracket,
which covers the situation when the mean-free path of a bubble is
comparable to the mean bubble size. Nevertheless, the model in the present
form is still incomplete, since no matter how far away the neighboring
bubble is located, the collision would occur as long as there is a finite
approaching velocity. In actuality, when the mean distance is very large, no
collision should be counted because the range of the relative motion for
collisions between the neighboring bubbles is limited by the eddy size
comparable to the bubble size. To consider this effect, the following
modification factor is suggested for Eq.(11-67)

{1 — exp [—C’T %]} . (11-68)
T

where C, and L, are, respectively, an adjustable parameter depending on
the properties of the fluid and the average size of the eddies that drive the
neighboring bubbles together. These eddies are assumed to be on the same
order of the mean bubble size because smaller eddies do not provide
considerable bulk motion to a bubble. Larger eddies, however, transport
groups of bubbles without inducing significant relative motion among the
bubbles. Thereafter, the final form of the bubble collision frequency is given
by

1
fRC ~ (utan;) Oz;/jnm< Zjnm _ a;/g,)

(11-69)
al/S al/3
X [1 — exp {—CT ——1/3’"#“——17;]}\ .
amu —

For each collision, coalescence may not occur and thus a collision
efficiency was suggested by many investigators (Oolman and Blanch,
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1986b; Kirkpatrick and Lockett, 1974). The most popular model for the
collision efficiency is the film thinning model (Kirkpatrick and Lockett,
1974). In this model, when the bubbles approach faster, they tend to bounce
back without coalescence due to the limitation of the film-drainage rate
governed by the surface tension. Mathematically, the coalescence rate
decreases exponentially with respect to the turbulent fluctuating velocity,
which is much stronger than the linear dependence of the collision rate,
resulting in an overall decreasing trend of the coalescence rate as the
turbulent fluctuation increases. Hence, a constant coalescence efficiency,
¢, is employed in the model to depict the randomness of the coalescence
phenomenon after each collision. Nevertheless, the constant coalescence
efficiency is only an approximation and further efforts are needed to model
the efficiency mechanistically. The mean-bubble fluctuation velocity, «, , in
Eq.(11-69) is proportional to the root-mean-square liquid fluctuating velocity
difference between two points of length scale, D,, and is given by el 3D;/ ’
where € is the energy dissipation rate per unit mass of the continuous
medium (Rotta, 1972). Thus, the decrease rate of the interfacial area
concentration due to the bubble coalescence caused by random collisions,

®ro » 18 given by

1 2
Pre = [&] Jre™Ac

_@ .

13
__r Rcos‘jf/ 1 (11-70)
13 13 13
Db/ o) (a/ ~ozg/)

g/maz \ g,maz

/3 1/3
-C Oég/:maz ag/ ]

X11—exp T I i)
Qg mas — ¥

where [, is an adjustable parameter depending on the properties of the
fluid, which is determined experimentally to be 0.016. The constants in
Eq.(11-70) are set at o, =0.75 and C,=3.

B. Bubble coalescence due to wake entrainment

When bubbles enter the wake region of a leading bubble, they will
accelerate and may collide with the preceding one (Otake et al., 1977,
Bilicki and Kestin, 1987; Stewart, 1995). For a spherical bubble with
attached wake region in the liquid medium, the effective wake volume, V;,,
in which the following bubbles may collide with the leading one, is defined
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as the projected bubble area multiplied by the effective length, L,,. The
number of bubbles inside the effective volume, NN, , is then given by

N, =V,n, ~ %WD,,Z [LW —%—]n,,. (11-71)

Assuming that the average time interval for a bubble in the wake region to
catch up with the preceding bubble is At , the collision rate per unit
mixture volume, R, should satisfy

L, —D,/2
Ry, oclnb—N—W—zle,fnf Ly —Dyj2
2 VAL, 8 At,,

1 2. 2
~ §'ITDb ’I’Lburw.

(11-72)

where u,,, is the averaged relative velocity between the leading bubble and
the bubble in the wake region. Schlichting (1979) gave the analytical
expression of non-dimensionalized relative velocity as

1/3
L APS (CDA ] (11-73)

v 8%
where v, , v,, Cp, A, B and y are: the relative velocity between the
leading bubble and the bubble in the wake region; the relative velocity
between the leading bubble and the liquid phase; the drag coefficient; the
frontal area of the bubble; the ratio of the mixing length and the width of the
wake; and the distance along the flow direction measured from the center of
the leading bubble. The averaged relative velocity in the wake region, u, ., ,
is then obtained by integrating v,.,, over the critical distance as

13 ys
Uy = 3V, [CD;r] 1 Ly | _
& LW/(Db/z) —L|(By/2 (11-74)
~F [£W— ngvr
Db

where F S L, Db) is a function of L, /D, , since 3 is usually assumed to be
constant (Schlichting, 1979). The exact form of F( L, / Db) is not important
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since the effective bubble wake region may not be fully established.
According to Tsuchiya et al. (1989), the wake length is roughly 5-7 times the
bubble diameter in an air-water system, and thus Ly /D, as well as
F(L, /D,) are treated as constants depending on the fluid properties. As
long as their values obtained from experimental data fall into the range of
Ly, / D, =5-7, the mechanism should be acceptable. Thus, the decrease rate
of the interfacial area concentration due to the bubble coalescence caused by
wake entrainment, ¢y, is given by

1
g = — 3¢[ ]RWE)‘C__

1/3 2
I':Ch o
—_— 11-75

D (11-75)
where I, is an adjustable parameter mainly determined by the ratio of the

effective wake length to the bubble size and the coalescence efficiency,
which is determined experimentally to be 0.0076.

C. Bubble breakup due to turbulent impact

For binary bubble breakup due to the impact of turbulent eddies, the
driving force comes from the inertial force, £, .. , of the turbulent eddies in
the continuous medium, while the holding force is the surface tension force,
E, ... To drive the daughter bubbles apart with a characteristic length of

D, within time interval Aty, a simple momentum balance approach gives
the following relation.

PfD:Db ~ F

. — F
A t fz} inertia

tension

(11-76)

Here, the inertia of the bubble is dominated by the virtual mass because of
the large density ratio of the liquid and gas. Rearranging Eq.(11-76) leads to
the following averaged bubble breakup frequency

' 1/2 2D
frr —%—[1 - —W%] , We = Pt > We,,. (11-77)
A e o

The velocity, u, , is assumed to be the root-mean-square velocity difference
between two points of length [),, which implies that only the eddies with
sizes equivalent to the bubble size can break the bubble. We,,, is a
collective constant, designated as a critical Weber number. The reported
value of We_, for bubble breakup varies in a wide range due to the
resonance excitation of the turbulent fluctuation (Sevik and Park, 1973).
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In a homogeneous turbulent flow, the probability for a bubble to collide
with an eddy that has sufficient energy to break the bubble, namely the
breakup efficiency, )\, , is approximately (Coulaloglou and Tavlarrides,
1976)

p X €XP|——7— (11—78)

U,

where ufmt is the critical mean-square fluctuation velocity obtained from
We,., . Finally, the increase rate of the interfacial area concentration due to
the bubble breakup caused by turbulent impact, ¢y, , is given by

2
1 |
by = 3@[";:]“] T s
I ac’ \2 , (11-79)
X asjf (1 —~ Wec”t) exp [— Ve ], We > We,_,,
= D, We e
0, We < We,,,.

The adjustable parameters /', and We,,, are determined experimentally to
be 0.17 and 6.0, respectively. This expression differs from the previous
models (Prince and Blanch, 1990) because the breakup rate equals zero
when the Weber number is less than We,_,, . This unique feature permits the
decoupling of the bubble coalescence and breakup processes. At a low
liquid flow rate with small void fraction, the turbulent fluctuation is small
and thus no breakup would be counted. This allows the fine-tuning of the
adjustable parameters in the coalescence terms, independent of the bubble
breakage.

D. One-dimensional one-group model

The simplest form of the interfacial area transport equation is the one-
dimensional formulation obtained by applying cross-sectional area averaging
over Eq.(11-60)

20 2 (b)) = e+ G+ ()
) (11-80)
U] e CRLOR)
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Due to the uniform bubble size assumption, the area-averaged bubble
interface velocity weighted by interfacial area concentration, <<v”>> , is
given by ¢

((v.)). = (0s) _ (Outee) =((v,.)). (11-81)

This is the same as the conventional area-averaged gas velocity weighted by
void fraction, if the internal circulation in the bubble is neglected. The exact
mathematical expressions for the area-averaged source and sink terms would
involve many covariances that may further complicate the one-dimensional
problem. However, since these local terms were originally obtained from a
finite volume element of the mixture, the functional dependence of the area-
averaged source and sink terms on the averaged parameters should be
approximately the same if the hydraulic diameter of the flow path is
considered as the length scale of the finite element. Therefore, Eqs.(11-70),
(11-75) and (11-79), with the parameters averaged within the cross-sectional
area, are still applicable for the area-averaged source and sink terms in
Eq.(11-80).

In Egs.(11-70), (11-75) and (11-79), the energy dissipation rate per unit
mixture mass should be specified. In a complete two-fluid model, € comes
from its own constitutive relation such as the two-phase k -& model (Lopez
de Bertodano et al., 1994). For one-dimensional analysis, however, this term
can be approximated by a simple algebraic equation as

— f_T_v_V_ 3 -
© =2 D, (V) (11-82)

where v, D, and f; are the mean mixture velocity, the hydraulic
diameter of the flow path and the two-phase friction factor.

1.2.2 Source and sink terms modeled by Hibiki and Ishii (2000a)

Hibiki and Ishii (2000a; 2002c) discussed the contribution of wake
entrainment to the interfacial area transport. Wake entrainment would play
an important role in the bubbly-to-slug transition, slug and churn-turbulent
flows. It may also be important for bubbly flow in a small diameter tube or
for very low flow conditions as the lateral fluctuation of bubbles is small.
However, for relatively high flow conditions, even bubbles captured in the
wake region would easily leave the wake region due to liquid turbulence,
resulting in a minor contribution of wake entrainment to the interfacial area
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transport. Thus, Hibiki and Ishii (2000a) dropped the wake entrainment term
from the interfacial area transport equation in an adiabatic bubbly flow, and
considered two terms of coalescence due to random collisions driven by
liquid turbulence and breakup due to the impact of turbulent eddies.

A. Bubble coalescence due to random collision

The bubble coalescence is considered to occur due to the bubble random
collision induced by turbulence in a liquid phase. For the estimation of
bubble-bubble collision frequency, it is assumed that the movement of
bubbles behaves like ideal gas molecules (Coulaloglou and Tavlarides,
1977). Following the kinetic theory of gases (Loeb, 1927), the bubble
random collision frequency, f,,, can be expressed by assuming the same
velocity of bubbles, u,, as a function of surface available to the collision,
S, , and volume available to the collision, U,

U‘C‘SC
. 11-83
f;ZC 11:7 ( )

Taking account of the excluded volume for bubbles, the surface and volume
are given by

24« .

S, =4n(N, —1)D} = 4xN,D} =V (11-84)

b

U, = V[l - 5G§7rm1);]

=408,V (aqmm — ag), Aomaz = 1/4[30

(11-85)

where N;, D,, V', n, and o, denote the number of bubbles, the bubble
diameter, the control volume, the bubble number density and the void
fraction, respectively. The variable 3, (<1) is introduced into the excluded
volume in order to take account of the overlap of the excluded volume for
high void fraction region. Although it may be a function of the void fraction,
it is treated as a constant for simplicity. The distortion caused by this
assumption will be adjusted by a tuning parameter in a final equation of the
bubble coalescence rate as introduced later.

The mean fluctuation velocity difference between two points D), in the
inertial subrange of isotropic turbulence is given by (Hinze, 1959)
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u, =1.4(eD, )" (11-86)

where ¢ denotes the energy dissipation. Taking account of the relative
motion between bubbles, the average bubble velocity is given by

uy = 74 (eD,) (11-87)

where 7, is a constant.

The collision frequency will increase to infinity as the void fraction
approaches to maximum void fraction, ¢, . Since 74.1 % of the volume
is actually occupied by identical spheres close-packed according to a face-
centered cubic lattice, «,,,, may be assumed to be 0.741. Finally, we
obtain

1/3

/
/YCagg

(aC,maz - ag)

fee = =35 (11-88)

D,

where ’yé is an adjustable valuable.

In order to obtain the bubble coalescence rate, it is necessary to
determine a coalescence efficiency. Coulaloglou and Tavlarides (1977) gave
an expression for the coalescence efficiency, A\, as a function of a time
required for coalescence of bubbles, ,, and a contact time for the two
bubbles 7,

Ao = €xp [— ti] (11-89)

Te

The time required for coalescence of bubbles was given by Oolman and
Blanch (1986a; 1986b) for the thinning of the liquid film between bubbles of
equal size as

D s
t, = 1,/’)”—” In Ot (11-90)
8V 20 Ot

where p;, 0, 0, and b, are, respectively, the liquid density, interfacial
tension, the initial film thickness, and the critical film thickness where
rupture occurs. Levich (1962) derived the contact time in turbulent flows

from dimensional consideration.
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2/3
£
TC’ = gl/—3‘ (11-91)

where 7, is the bubble radius. Finally, we obtain

K 1/2D5/6 1/3 - N
Ao = exp[———o—pi—lﬁﬁ—g—— where K, =2 e ln%. (11-92)
g crit

Kirkpatrick and Locket (1974) estimated the initial thickness of the film in
air-water systems to be 1x10™® m, whereas the final film thickness was
typically taken as 1x10® m (Kim and Lee, 1987). Thus, the experimental
coefficient, K, is determined to be 1.29 for an air-water system.

The decrease rate of the interfacial area concentration, ¢, is then
expressed as

1 |ao ’
Pre = _g . Jac™Ac
' (11-93)
B FRCajgl/s ch}/z Dbs/661/3
=~ exp|——— 55— |-
D, (aamax — ag) g

The adjustable variable, I, would certainly be a function of the overlap
of the excluded volume, the bubble deformation, and the bubble velocity
distribution. However, the adjustable variable might be assumed to be a
constant for simplicity and is determined experimentally to be 0.0314 for
bubbly flow.

B. Bubble breakup due to turbulent impact

The bubble breakup is considered to occur due to the collision of the
turbulent eddy with the bubble. For the estimation of bubble-eddy collision
frequency, it is assumed that the movement of eddies and bubbles behaves
like ideal gas molecules (Coulaloglou and Tavlarides, 1977). Furthermore,
the following assumptions are made for the modeling of the bubble-eddy
collision rate (Prince and Blanch, 1990): (i) the turbulence is isotropic; (ii)
the eddy size D, of interest lies in the inertial subrange; (iii) the eddy with
the size from ¢ D, to D, can break up the bubble with the size of D),, since
larger eddies have the tendency to transport the bubble rather than to break it
and smaller eddies do not have enough energy to break it. Azbel and
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Athanasios (1983) developed the following expression for the number of
eddies as a function of wave number.

dn,(k,)
dk

e

= 0.1k} (11-94)

where N, (k,) denotes the number of eddies of wave number k, (=2/D, )
per volume of fluid. Here, the number of eddies of wave number per volume
of two-phase mixture, n, (ke) , is given by

n,(k)=N,(k)(1-«,). (11-95)

Following the kinetic theory of gases (Loeb, 1927), the bubble-eddy random
collision frequency, f;,, can be expressed by assuming the same velocity of
bubbles, u, as a function of the surface available to the collision, Sy, and
the volume available to the collision U,

S
fu = ——ZBUB : (11-96)
B

Taking account of the excluded volume for the bubbles and eddies, the
surface and volume are given by

D, D,
4 dn
f " [ " 2) "
f dn, (11-97)
24ag R, (Ce)

Sy

=4rN,D} - Fy(c,)=V

[ n, (11-98)
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= 4ﬂBFV (ce)V (aB,ma,z - ag)

where Fy(c,) and F, (c,) are functions of ¢, defined by D, /Db . The
variable (35 (<1) is introduced into the excluded volume in order to take
account of the overlap of the excluded volume for high void fraction region.
Although it may be a function of the void fraction, it is treated as a constant
for simplicity. The distortion caused by this assumption will be adjusted by
a tuning parameter in a final equation of the bubble breakup rate as
introduced later.

According to Kolmogorov’s Law (Azbel, 1981), for the inertial subrange
of the energy spectrum, the eddy velocity, u, , is given as

ul = 8.2(5/ke)2/3 or u, = 2.3(5De)1/3. (11-99)

Here, taking account of the relative motion between bubble and eddy, the
averaged relative velocity, uy, can be expressed as

uy = 7, (c,)(eD,)" (11-100)

where v, (ce) is a function of ¢,. Finally, we obtain

7 ]/3
c
£ = 2735( )t (11-101)
D, (aB,ma-z - ag)

where v} (ce) and o .. are an adjustable variable depending on ¢, and
maximum allowable void fraction, respectively. The maximum allowable
void fraction, oy, , in Eq.(11-101) can approximately be taken at the same
value as o, , namely, 0.741, if eddies with almost the same size of
bubbles are assumed to break up the bubbles. Consequently, the functional
form of the frequency of the bubble-eddy random collision, Eq.(11-101)
looks similar to that of the frequency of the bubble-bubble random collision,
Eq.(11-88).

In order to obtain the bubble breakup rate, it is necessary to determine a
breakup efficiency, A\;. The breakup efficiency is given in terms of the
average energy of a single eddy, E , and the average energy required for
bubble breakup, F,, as (Prince and Blanch, 1990; Coulaloglou and
Tavlarides, 1977; Tsouris and Tavlarides, 1994)
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Ag = exp[~%]. (11-102)

e

For binary breakage, that is, the bubble breaks into two bubbles, the
required energy, £, is simply calculated as the average value of the energy
required for breakage into a small and a large daughter bubble as follows

Ey = oD}, +moD; . —noD;. (11-103)

The average values of the breakup energy for two extreme cases are
calculated by  averaging Eq.(11-103) from D, =D, 27
(Dypia = D,/2" ) t0 D, = D, (D, = 0) to be 0.200m0D; and by
setting D, .. =D, . =D,/2" to be 0260r¢D} . Thus, the breakup
energy, EB , is approximated to be 0.230m0 D} by averaging the breakup
energies for two extreme cases. It should be noted here that the relative
difference between E, (=0.230mcD; ) obtained by averaging Eq.(11-103)
and E, (=0.260moD} ) assuming the binary breakage into two equal-size
bubbles is about 13 %. Therefore, the assumption on the size of small and
large daughter bubbles may not affect the estimation of £, significantly.

The average energy of single eddies acting on the bubble breakup is
simply calculated from

Te,max
f edn,
n,

B o= lems (11-104)

T max
f dn,
n,

‘e,min

where e is the energy of a single eddy given by
e=—mu. (11-105)

In this, m, is the mass per a single eddy. From Egs.(11-94), (11-95), (11-
99), (11-104) and (11-105), the average energy of single eddies acting on the
bubble breakup is then given by
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Te, max kz,m&x —
[ edn,  0.586mp,e” (1~ a,) j; k, Pdk,
E —_ ne,min —_— ‘e, min

e Thg max - e roax 2
[ an, 0101 —a,) [ ~ K dk, (11-106)

‘e, 10in R

23 iys 1~ c:/ ?
- 1.937T[)f€ Db 0’3—_1—.

e

Prince and Blanch (1990) set the minimum eddy size, which would not cause
bubble breakup, at eddies smaller than 20 % of the bubble size, cf: =0.2.
Thus, the average energy of single eddies is expressed by

2/3

E, = 0.1457p,e°D,". (11-107)

The final form of the breakup efficiency is then given by

Ko
Ag =€xp| ———2—~ 11-108
B p( pr:/382/3 ] ( )

where K, is a constant to be 1.59 (=0.230/0.145).
The increase rate of the interfacial area concentration, ¢, , is then
expressed as

2
1
b = @[_a-j—] frm A
(11-109)
| Iya,(1-a,)e” exp[ Ko ]
— 573 - 53 2/3
Db/ (aB,ma.x - ag) prb/ E/

where [, is an adjustable variable. The adjustable variable, /5, would
certainly be a function of the overlap of the excluded volume, the bubble
deformation, the bubble velocity distribution, and the ratio of eddy size to
bubble size. However, the adjustable variable might be assumed to be a
constant for simplicity and is determined experimentally to be 0.0209 for
bubbly flow.

It should be noted here that for one-dimensional analysis the energy
dissipation rate per unit mass is simply obtained from the mechanical energy
equation (Bello, 1968) as



11. Constitutive Modeling of Interfacial Area Transport 275

(&) = %Q[—fg) (11-110)
m ¥

where j, p,., P and z denote the mixture volumetric flux, the mixture
density, the pressure, and the axial position from the test section inlet,
respectively.

1.2.3 Source and sink terms modeled by Hibiki et al. (2001b)

Hibiki et al. (2001b) discussed the main mechanism of the interfacial area
transport in a relatively small diameter tube at low liquid velocity where the
bubble breakup is negligible. Here, a relatively small diameter tube is
defined as a tube with a relatively high bubble size-to-pipe diameter ratio. In
such a relatively small diameter tube, the radial bubble movement would be
restricted due to the presence of the wall resulting in insignificant bubble
random collision, whereas the bubbles are aligned along the flow direction
resulting in significant wake entrainment. Thus, Hibiki et al. (2001b)
developed the sink term due to the bubble coalescence considering the
dependence of the bubble coalescence mechanism on the tube diameter.

A. Bubble coalescence due to random collision
The same model as in Hibiki and Ishii (2000a) was used.

JAPE R K p1/2 DY
bpe = — B e exp|——2- 1/2b (11-111)
D, (ao’max — ag) o

B. Bubble coalescence due to wake entrainment
The model was developed by modifying the model proposed by Wu et al.
(1998).

K 1/2D5/6 1/3
O = —FWECZSafvr exp [— ——Cgf—V}—E—— (11-112)
g

where [, and K, are, respectively, an adjustable parameter
experimentally determined to be 0.082 and the experimental constant
determined to be 1.29 for an air-water system.

C. Effect of tube size on interfacial area transport mechanism
The above simple consideration suggests that the major mechanism of the
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bubble coalescence in a relatively small diameter tube would be wake
entrainment. However, experimental data (Hibiki and Ishii, 1999; Hibiki et
al., 2001a) suggested that the bubble coalescence mechanism of bubbly
flows in medium pipes (25.4 mm < D < 50.8 mm) could successfully be
modeled by considering the bubble random collision induced by liquid
turbulence. Thus, the bubble coalescence mechanism is likely to be
dependent on the ratio of bubble diameter to tube diameter, D,/D. For
example, a trailing bubble should certainly exist in a projected area of a
leading bubble for D, /D=0.5. Also, if the leading bubble rises in the center
of the channel, the trailing bubble should certainly exist in the projected area
of the leading bubble even for D, /D =(0.33. In a small diameter tube, since
the radial bubble movement would be restricted due to the presence of the
wall, the bubble coalescence due to bubble random collision is unlikely to
occur. Thus, as the ratio of bubble diameter to tube diameter increases, the
dominant bubble coalescence mechanism is expected to change from the
bubble random collision to the wake entrainment. This suggests the
following functional form of the sink term for bubbly flows in small and

medium tubes.
D, i
l—exp{f[D]H (11-113)

The function, f (Db /D) , may be approximated based on experimental data
as

b = buo 0w £ %)) + s

5
f[%} — 1000 2] (11-114)

The interfacial area transport equation taking account of the tube size effect
would be promising for predicting the interfacial area transport of bubbly
flows in small and medium tubes.

1.3 Modeling of source and sink terms in two-group
interfacial area transport equation

The interfacial structures in different flow regimes change dramatically.
For cap bubbly, slug and churn-turbulent flows, bubbles are divided into two
groups according to their geometrical and physical characteristics. The
spherical and distorted bubbles are categorized as Group 1, and the cap, slug
and churn-turbulent bubbles are categorized as Group 2. These two groups
are subject to different coalescence/disintegration mechanisms. Therefore, a
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two-group interfacial area transport equation needs to be introduced and the
bubble coalescence and breakup processes should be modeled properly. In
this section, some two-group models are explained briefly.

1.3.1 Source and sink terms modeled by Hibiki and Ishii (2000b)

Hibiki and Ishii (2000b) developed the two-group interfacial area
transport equation at adiabatic bubbly-to-slug transition flow in a moderate
diameter tube and evaluated it using a vertical air-water flow data taken in a
50.8 mm-diameter tube (Hibiki et al., 200la). In what follows, the
classification of interfacial area transport mechanisms and the modeled
source and sink terms are explained briefly.

A. Classification of interfacial area transport mechanisms
The boundary between Group-1 and Group-2 bubbles can be determined
by (Ishii and Zuber, 1979)

D, =42 (11-115)
gap

where D_.. is the volumetric equivalent diameter of a bubble at the
boundary between Group-1 and Group-2 bubbles. Equation (11-115) gives
the value of about 10 mm for air-water system at atmospheric pressure.

To model the integral source and sink terms in two-group interfacial area
transport equation caused by bubble coalescence and breakup, the possible
combinations of bubble interactions can be classified into eight categories in
terms of the belonging bubble group (see Fig.11-1): (1) the coalescence of
bubbles (Group 1) into a bubble (Group 1); (2) the breakup of a bubble
(Group 1) into bubbles (Group 1); (3) the coalescence of bubbles (Group 1
and 2) into a bubble (Group 2); (4) the breakup of a bubble (Group 2) into
bubbles (Group 1 and 2); (5) the coalescence of bubbles (Group 1) into a
bubble (Group 2); (6) the breakup of a bubble (Group 2) into bubbles (Group
1); (7) the coalescence of bubbles (Group 2) into a bubble (Group 2); and (8)
the breakup of a bubble (Group 2) into bubbles (Group 2). As summarized
in Table 11-1, Hibiki and Ishii (2000b) considered the three major bubble
interactions: (1) the coalescence due to random collisions driven by
turbulence; (2) the coalescence due to wake entrainment; and (3) the breakup
upon the impact of turbulent eddies. They assumed that the bubble
coalescence due to the shearing-off of cap or slug bubbles might be
insignificant at bubbly-to-slug transition flow. They also assumed the
bubble breakup due to surface instability could be neglected in a moderate
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Table 11-1. List of intra- and inter-group interaction mechanisms in the model by Hibiki and
Ishii (2000b)

Symbols Mechanisms Interaction Parameters
1(21)0 Random collision (OH+HD)—(1) FRo,l =0.351, KRC,l =(.258
022) Wake entrainment  ()+@)—~(1) Ly, =249, Ky 1, =0.460
@ Wake entraimment QD)@ Ly, =637, Ky, 0258
{0 Tutbulent impact  (1)—(1)+(1) Lppy =112, Ky =685
2 Tubulentimpact ~ @)—@+(1) gy =317, Kpy p=117
(212) Tutbulent impact  (2)—(2)+2) Ipy,=4.26, Kpp,=6.85

diameter tube where the tube size is smaller than the limit of the bubble
breakup due to surface instability.

Hibiki and Ishii (2000b) developed the two-group model with the
necessary inter-group coupling terms due to turbulent impact and wake
entrainment as well as source and sink terms due to wake entrainment and
turbulent impact in Group 2 (see Table 11-1). Here, some other mechanisms
such as coalescence due to random collision between cap bubbles are
excluded because the model is developed for bubbly-to-slug transition flow
in a moderate diameter tube. In such a condition, cap and slug bubbles
would rise around the tube center resulting in a minor role of random
collision between cap bubbles. Two more mechanisms are also omitted in
this model. They are interchange terms due to the complete breakup of a cap
bubble (Group 2) into small bubbles (Group 1) and the coalescence of small
bubbles (Group 1) into a cap bubble (Group 2). Since the ratio in diameter
of cap bubbles to small bubbles is about 10 to 20 in the experimental
conditions of the database (Hibiki et al., 2001a), these interchanges of
bubbles are unlikely to occur. Eventually, six terms listed in Table 11-1 are
considered as source and sink terms in the two-group interfacial area
transport equations to be applied at the bubbly-to-slug transition flow in a
moderate diameter tube.

B. Simplified two-group interfacial area transport equation

Here, an isothermal flow condition is assumed. In addition, the
coefficient y is neglected. It is due to the fact that there is very little portion
of bubbles at the group boundary that could transfer to the other group
simply due to expansion. Thus, two-group interfacial area transport equation
is simplified as



11. Constitutive Modeling of Interfacial Area Transport 279

ola,.p
(8gt1 g) +Vv ( Xg1Py gl) Py (nv‘l’é’z +77(212)) (11-116)
6a11+v ( v.):2a 60égl+v ( ) )
ot B ot Gt (11-117)
¢(1) ¢ (12,2) ¢(l) ¢(2 ,12)
8a12+v (a v.)zg% %+v.(a v )
ot ) =, ot o (11-118)

(2) + ¢(2)

C. Summary of modeled sink and source terms

The modeled sink and source terms are summarized as follows. In the
one-dimensional formulation, all the two-phase parameters, such as « 00 Qs
and D, are area-averaged values. For simplicity, the ( ) signs standing
for the area-average are omitted in the following formulations.

Bubble coalescence due to random collision

I 81/3 K 12 D5/6 13
Re = g exp|— RC‘p’1/2 (11-119)
Db,l (aC,max - ag) o
Bubble coalescence due to wake entrainment
(122) _ F wE, 1201 %2
g DD, )
b1 b2
5 (11-120)
P;fz Db,lDb,2

X exXp _KWE,126 3

Db,l + Db,2
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Ty 0, D;,pp*
(21)3 = ~_'"_~’_‘g—(v_<;2 - vf)eXp —Kypa ’Usf (11-121)
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g (11-122)
32
Py Dy, D, ,
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Bubble breakup due to turbulent impact
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T = 5B CXP|—— 53 23 (11-123)
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The values of the coefficients in the source and sink terms are listed in Table
11-1.

1.3.2 Source and sink terms modeled by Fu and Ishii (2002a)

Fu and Ishii (2002a) developed the two-group interfacial area transport
equation for bubbly flow, slug flow, and churn-turbulent flow in a moderate
diameter tube and evaluated it using a vertical air-water flow data taken in a
50.8 mm-diameter tube. In what follows, the classification of interfacial
area transport mechanisms and the modeled source and sink terms are
explained briefly.

A. Classification of interfacial area transport mechanisms

Fu and Ishii (2002a) adopted five major bubble interactions: (1) the
coalescence due to random collisions driven by turbulence; (2) the
coalescence due to wake entrainment; (3) the breakup upon the impact of
turbulent eddies; (4) the breakup due to shearing-off; and (5) the breakup of
large-cap bubbles due to flow instability on the bubble surface. In view of
the complexity for incorporating all source and sink terms into the interfacial
area transport equation and the difficulty of experimental verification, they
performed an analysis to simplify the interaction terms according to their
nature and the order of magnitudes. It is verified from experiments that the
majority of inter-group interactions is caused by the wake entrainment and
the shearing-off of Group-1 bubbles to and from the Group-2 bubbles (Fu
and Ishii, 2002a). In addition, the wake entrainment between Group-2
bubbles predominantly governs the Group-2 bubble number which
significantly affects the flow structure and intensiveness of inter-group
interactions. The Group-2 bubble disintegration due to surface instability is
significantly enhanced by the high turbulent intensity and active eddy-bubble
interaction in the wake region of the slug bubbles.

The random collision between Group-1 and Group-2 bubbles may be
included into the wake entrainment of Group-1 into Group-2 bubbles due to
the similar nature. In addition, the contribution from the collision of Group-
1 bubble at the head of Group-2 bubble could be small due to the lower
Group-1 bubble number density and lower turbulent intensity outside the
wake region. Meanwhile, the random collision between Group-2 bubbles
could also be negligible in a moderate diameter flow (2.5 cm < D < 10 cm)
because the predominant interaction is normally within a wake region of the
leading bubble, and the coalescence mechanism can be treated as wake
entrainment between Group-2 bubbles. Similarly, the turbulent
disintegration that results in a generation of the Group-1 bubble from the
Group-2 bubble can be seen as part of the shearing-off effect and might not
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Table 11-2. List of intra- and inter-group interaction mechanisms in the model by Fu and Ishii
(2002a; 2002b)

Symbols Mechanisms Interaction Parameters
}?C Random collision (DHD—(1) Cro=0.0041, Cp=3.0
052) Random collision  (1)+(1)—(2) Oty an =075
8 Wake entrainment ~ ()H(1)—(1)  Cyyp=0.002, CYr?=0.015
PO Wake entrainment  (1)+(1)—(2) CY) =100
PU2 Wake entrainment ~ ()+2)—(@2)  Cy; =0.0085, We,, 6.0
) Wake entrainment  (2)H2)—(2) Cyp=0.031, g, =0.032
g} Turbulent impact D)—HD) Bgo =16
,_(pi-) Turbulent impact 2)—2)+Q2)
212) Shearing-off @—@HD)

need to be modeled individually. Furthermore, the disintegration of Group-2
bubbles due to surface instability is considered to be very small and can be
combined with the disintegration of Group-2 bubbles induced by turbulent
impact. Eventually, nine terms listed in Table 11-2 are considered as sink
and source terms in the two-group interfacial area transport equations to be
applied at the bubbly, slug and churn-turbulent flows in a moderate diameter
tube.

B. Simplified two-group interfacial area transport equation

Here, an isothermal flow condition is assumed. In addition, the
coefficient ) is neglected. It is due to the fact that there is very little portion
of bubbles at the group boundary that could transfer to the other group
simply due to expansion. Thus, two-group interfacial area transport equation
is simplified as

Ola,p
(391; 9) + V'(aylpg'vgl)

11,2 11,2 12,2 2,12
= —p, (n5e? + 1 + i + i)

(11-127)
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da, 2 q, |Oa,
4 Ve(a,)=="2—2L 4V (av
ot (av) 3a,| 0t ( Yot gl) (11-128)
+¢1(11)C + (ngéZl) ¢(l) ¢(112 (12 2) ¢(1) §20 112)
Oa;y 2 a, |Oay,
24+ V- — 4+ V. v
8 ( ’l' ) at ( 92 92> (11_129)

+¢§201§) ¢(112 ¢ (112) +¢(122

C. Assumed Group-2 bubble shape and bubble number density
distribution

Group-2 bubbles consist of cap and slug bubbles. Bubble shapes are
subject to the wall effects when the diameter ratio D, /D exceeds certain
limits, where D, . is the bubble cross sectional dlameter and D is the

tube diameter. In addition, there are two important parameters that are
considered crucial for determining the bubble shape. They are the viscosity

1/2
number given by N, = u, / (pfo' /g/gAp) , and the length-scale ratio

number given by D" = D/ [0/gAp . According to Clift et al. (1978), when
D, o5 /D < 0.6, the walls cause little deformation on the cap bubble shape
as in an infinite medium. In this case, the shape of cap bubbles can be
closely approximated as a segment of a sphere, and the wake angle is nearly
50°. When the diameter ratio D, /D exceeds a value of about 0.6, the
tube diameter becomes the controllmg length governing the frontal shape of
a bubble and then the bubble is called a slug bubble. The definitions of the
geometrical parameters, including cross-sectional radius, a , the bubble
height, h, and the wake angle, 6, are shown in Fig.11-4. It is shown (Clift
et al., 1978) that the slug can be considered to be composed of two parts, a
rounded nose region whose shape is independent of the slug length and a
near-cylindrical section that is surrounded by an annular film of the liquid.
It is also verified that for N <0.032and D >10, the viscosity and surface
tension forces are neghglble and the bubble shape on the potential flow
theory can be well apphed The air-water flow in a moderate diameter tube
(N,;=2.36X 10 and D" =19 for a 50.8 mm-diameter tube) satisfies the
above requirement. Therefore, the bubble shape can be predicted based on
an application of the Bernoulli equation (Mishima and Ishii, 1984).

A simplified bubble number density distribution is given in Fig.11-5. It
is assumed that all the bubble groups have flat number density distributions
in the corresponding bubble volume range. The values of the distribution
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Figure 11-4. Definition of the geometrical parameters for cap and Taylor bubbles (Fu and
Ishii, 2002a)

!
N
Je
. |
: .
Vl,lllill Vl,max Vc,min Vc,max Vs,mu

( Vs,min)

Figure 11-5. Tllustration of the simplified bubble number density distribution (Fu and Ishii,
2002a)

function are denoted as f, f,, and f, for Group-1 bubbles, cap bubbles, and
slug bubbles, respectively.

D. Summary of modeled source and sink terms

The modeled source and sink terms are summarized as follows. In the
one-dimensional formulation, all the two-phase parameters such as «,, @;,
and Dy, are area-averaged values. For simplicity, the () signs standing for
the area-average are omitted in the following formulations.
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Bubble coalescence due to random collision

e = (AL R
for = (6AS™) RiL
112) < 14.5112)> (1)

anéz) <(5V“2)> R(l)

where
2 2
W _ o u,my;" Dy
RC RC} 1/3 /3 1/3
gl,max agl,max ayl
1/3 1/3
o o
x|1 —exp|—C, —————l/gl’m‘” y11/3
a_ql,ma.x - a
n, = 1 a
1=
367T a
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(11-130)

(11-131)

(11-132)

(11-133)

(11-134)

(11-135)

The turbulent fluctuation velocity (or root mean-squared velocity), ut , 18
composed of the isotropic turbulence intensity, ut ot and the wake

turbulence intensity, u as

t,wake ?

2 2 2
u’t - ut,isat + ut,wa,ke

utz,isot = (gDSml )2/3

(11-136)

(11-137)
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D’ 1/2

Upyare = 0.056C, [V—J K (11-138)
where
C, = 294p (11-139)
Pt
« V.

V, == 11-140
T Ve (11140

C V*1/2
%:Fww~yz (11-141)

Here, the constant C/;. is set at 1.8536. When Dy, , > 83338 X 10% m,

(640") = DI, |-3.142D)® +2.183D;° — 0.395D.

* (11-142)
+3.392(0.579D; —1)" 3}

(5409 = D2, (8.82 +2.035(0.579D; 1)

~5.428D}"]

(11-143)

(645"9) = D, (6.462 — 2.182D, +0.395D;") (11-144)

() = D},£(0.603+ 0.349D}%) (11-145)
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¢ =2(1-0.2894D.%) . (11-146)
Otherwise,
(645" =1.001D;,, (11-147)

and <6A,.(1“’2)>R, <5Af;1*2)>ﬂ, <5V(“’2)>R are all equal to zero.

Bubble coalescence due to wake entrainment

0 =<5Ay~(1“'l)>R . (11-148)
¢v(‘1’12) <5AI<112)> Ré‘l,}; (11-149)
112) <54(112)> Rv(}/ (11-150)
«12 O QL
%? O%Z)K%ZI)V 1/2__11_0422_,%1)&"1*1 (11-151)
92
(122) Cv(;lngz)Ké;l/éZz)V*l/z Oy (11_152)
| e
—2331e,,V.?
5 =ikt - | 2
1 (11-153)

0.06C, (amZ/agZ — l)
X|exp 7 -1

8
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i = (V) R (11-154)

*1/2 aglag2

M = Ol K Ve (11-155)
where
= CysCh Dty (11-156)
A
u, ~ |9Dsm AP (11-157)
3C) Py
2 Ap (1417671 -« )2‘62
Cp = % Dy |- : (11-158)
3 o | 18.67(1-ay)
K2 = 370, D" (11-159)
K§2) = 270, D "a,Y? (11-160)
K2 =10.24D%? (11-161)
K29 = 0.57C, D" (11-162)

<5A,-(1“‘2) >H, <6Ai(1“’2) >H, <6Ag‘*2) >E, and <6V(“’2) >R are the same as those in

Eqs.(11-142)-to-(11-145) and (11-147). The maximum cross-sectional void
fraction of a slug bubble, «,,, can be specified as 0.81 for most conditions
and C, is the adjustable parameter determined to be 0.1.
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Bubble breakup due to turbulent impact
Cn

uta’il2 [ We,_.; }1/2 [ Wecm‘t]
1— - exp|——=%|,
18 | a, We We
o]
T |\We' > We,,
0, We <We,,

where We is the Weber number defined by

2
s _ Psly Dy
o

We

2 2 3 |1 — 0y — ayy
’.S‘I) = CTIZK;I)agZ‘C;/ v, . .
l—ag2

where

5/3

D

c

1/2
aZ,ma.x'D

KP =D"'1-

X

m2 m2

4/3 1/3
1438-+1J57a“3[££@J __1595a»V6[££mJ
D D

V. can be determined by

1.35D
D, ., = . R
1+6.86V, —2.54V,
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(11-163)

(11-164)

(11-165)

(11-166)

(11-167)

It is observed from experiments that for moderate and small diameter pipes,
the ¢{? term is very small compared with other three mechanisms.
Therefore, it could be neglected to simplify the equation for application (Fu

and Ishii, 2002b).



290 Chapter 11

Bubble breakup due to shearing-off

5 = CaoK a0V, *° (1-0.6535k,,) &sore,” (11-168)

os = —CsoKiona,,V, '° (1—0.6474k, ) k3> (11-169)
s, = CsoK@Pa,V, 1 (1 - 0.6474ky, ) k}/° (11-170)

where
€so = |1 —exp _'Yso[ 2 ]ﬁw Wew “1 (11-171)
Qy — Oy We,

ki = (D 0, 5%07C, 2V, 7, )1/ ' (11-172)
K& = 0.5755C,%)/° [:—If)]s/s (11-173)
K@), = 4.43320,0,° D a)2C 43 (11-174)
K3 =1.1083,/°D*°C 4 (11-175)

where v, is the kinematic viscosity of the gas phase. The values of the
coefficients in the source and sink terms are listed in Table 11-2.

1.3.3 Source and sink terms modeled by Sun et al. (2004a)
Sun et al. (20042) developed the two-group interfacial area transport

equation for bubbly flow, cap-turbulent flow, and churn-turbulent flows in a
confined channel and evaluated it using a vertical air-water flow data taken
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Table 11-3. List of intra- and inter-group interaction mechanisms in the model by Sun et al.
(2004a; 2004b)

Symbols Mechanisms Interaction Parameters
0 Random collision  (I)H(1)—~(1)  C).=0.005, C%% =0.005
02 Random collision  (1}H(1)—(2) C%), 20,005 Cppy =3.0
1(312’2) Random collision WOHD—©2) C Ro2 =30
) Random collision  2)+2)—(2) O =0.002, CY2?=0.002
é‘l,-)E Wake entrainment (DHH1)—(1) Cv%)a =0.005

o Wake entrainment ~ (1)+(1)—(2) CH)=0.03, C¥=0.02
gl Wake entrainment  (0+@)—@)  Wey, 771 =6.5, We, 71,70
2 Wake entrainment ~ @)H2)—(2)  Clgp=3.8%10%, C,=4.80
{0 Turbulent impact  (1)—(1)+(1) We,, ;.50 =4500
(210 Tutbulent impact ~ (2)—(1}H(L)
;21’12) Turbulent impact @)—()+(2)
2 Tutbulent impact  (2)—(2)+(2)
217) Shearing-off @)—2)H1)
) Surface instability  (2)—>(2)+2)

in a rectangular channel with the width, W, of 200 mm and the gap, G , of
10 mm. No stable slug flow regime was observed in the test section due to
the large width of the test section (Sun et al., 2004a). In what follows, the
classification of interfacial area transport mechanisms and the modeled
source and sink terms are explained briefly.

A. Classification of interfacial area transport mechanisms

Sun et al. (2004a) adopted five major bubble interactions: (1) the
coalescence due to random collisions driven by turbulence; (2) the
coalescence due to wake entrainment; (3) the breakup upon the impact of
turbulent eddies; (4) the breakup due to shearing-off; and (5) the breakup of
large cap bubbles due to flow instability on the bubble surface. Fourteen
terms listed in Table 11-3 are considered as source and sink terms in the
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two-group interfacial area transport equation to be applied at the bubbly,
cap-turbulent and churn-turbulent flows in a confined channel.

B. Simplified two-group interfacial area transport equation

Here, an isothermal flow condition is assumed.

interfacial area transport equation is simplified as

Thus, two-group

d(ay,p
5 (11-176)
3 Oé
S+ + i) + (D) { o490,
Jay
L4+ V-
8t ( 1 zl)
2 * \2 a,.
:{E_X(D“) }— y L+ V- (ay,) (11-177)
ke + $hod + Bk + Sy + o5 + o + oD
Og, 2 Gy O,
6t2 +V- ( 12vi2) (91? + V- ( gzvg2>
\2 a, |Oa
+x(DL) 5+ V- (aglvgl) +¢4s +dhey  (L-178)
g1
SO+ 0D + 0D + o+ o0+ 0B + o)

C. Assumed Group-2 bubble shape and bubble-number density

distribution

In order to model source and sink terms analytically, the bubble shape
should be simplified. For Group-1 bubbles, spherical shape can be assumed.
For Group-2 bubbles, however, the unique geometry of the test section of
interest should be accounted for. Since the boundary between Group-1 and
Group-2 bubbles defined by Eq.(11-115) is approximately 10 mm in an
adiabatic air-water system at atmospheric pressure, the cap bubbles are
assumed to be sandwiched between the two parallel flat walls such that the

cap bubbles have a thickness of GG, as shown in Fig.11

-6. Here, R and 2a
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A A

Figure 11-6. Definition of the geometrical parameters for a cap bubble (Sun et al., 2004a)

Group 1 ;. Group 2

fl .........

fa

> )
lel\ vV 1,max Vc Vz,max Vc,m ax

Figure 11-7. Nllustration of the simplified bubble number density distribution (Sun et al.,
2004)

are the radius of curvature and the base width of a cap bubble, and 6, is the
wake angle. A 50° wake angle is assumed as a reasonable approximation for
all Group-2 bubbles in the flow conditions of interest in view of the wake
angle correlation given by Clift et al. (1978). Furthermore, in view of the
characteristic feature of the confined flows as well as the underlying physics,
2a is chosen as the characteristic length that determines the group boundary
and the maximum stable bubble size.

A simplified bubble number density distribution is given in Fig.11-7. It
is assumed that all the bubble groups have flat number density distributions
in the corresponding bubble volume range. The values of the distribution
function are denoted as f, and f, for Group-1 bubbles and Group-2 bubbles,
respectively. In the figure, V. is the volume for the minimum bubbles in
the system, and V,, . is the volume of the maximum stable bubble, which
corresponds to
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—40 -2 (11-179)

It should be noted, however, that bubbles of this size might not exist in the
system and D, . solely provides an upper limit for the maximum bubble
size possible, beyond which the bubbles are assumed to disintegrate
instantaneously. V), and V, . are the maximum bubble volumes for
Group 1 and Group 2, respectively, for a given flow condition by assuming
the uniform bubble number density distribution. Furthermore, V, is the
critical bubble volume at the boundary for Group-1 and Group-2 bubbles,
which corresponds to D, ,, beyond which bubbles become cap-shaped and
are categorized as Group-2 bubbles. The boundary between Group-1 and

Group-2 bubbles can be determined for the narrow channel by

1/3
D, =11G" [—‘7—] (11-180)
gAp

where D .. is the volumetric equivalent diameter of a bubble at the
boundary between Group-1 and Group-2 bubbles.
D. Summary of modeled source and sink terms

Bubble coalescence due to random collision

1/3 1/3a5/3

o _ () €' Oy Gy
RC — _0-170120 3 3 3
Q1 maz (agl,ma,x — 0y )
(11-181)
13 Y3
1 C agl,ma.zagl
XL—exp\~Cper—m 15
glymaz agl
a 042/ 3a2
12,2) 12,2) 13 Yin®g1 “g2
Gon = —4.85C55e! S0t
p (11-182)
1,maz 1
x|l — exp 'CRCI —1‘/%‘"1'—-2—1/3—
( glmaz agl )
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where R, .. is the radius of curvature of the maximum bubble in the
system by assuming a uniform bubble number density distribution as

R, e ~1.915D,, , (11-183)

for the application of Sun et al. (2004a).

O42 (1,2/3
112) _ @ 3 1%41
e = 0.68CLe” —2

G
1/3 1/3
[CEe
x|l — exp| ~Chpey —2 2
O — (11-184)
1/2 _1/3
x|1+0.7G7° | 2 [L] 1— ED;]
a, gAp 3
for D), < 1.5
(12,2) 122) 1/ / 2 10.3G
Prcs = 13.6C5 2/3 1+ R,.
(11-185)
1/3 13
ag/l,mawag/l

13 3

x|l —exp|-Chre,
( gl,maz agl)

21/3

9.0G

@ = —13.60%) s ]
ez ) (11-186)

e Baac » [1—2.01%;‘2 +

x[l — exp (—CRC204;/22 )}

where

Dcrit/z
’ R),mm

(11-187)
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Bubble coalescence due to wake entrainment
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(11-188)

(11-189)

(11-190)

(11-191)

(11-192)

] (11-193)
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2

@ = ~15.90% — = [Cr9C (1+ 0.51R]) (11-194)

,Maz

i = 5.40C859u, C, P o a, [1—§D:1] for D <1.5 (11-195)

O{glagz

Tyea = 4.35C5"JCp,9G (11-196)
Bubble breakup due to turbulent impact
f 53
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(4

Gelfﬂ Rcw/s (1 . R*S/s)

ney = —034CHa , (1 _ ag)

5/3
Ry o (11-200)
X exp|— Wem't,m 1— Wecn‘t,TIZ
e, We,
Bubble breakup due to shearing off
3
@,V We,_.
&) = 64.51C,,C)F 211 — |0 (11-201)
GRZ,maz WeZ,maz

where v, and We,, ¢, are the relative velocity of the large bubble with
respect to the liquid film near the cap bubble base and the critical Weber
number, respectively, and We, ., is defined by

2002
We, gy = L 2maz s (11-202)
- g

In upward flow in round tubes, when a large cap or slug bubble rises, the
liquid phase is pushed away and flows downward as a liquid film between
the bubble side interface and the wall. However, in the flow channel
considered by Sun et al. (2004a), when a large cap bubble rises, the liquid
film between the bubble side interface and the wall may remain almost
stagnant since more free space is available for the liquid phase in the width
direction of the flow channel. This may be even truer when the cap bubble
velocity is high and the shearing-off occurs. In view of this, the relative
velocity of the cap bubble with respect to the liquid film around the bubble
base, v,,, may be estimated by the velocity of Group-2 bubbles in the main
flow direction.

35
g (87
{52 = ~21.50C,C; [Ff e
, , \ (11-203)
|1 — We it n 3.24G | 1— We 50
WeZ,maz RQ,max WeZ,maz
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, (11-204)
11— Weg,s0
We, ,
Bubble breakup due to surface instability
o ) P\
2 =1.2507, [——-] cP, —2-[———]
94p W= g94p (11-205)

x{l - exp(—C‘RCZOz;/Z2 )} +2.3 % 10‘40‘%‘/C’DQG]

The values of the coefficients in the source and sink terms are listed in Table
11-3.

Inter-group transfer coefficient at group boundary
The inter-group transfer coefficient at group boundary is determined
experimentally as

0.36
x = 4.44x107° %ﬂ] ay (11-206)

crit

This correlation is obtained based on the limited experimental database (Sun
et al.,, 2004a). Nevertheless, in general cap-turbulent and churn-turbulent
flow, the value of v is usually between 0.05 and 0.40. Therefore, the
correlation may be applicable to most of these flow conditions since the
database by which the correlation is developed covers the similar range of

agl’
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HYDRODYNAMIC CONSTITUTIVE RELATIONS
FOR INTERFACIAL TRANSFER

In analyzing the interfacial force and relative motion between phases,
consider first, the momentum equation for each phase. Under the
assumption that both the average pressure and stress in the bulk fluid and at
the interface are approximately the same, the k-phase momentum equation is
given by

—=(0v, . _ - — =
Oy Oy [‘67’6 + U V"’k] = -4 Vp, + V- [O‘k (@ + @T)

+akp=kg+Mik +("/’; _'ﬁ;)Fk — Ve, - @,

(12-1)

where &, @, &, , and M, are the average viscous stress tensor, the
average turbulent stress tensor, the interfacial shear stress, and the
generalized interfacial drag force. The conservation of the mixture
momentum requires

> M, =0 (12-2)
k

which is the modified form of the average momentum-jump condition.
Constitutive equations of the average turbulent stress tensor and the
generalized interfacial drag force are required to analyze two-phase flows
using the two-fluid model.

In a macroscopic two-phase flow analysis such as a one-dimensional
two-phase flow analysis, the average turbulent stress term may be neglected
except the wall shear contributions, whereas in a microscopic bubbly flow
analysis, turbulence models such as mixing length model and -¢ model has
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been attempted to estimate the average turbulent stress term. However, due
to the complexity of the two-phase flow turbulence, an accurate method to
predict the turbulence in two-phase flow has not been established well.

In the two-fluid momentum equation, the most important term to be
modeled by a constitutive relation is the generalized drag force M, which
specifies the interfacial surface forces. The simplest way to model this force
is to formulate as the linear combination of various known interfacial forces
as

M, ="L(F} +F +F} +F +F +F)
B, (12-3)
=M, + M; +M; +M; + M) + M;

where B, FP,F", F2 FL! F", and F” are the volume of a typical
particle, the standard drag force, the virtual mass force, the Basset force, the
lift force, the wall lift force and turbulent dispersion force for a typical single
particle, respectively.

The significance of the various terms in the equation is as follows. The
term on the left-hand side is the combined generalized interfacial drag force
acting on the dispersed phase. The first term on the right-hand side is the
skin and form drag under the steady-state condition. The second term is the
force required to accelerate the apparent mass of the surrounding phase when
the relative velocity changes. The third term, known as the Basset force, is
the effect of the acceleration on the viscous drag and the boundary-layer
development. The fourth term is the lift force normal to the relative velocity
due to rotation of fluid. The fifth term is the wall lift force due to the
velocity distribution change around particles near a wall. The last term is the
turbulent dispersion force due to the concentration gradient. In a
macroscopic two-phase flow analysis such as a one-dimensional two-phase
flow analysis, forces except the standard drag force and the virtual mass
force are not taken into account, whereas additional forces such as the lift
force and the turbulent dispersion force are also considered in a microscopic
analysis for three-dimensional flow.

In the present chapter, the constitutive equations for the interfacial
transfer and the interfacial fluid mechanics of multiphase flows are discussed
in detail following Ishii and Zuber (1979), Ishii and Chawla (1979) and Ishii
and Mishima (1984). In the following discussion, symbols designating the
time-average are omitted for simplicity except in the Section 1.4 of Chapter
12.
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1.1 Transient forces in multiparticle system

The forms of the two transient terms are not firmly established. Because
of their importance under transient conditions and for numerical-stability
problems, further research in this area is required.

The Basset force is given by

_ ag ]
67:1 \/ﬂ-pcl‘l’mf Df \/t—:z (12-4)

where (4, is the mixture viscosity. This term represents the additional drag
due to the development of boundary layer or viscous flow during a transient
acceleration of particles. The derivative D, /Dt is the convective derivative
relative to velocity v,. The subscripts ¢ and d stand for continuous phase
and dispersed phase, respectively. The detailed expression for mixture
viscosity is given in the Section 1.2 of Chapter 12. Due to its complicated
time-integral form, the Basset force is not considered in a practical two-
phase flow analysis. Some evaluation of this term for a higher Reynolds
number is given by Clift et al. (1978).

Zuber (1964a) studied the effect of the concentration on the virtual mass
force and obtained.

o, F) 1 142, D,
A gt Ty Ty, ). 12-5

Lahey et al. (1978) studied a necessary condition for the constitutive
equation for the virtual mass term. From the requirement of the frame-
indifference of the constitutive equation, they determined that the virtual
mass force F, should satisfy

Dv, Dyw
——=2L 4+ (1-XN)v, - Vo, 12-6
o Ty TAY (12-6)

v
F;

In view of Zuber’s study (1964a) on the effect of concentration and the
above frame-indifference condition, a new form for Eiv is proposed here.
Due to the acceleration of the particles relative to the fluid, the acceleratlon
drag arises. This should be proportional to the induced mass p, B and the
frame-indifferent relative-acceleration vector. Hence,
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F' = —pB, D]d)';d - ch)_’t’c +(1=A)v, Vo, |. (12-7)

The value of induced mass pcB; for a single particle in an infinite medium
can be obtained from potential theory. Hence, the limiting value of E{v at
a; — 0 for a spherical particle is

1 D, (v, —v,)
imF' =--pB, —4 ¢ ¢/
1 d 2P d Di

[
7} —0

(12-8)
From this limit, it can be shown that

lim B} = -~ B, (12-9)

lim A\ = 2. (12-10)

az—0

If A is constant in Eq.(12-7), the value of A should be 2.

The effect of the concentration on B; can be taken into account by the
method used by Zuber (1964a). Thus, from the solution for the induced
mass for a sphere moving within an outer sphere, B; , may be approximated
by

(12-11)

where «; is the volumetric fraction of the dispersed phase. Under the
assumption of A =constant, the constitutive equation for the virtual mass
force is obtained from Eqs.(12-7) and (12-11) as (Ishii and Mishima, 1984)

B, 2%, "’

o) 1 1420q, [de,
“\ Dt

-, - V'vc]. (12-12)

The above equation indicates that the virtual mass force F}V per particle
increases considerably with increasing particle concentration. This relation
implies that the effect of concentration on dynamic coupling can be scaled
by a factor of (1 =+ Zad)/(l — ad) . Mokeyev (1977) used an
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electrohydrodynamic analog method to determine the velocity potential
through an electric field potential and obtained an empirical function
B;/B,=0.5+2.1c, . The theoretical result of Eq.(12-12) compared
favorably with this correlation.

A correlation for the virtual mass force in a slug flow can be developed
from a simple potential flow analysis using a Bernoulli equation. First a
cylindrical bubble of length L, with diameter [, in a tube of diameter D is
considered, see Fig.12-1(a). Then the void fraction in a slug bubble section
is given by

_D

=2r (12-13)

a,

Slug Bubble

() Cylindrical Bubble

Slug Bubble

(b) Spherical-edged Cylindrical Bubble

Figure 12-1. Stug-flow model for virtual-mass-force analysis (Ishii and Mishima, 1984)
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and the average overall void fraction o, by

« =£a (12-14)
¢ =W

where L is the pitch. Now let the continuous phase accelerate with respect
to a bubble. This will generate a pressure force acting on a bubble due to the
acceleration along the film section. From a simple one-dimensional analysis,
this force can be found as

FY = Tpr,te 9%
4 "1—q, Ot

(12-15)

However, the volume of a bubble is given by B, = (7r/4) D?L,, thus the
virtual mass force per unit volume becomes

14
ofy _ e OV s, , 0% (12-16)
B, 1—o, Ot ot

Here the second form is obtained by approximating the void fraction in the
slug bubble section by oy, =~ 0.8.

The second case considered is a train of spherical-edged cylindrical
bubbles, see Fig.12-1(b). Application of the Bernoulli equation

2

oo d
< f—p + 02 +L = constant (12-17)
t p 2
where @ and (2 are respectively the velocity potential and the potential

function to this geometry under a relative acceleration yields

14
oy By _

B,

L, - D, ]] ov
5/0.66c, + 0.27 r 12-18

where a simplification has been made on an approximation o, = 0.8 (Ishii
and Mishima, 1981). For a limiting case of a train of spherical bubbles,
L, = D, the above equation reduces to

adFV Ov,
=-33 . 12-19
Bd adpc 3t ( )
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If L, >> D,, L, /L can be approximated by «, /oy, . Thus for long slug
bubbles, Eq.(12-18) essentially converges to the simple solution given by
Eq.(12-17). The virtual mass force for a slug flow given by Eq.(12-18) is
expressed in terms of the relative acceleration in the absence of a large
convective acceleration. However, if the convective acceleration can not be
neglected, a special convective derivative in the form of Eq.(12-7) may be
more appropriate. Thus for a general case,

adF:iV — __5

B,

L —D Do
0.66 0.27| = ! (dr— -V ] 12-20
o660, +027(B 2, (P, 9 |, 0220

This formula can also be applied to churn-turbulent flow.

Now the solutions for a dispersed flow, Eq.(12-12), and slug flow,
Eq.(12-18), can be examined by introducing an induced mass coefficient
C,, defined by

oF) _ . [de, vV ] 12-21
Bd Mpc Dt vr vc ( )
where
1 142«
2% . ‘ (Bubbly flow)
' d
e S0, 0.6 + 0.34] - /" e
.06 + 0. T — .
Q, 1= D, 31, (Slug flow)

A plot of C,, against v, is shown in Fig.12-2. The virtual mass force
increases with an increasing void fraction of a dispersed phase due to
stronger coupling between two phases. The intersection of the above two
solutions occurs at the void fraction between 0.66 and 0.75. For a lower
void fraction, the virtual mass force for a bubbly-flow is smaller than that for
a slug-flow. This implies that the vapor phase has less resistance to an
acceleration in a bubbly-flow configuration than a slug-flow configuration if
a; < 0.66. This may also suggest that an accelerating slug flow has a
tendency to disintegrate into a bubbly flow when o, < 0.66. For
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Figure 12-2. Virtual mass coefficient for dispersed and slug-flow regimes (Ishii and Mishima,
1984)

a,; > 0.66 a slug flow should be quite stable even under a transient
condition.

Due to a similarity in flow geometries, the virtual mass force for a churn-
turbulent flow may be approximated by the solution for a slug flow given by
Eq.(12-19). In a liquid-dispersed flow, the virtual mass force becomes
considerably smaller than that in a vapor-dispersed flow. This decrease is
caused by a change in the continuous phase density to be used in Eq.(12-12).
By changing p, from p; to p,, the virtual mass force for a droplet flow
becomes insignificant. This also indicates that the virtual mass force should
be reduced considerably in annular and annular dispersed flow.

1.2 Drag force in multiparticle system

The standard drag force acting on the particle under steady-state
conditions can be given in terms of the drag coefficient C}, based on the
relative velocity as

Fp = —% RV (12-23)
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where A, is the projected area of a typlcal particle and v, is the relative
velocity given by v, = v, — v,. Then F; is related to the interfacial drag
force by

D
FP = BM, ) (12-24)
Ay

Hence, the portion of M, represented by the drag force becomes

D
aly _ |, 4\Co . (12-25)
B, B,) 2

In what follows, a constitutive relation for the drag coefficient C), in
dispersed two-phase flows will be explained in detail starting from a single-
particle system.

1.2.1 Single-particle drag coefficient

Motion of the single solid particles, drops, or bubbles in an infinite
medium has been studied extensively in the past, see for example, Peebles
and Garber (1953), Harmathy (1960) and Wallis (1974). In what follows we
summarize these results in simple forms useful for the development of the
drag correlation in multiparticle systems (Ishii and Chawla, 1979).

By denoting the relative velocity of a single particle in an infinite
medium by v, = v, — the drag coefficient is defined by

Cpno = — 28 [{P0s 0| 773 } (12-26)

where F}, is the drag force and 7 is the radius of a particle. To calculate
the drag force F}, in terms of the relative velocity, we should determine a
constitutive relation for C),  independent of Eq.(12-26). For a single-
particle drag correlation, two similarity parameters are important. They are
the particle Reynolds number and the viscosity number

_ 2130 [V

NRe 0
He

(12-27)

and
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0.75; ]
C,po=(24/N, (101N, _*™)

b Distorted Particle Regime
[ Solid Particle

Single Particle Drag Coefficient, C__ [-]

10" .
100 10° 100 100 100 10°
Single Particle Reynolds Number, N, . [-]

Figure 12-3. Single-particle drag coefficient (Ishii and Chawla, 1979)

N,=—2F" (12-28)
“Nglp

Extensive studies on the single particle drag show that for most cases, the
drag coefficient is a function of the Reynolds number (see Fig.12-3).
However, the exact functional form depends on whether the particle is a
solid particle, drop, or bubble. Briefly, for a solid-spherical-particle system,
we have the viscous regime, in which the Reynolds-number dependence of
C,,. is pronounced, and Newton’s regime, in which C,,  is independent of
Ng...- In case of a clean fluid sphere in the viscous regime, C', , can be
reduced up to 33 %, in comparison with the value predicted by the
correlation for solid particles. This is explained by the internal circulation
within the fluid particles. However, slight amounts of impurities are
sufficient to eliminate this drag reduction. Therefore, for most practical
applications, the drag law in a fluid- particle system may be approximated by
that for a solid-particle system up to a certain particle size. Beyond this
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point, both the distortion of a particle shape and the irregular motions
become pronounced. In this distorted-particle regime, C,, = does not depend
on the viscosity, but increases linearly with the radius of a particle. Because
of the hydrodynamical instability, there is an upper limit on C},_, and the
particle reaches the cap bubble condition or the maximum droplet size.
These regimes for the drag coefficient can be seen in Fig.12-3.

For a viscous regime, the function C| is given by an empirical
correlation as

C, = FM—(I +0.1N;7 ). (12-29)
Reoo

When the Reynolds number is small (N, <1), the above correlation
essentially reduces to the well-known Stokes drag law, Cj, = 24/Ng .
The correlation for the viscous regime indicates that the dependence of the
drag coefficient on the Reynolds number decreases with increasing values of
the Reynolds number.

In solid particles, the drag coefficient becomes essentially constant at
approximately

C,.. =0.45 for Ny, >1000. (12-30)

This Newton’s regime holds up to N, = 2 x10°. Beyond this Reynolds
number the boundary layer separation point moves from the front side to
back side of a particle due to the transition of the boundary layer from
laminar to turbulent. This results in sharp drop in the drag coefficient.

For fluid particles such as drops or bubbles, we have a flow regime
characterized by the distortion of particle shapes and the irregular motions.
In this distorted particle regime, the experimental data show that terminal
velocity is independent of the particle size (see Fig.12-4). In Fig.12-4,
dimensionless terminal velocity, v: and reduced radius, r; , are defined by

|fum|(pf / ﬂchp)l/  and T ( p.94p/ uf)l/a , respectively. From this, it can be

seen that the drag coefficient C,_ does not depend on the viscosity, but it
should be proportional to the radius of the particle (Harmathy, 1960).
Physically, this indicates that the drag force is governed by distortion and
swerving motion of the particle, and change of the particle shape is toward
an increase in the effective cross section. Therefore, C}, may be scaled by
the mean radius of the particle rather than the Reynolds number (Harmathy,
1960). Then we have
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Figure 12-4. Terminal velocity for single-particle system (Ishii and Chawla, 1979)

o =%rd gﬂforN“236\/5(1+0.1N;{§;)/N;m. (12-31)

o0
g

Here, the fluid particle size based on the terminal velocity is used.

Therefore, the flow regime transition between the viscous flow and the
distorted particles flow can be given in terms of the viscosity number as
shown in Figs.12-3 and 12-4. However, since in this regime the terminal
velocity can be uniquely related to properties, Eq.(12-31) can be generalized
in terms of the terminal velocity or the Reynolds number as

Cp., = gNﬂNRem. (12-32)

As the size of a bubble increases further, the bubble becomes spherical-
cap shaped, and the drag coefficient reaches a constant value of
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8
Cp, = 3 (12-33)

The transition from the distorted-bubble regime to the spherical-cap bubble
regime occurs for

ag
=2 f——— 12-34
" 94p ( )

For a liquid drop, the drag coefficient may increase further according to
Eq.(12-31). However, eventually a droplet becomes unstable and
disintegrates into small drops. This limit can be given by the well-known
Weber number criterion. By introducing the Weber number,
We = 2pgvf1;i o, where v, is the relative velocity, we can give the
stability criterion approximately as We ~ 12. Since the terminal velocity

: . 1/4 .
corresponding to Eq.(12-31) is v = \/f(ggAp/p;) , the maximum
possible drop radius is

ag
-3 ’__ 12-35

which corresponds to the maximum drag coefficient Cp, = 4 for droplets.
If the stability of a drop interface is governed by the Taylor instability, the
characteristic drop radius is given by

g
= f—— 12-36
rdmax gAp ( )

which may be a more practical upper limit of the drop size. It is also noted
that in highly turbulent flow (Hinze, 1959) or under pressure shock
conditions (Dinh et al., 2003; Theofanous et al.,, 2004) the stability limit
Weber number can be much smaller than 12.

The cap bubble maintains a certain regular shape with the wake angle of
about 50°, however there is also a maximum stable cap bubble diameter
(Grace et al., 1978; Clift et al., 1978; Kocamstafaogullari et al., 1984; Miller,
1993). This instability is shown in Fig.12-5. Kocamustafaogullari et al.
(1984) used the stability analysis based on the Kelvin-Helmholtz instability
along the cap bubble surface. By comparing the surface wave residence time
and the time for the wave amplitude to grow to the order of the magnitude of
the bubble size, the stability criterion has been obtained. For most practical
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Figure 12-5. Large bubble breakup due to instability (500 frames/s)

cases, this stability limit can be approximated by

Teopmax — 20 ’g_Z? (12-37)

This result is significant because it defines the boundary between the smaller
pipe where slug flow is possible and the larger pipe where slug flow cannot
be formed due to the instability of the Taylor bubbles. For a pipe diameter

D < 2r (: 40 o’/ g4 p) a stable slug flow can be formed. However for

4P, Mmax

D >>2r, ., bubbly flow is followed by cap-turbulent flow where
multiple interacting cap bubbles exist at higher gas flux.

Using the above drag coefficient, we can obtain the terminal velocity in
infinite media by balancing the pressure, gravity, and drag forces. The
results are summarized in Fig.12-4 for various particles and flow regimes.
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1.2.2 Drag coefficient for dispersed two-phase flow

A. Effects of Particles and Flow Regimes

In the preceding section it has been shown that the drag correlation for a
single-particle system depends not only on the flow regimes but also on the
nature of the particles; namely, solid particle, drop or bubble. Therefore, for
a multiparticle system, these differences are also expected to play central
roles in determining the drag correlation. In the present study, the
multiparticle drag correlation is developed in parallel with the single-particle
system by considering the following flow regimes

Viscous regime

Solid-particl t
1o-particle system Newton's regime

[ Viscous regime
(Undistorted-particle regime)
Fluid-particle system { Distorted-particle regime
Churn-turbulent-flow regime

Slug-flow regime

In the viscous regime, distortions of fluid particles are negligible. Therefore,
for this regime, solid- and fluid-particle systems are considered together.
Although small differences exist between these two systems due to the
surface flow, for most cases these differences can be neglected (Clift et al.,
1978). The other flow regimes are analyzed separately because of
significant differences in the flow around the particles and the motions of the
interfaces.

B. Viscous Regime (Undistorted-Particle Regime)

This regime is characterized by the strong effect of viscosity on the
particle motion. For a fluid-particle system, this regime occurs only when
particle shapes are not distorted due to interfacial instabilities or turbulent
fluid motion. To develop a multiparticle drag correlation, several similarity
hypotheses are introduced. First, it is assumed that the drag coefficient in
the viscous regime can be given as a function of the particle Reynolds
number. Thus,
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Cp = Cp (Ng,) (12-38)

where the Reynolds number is defined in terms of the mixture viscosity u,,
as

2pc |Ur| Td
Hm

N, = (12-39)

The introduction of the drag coefficient, Eq.(12-23), and the use of Eq.
(12-38) are based on the assumption that the resistance to particle motion in
a two-phase mixture can be evaluated by considering the local resistance to
the shearing caused by the relative motion between the representative
particle and the surrounding fluid. The effect of the other particles on the
drag force arises from the resistance of the particle to the deformation of the
flow field. Since the particles are more rigid than the fluid against
deformations, the particles will impose a system of forces that will react
upon the fluid. As a result of additional stresses, the original particles see an
increase in the resistance to its motion, which appears to it as arising from an
increase of viscosity.

Consequently, in analyzing the motion of the suspended particles,
mixture viscosity should be used (Burgers, 1941; Zuber, 1964a). It is
expected that the mixture viscosity is a function of concentration, fluid
viscosity and particle viscosity. The viscosity of the dispersed phase takes
account of the mobility of the interface and is the measure of the resistance
to the particle-material motion along the interface. The effect of the particle
collisions may be indirectly reflected in the mixture viscosity through the
void fraction. Furthermore, for a fluid-particle system, the surface tension
should have an effect on the particle collisions and coalescences. This is
particularly important in determining the flow-regime transitions.

In the present analysis, we extend the linear correlation (Taylor, 1932)
for the mixture viscosity for fluid particles along the power relation (Roscoe,
1952) for solid particles based on the maximum packing o,,. Taylor’s
viscosity model for a fluid-particle system is given by

N—m=1—|—2.5ad_@_+—0'4_.ﬁ.c_

(12-40)
:u’c :U/d + lu’c

which is applicable only for &y << 1. The simple power-law viscosity

model for a solid-particle system is given by
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—2.504y,
Hon {1 - i] : (12-41)

pc ad

This shows that the viscosity of the mixture increases rapidly near the
maximum packing. Note also that linear expansion of Eq.(12-41) at small
0y 18 fhy, [1 = 1+ 2.5q, , which is similar to Eq.(12-40). The maximum
packing «,, for solid-particle systems ranges from 0.5 to 0.74. However,
o, = 0.62 suffices for most of the practical cases. For a bubbly flow,
theoretical «;, can be much higher because of the deformation of bubbles.
In the absence of turbulent motions and particle coalescences, the void
fraction in a fluid-particle system can be as high as 0.95. By taking o, to
be unity, we can include these foam or dense packing regimes in the analysis.
Therefore, for fluid-particle systems, we take o, =1. Combining the
above two expressions produces the following model for both a solid-
particle system and a fluid-particle system at all concentrations

Hom _ [1 _ % (12-42)

,‘l‘c adm

]—2-5%,.(ud+0-4uc)/(m+;4c)

Figure 12-6 compares this mixture-viscosity model to the various
existing models for solid-particle systems (Eilers, 1941; Roscoe, 1952;
Brinkman, 1952; Frankel and Acrivos, 1967; Landel et al., 1965; Thomas,
1965). Note that, for a solid particle system, p,; approaches co. Thus, if
we take the limit of Eq.(12-42), the viscosity-ratio term becomes unity and
the correlation reduces to the power law, Eq.(12-41). By including the effect
of viscosity of the dispersed phase in the correlation, this model has the
advantage over the conventional correlations, because it is not limited to
particulate flows, but can also be applied to droplet and bubble flows.

Using the recommended values for maximum packing, we can
approximate the mixture viscosity by a simple power law given by

P Jl, = (1 — )" , (12-43)

1 Bubbly flow
where n =1{1.75 Drops in liquid (12-44)

2.5  Drops in gas, particulate flow.
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Figure 12-6. Comparison of present mixture-viscosity model and existing models for solid-
particle system (Ishii and Chawla, 1979)

The expression for the solid-particle system is applicable only up to a
moderate value of «;. These relations are shown in Fig.12-7.

The second similarity hypothesis introduced in the analysis is that, in the
viscous regime, a complete similarity exists between a single-particle system
and a multi-particle system. Therefore, the multiparticle drag coefficient
C, has exactly the same functional form in terms of Ny, as C), in terms
of N, givenby Eq.(12-29). Then C,, = C,, (Ng,) or

_ 24 015
Cp = ]-V—(l +0.1N;7%). (12-45)

Re

The relation given by Eq.(12-45) is shown in Fig.12-8. This correlation
indicates that the drag coefficient increases with an increasing volumetric
concentration ¢, . This trend is clearly shown in Fig.12-9 for a solid-
particle system by comparing single- and multi-particle systems.

The similarity criterion given by Cp, (N, ) = Cp, (Ng,) with the
Reynolds number based on mixture viscosity is first introduced for solid-
particles system in the Stokes regime (Hawksley, 1951; Zuber, 1964a). Note
that the present model is not limited to a solid-particle system or to the
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Figure 12-9. Effect of concentration on drag coefficient in viscous regime (Ishii and Chawla,
1979)

Stokes regime, however, because of the use of the generalized drag law and
the applicability of the mixture-viscosity model to fluid-particle systems.

C. Newton’s Regime

In Newton’s regime, a vortex system develops behind a particle and its
departure creates a large wake region. The drag force is mainly determined
by the eddies generated by a separation of the flow. Hence, for a single-
particle system, the drag force is approximately proportional to the inertia
force and the drag coefficient can be considered constant.

For a multiparticle system, the drag coefficient in Newton’s regime is
assumed not to depend on the Reynolds number but on the void fraction.
The effect of the other particles should be through «;. Hence,

Cp = 0.45E (o). (12-46)

The function (ad) can be obtained by considering a special case of the
terminal velocity in an infinite medium. From a force balance between
gravity, pressure, and drag forces, we have



12. Hydrodynamic Constitutive Relations for Interfacial Transfer 321

v,ﬁ|v,|=§ "4

3 0.p (pe — pa)g(1— ). (12-47)

c

For a single-particle system, this reduces to

e | = Cr (p. — p2) g (12-48)

Dooc

By comparing a multiparticle system to a single-particles system having the
same particles size, we have

, _ \/c,,muvm)(l—adx

(12-49)
Cp (Ng.)

Since Reynolds numbers can be a function of the velocities, Eq.(12-49) is an
implicit equation for the terminal velocity v.. If we consider the viscous-
regime drag laws given by Eqgs.(12-29) and (12-45), Eq.(12-49) becomes

0.75
b Hei g )1+0 1N075 _ (12-50)
Vo M 1+ 0.1Ng,
The limiting case of 7, — 0 (or Ng,, Ny, — 0)is
Y H
= —(1-q,). 12-51
e ) A
For r; — 00 (or Ng,,Np,., — 00),
i 7 .
. [_] (1—a,)". (12-52)
Ta—00 ’UTOO l“l’m

By interpolating between these limits in view of Eq.(12-50), we obtain an
approximate explicit solution for v, given by

v, (- e 1+ 0.1N37

— oy ) &7
Uy, P 14 0.1NS [Jl — gl /um]

(12-53)
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Since the terminal velocity v, is uniquely related to the Reynolds number
by Eq.(12-48), however, N can be replaced by a radius of a particles.
Thus,

%~ 1-q He *1 + ("'d ) . w5t
Vo Mo, 1+¢(Td)[m c/ﬂm}
where
771* =71 (pchp / “3)1/3
" (12-55)
’l/) (7‘;) = 0.55 [(1 + 0087;;3 )4/7 _ 1}0.75

For a single-particles system, the transition from the viscous regime to
Newton’s regime occurs at 7, = 34.65 (or Np, . =~ 990 ). At this
particles size, Eq.(12-46) reduces to

v_r=(1_.a)'“c 18.67

Uy, ’ oo 1+17.67[ [T g, Jun |

This equation is valid up to the transition from the viscous regime to
Newton’s regime in a multiparticle system. Therefore, at this transition
point the drag-coefficient ratio can be calculated from Eqs.(12-49) and (12-
56) as

(12-56)

1+17.67( T o c/um)w 2
Cb = O 18.67 1— o,

(12-57)

where Cp,_ =045 at r, =34.65. In view of Eq(12-42) with
oy, = 0.62, we obtain
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Figure 12-10. Drag coefficient for Newton's regime (Ishii and Chawla, 1979)

1-417.67[f (e )" |
18.67f ()

with f(a,) = (1 ;)" [1 - 0?‘52]1'55 .

Cp =
(12-58)

The increase of the drag coefficient with increasing volumetric concentration
o, -is shown in Fig.12-10 by plotting Eq.(12-58). This implies that the
equilibrium relative velocity generally decreases with increases in the
concentration due to stronger coupling between phases.

D. Distorted-fluid-particle Regime
In the distorted-fluid-particle regime, the single particle drag coefficient
depends only on the particle radius and fluid properties and not on the

velocity or the viscosity, namely, C,, = (4/3)7;1 [gApjo , as discussed

by Harmathy (1960). Thus, for a particle of a fixed diameter, C,,  becomes
constant. In considering the drag coefficient for a multiparticle system with
the same radius, we must take into account the restrictions imposed by the
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existence of other particles on the flow field. Therefore, C}, is expected to
be different from C},_, in this regime.

Because of the strong contribution of the turbulent eddies on the wake
region, a particle sees the increased drag due to other particles in essentially
similar ways as in the Newton’s regime for a solid-particle system where
Cp,, is also constant under a wake-dominated flow condition. Hence, we
postulate that, regardless of the differences in C,, in these regimes, the
effect of increased drag in the distorted-fluid-particle regime can be
predicted by an expression similar to that in the Newton’s regime.

Under this assumption, Eq.(12-57) can be used with a proper expression
for C),, given by Eq. (12-43). Thus,

67\
o 1+417.67(T= agp, )

CD :—é‘-NN

PR 18,671 — oy s,

(12-59)

In view of the approximation given by Eq.(12-43), the above correlation
reduces to

2

J2 14+17.67(1 — )
Cp="2N,N,. 3 12-60
T3 Rl 18.67(1—a,) (1260
where n is given by Eq.(12-44). Thus, for a bubbly flow (n = 1),
ND) 1417.67(1— 0, |
CD = AV iV Reo 1.5 (12-61)
3 18.67(1 — o)
For a droplet-liquid flow (n = 1.75)
o V2 (117670 o)) 162
T3 TRl 1g6T(1- o) |
For a droplet-gas flow (n = 2.5)
2
2 14+17.67(1— o, )**
C,=22NN,, : (12-63)
P Rl 18.67(1- o)
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Figure 12-11. Drag coefficient in distorted-particle regime (Ishii and Chawla, 1979)

The above three correlations are shown in Fig.12-11. The form of the
correlations indicates that the momentum coupling between phases increases
with increasing particle concentration as in the case for Newton’s regime.

E. Churn-turbulent-flow Regime

As the radius of the fluid particle is further increased, the wake and
bubble boundary layer can overlap due to the formation of large wake
regions. In other words, a particle can influence both the surrounding fluid
and other particles directly. Hence, the entrainment of a particle in a wake
of other particles becomes possible. This flow regime is known as the
churn-turbulent flow regime and is commonly observed in bubbly flows. In
the existence of sufficient turbulent motions in the continuous phase, the
transition from the distorted-particle regime to the churn-turbulent flow
regime occurs at the particle concentration around 0.3. This criterion for the
transition can be applied to most forced-convection two-phase flows. In a
batch process, however, detailed coalescence mechanisms and surface
contaminations become important in determining the transition criterion.

In the churn-turbulent flow regime, a typical particle moves with respect
to the average volumetric flux j rather than the average velocity of a
continuous phase due to the hydrodynamic conditions discussed above.
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Hence, the reference velocity in the definitions of the drag coefficient and
the drag-similarity law should be the drift velocity rather than the relative
velocity. Hence, the drag force should be given by

1
F, = - oV [Vig| (12-64)

Here the drift velocity V), is the relative velocity of the dispersed phase with
respect to the center-of-volume velocity of a mixture. It can also be related
to the true relative velocity between phases by

Vy=v—j=0-0q,), (12-65)

4y

where the total flux j (center-of-volume velocity) is given by
i=oau+(1-a)v,. (12-66)

In a churn-turbulent-flow regime, some particles should have reached the
distortion limit corresponding to the cap-bubble transition or the droplet
disintegration. This limit can be given as an extension of the Weber number
criterion (Wallis, 1969) by using the drift velocity as a reference velocity in
the following form

20Vir, 8 (bubble)
o |12 (droplet).

(12-67)

Due to the entrainment of particles in the wake of other larger particles and
the coalescence and disintegration caused by the turbulence, the average
motion of the dispersed phase is mainly governed by those particles that
satisfy the Weber-number criterion. Hence, the effective drag coefficient is
given by C, = 8/3. If we recast the above drag-force expression based on
the drift velocity to the conventional one based on the relative velocity, we
obtain

v, |77}

PeUr
Fy=-2(1-q,) -

(12-68)

where the reference 7, for the drag-force expression is given by
r, = (4 or 6) a/ [pcvf (1-a, )2] , because these particles govern the relative
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Figure 12-12. Drag coefficient for churn-turbulent flow (Ishii and Chawla, 1979)

motion. The above equation implies that the apparent drag coefficient based
on the true relative velocity between phases should be given by

Cp = —2(1 —a,). (12-69)

The form of Eq.(12-69) indicates that the drag coefficient decreases as the
particle volumetric concentration increases, as shown in Fig.12-12.
Therefore, the effect of a;; on O}, in the churn-turbulent-flow regime is
opposite that in the other flow regimes. This peculiar trend can be explained
by the effect of the entrainment of other particles behind a wake of larger
particles. This entrainment promotes the channeling of the dispersed phase
without increasing the drag force. As the volumetric concentration increases,
the interaction among particles increases in the direction of reducing the drag
force.

F. Slug-flow Regime

One of the limiting cases of the dispersed two-phase flow in a confined
channel is a slug flow. When the volume of a bubble becomes very large,
the shape of the bubble is significantly deformed to fit the channel geometry.
The diameters of the bubbles become nearly that of the pipe with a thin
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liquid film separating the bubbles from the wall. The bubbles have an
elongated bullet form with a cap-shaped nose. The motion of these bubbles
in relatively inviscid fluids can be studied by using a potential flow analysis
around a nose of a single bubble. Hence, Dumitrescu (1943) analytically
obtained the rise velocity to be

v, = 0.35 [gDAp/pc (12-70)

where D is the hydraulic diameter. This result is also in good agreement
with the experimental data of Dumitrescu (1943) and White and Beardmore
(1962).

In a flowing system with chains of bubbles, the effect of the
concentration and velocity profile should be considered. In general, the core
velocity is higher than the cross-sectional area-averaged velocity due to the
velocity profile. Therefore, the relative velocity based on the average
velocities is larger than the local relative velocity in the core. This effect,
known as the distribution-parameter effect, was studied extensively by
Bankoff (1960), Zuber and Findlay (1965), and Ishii (1977) among others.
When the average velocities are used, the results of Nicklin et al. (1962) and
Neal (1963) show that

v, —{j) =0.2(j)+0.35 /gDAp/pc. (12-71)

Here the left-hand side is the drift velocity of a bubble, namely,
V, = v; —(j). The above equation can be rewritten as

Ud - jcm‘e = 0'35‘\’gDAp/pC . (12-72)

where j,,, =1.2(j) and j,,, may be considered as the local total flux in
the core. In this case, Uy — Joore 18 the local drift velocity in the core. In
view of the relation given by Eq.(12-65), the local relative velocity v,
should satisfy

(1—a,)v, =0.35 /gDAp/pc (12-73)

which agrees with Dumitrescu’s result at oy; — 0.

By limiting our discussion to the local drag coefficient, we can recast the
above semiempirical result into a correlation for a drag coefficient in the
slug-flow regime. In view of Eqs.(12-73) and (12-47), we obtain
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Figure 12-13. Drag coefficient for slug flow (Ishii and Chawla, 1979)

3

Cp = 10.92—;"—(1 —ay) . (12-74)

For most practical applications, 27 / D can be approximated by 0.9. Then,
C, ~9.81-q,). (12-75)

This correlation shows that the drag coefficient decreases with increase in
the volumetric concentration, as shown in Fig.12-13. This clearly indicates
the effect of the wake and channeling in the chains of bubbles in the slug-
flow regime. Furthermore, €, does not depend on the fluid properties.
These two characteristics are similar to those of the churn-turbulent-flow
regime. Table 12-1 summarizes the present drag coefficient in various flow
regimes.

1.3 Other forces

In addition to the standard drag force and the virtual mass force, some
forces such as the lift force and the turbulent dispersion forces are also
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Table 12-1. Local drag coefficient in multiparticle system (Ishii and Chawla, 1979)

Fluid Particle System
Bubble in Drop in Drop in Gas Solid Particle System
Liquid Liquid
~2.50, p*
Viscosity Pl J Camtt u* _ Mg 04,
= s = C
Model Ue Cgm Ky + e
Max. Packing
QU ~1 ~1 0.62 ~1 ~ 0.62
*
n 0.4 ~ 0.7 1 1
-1.55
[T LoV | 0o o —a 2 [ oy ]
/ (1-0a,) (1-ay) (1-ay) 0.62
Stokes 24 27,0,7,
. C. =" where N, = —dlcr
Regime G b Ng, WACT® VRe iy
Viscous 2 (1 +0. 1Ngﬁs)
Regime Cp, DETT T
Newton’s o7 2
Regime C;, . — o045 1+17.67{f(e,)}
p =V~
- 18.67f(cy)
Distorted &7 d
1+17.67
Particle C,= ird 94p M where
Regime C, 34 4 18.67f (cy)
| I,
flog)=(1- O‘d)l's (1- ad)“s (1- O‘d)3 f(ad) =V [H—“]
™m
Churn-
turbulent 8 2
Flow Regime Co = 5(1 )
Co
Slug Flow
gCD Cp =9.8(1- "‘d)3

considered in a multidimensional two-phase flow analysis. As can be seen
from Eq.(12-3), these forces are customarily added to the standard drag force
and the virtual mass force linearly. In an actual two-phase flow, a wake
behind a bubble may completely change the liquid turbulence structure, and
thus the lift force may closely be coupled with the turbulence-induced force.
Since the lift force and other lateral forces are small and may closely be
coupled each other, it is difficult to identify each force experimentally.
Therefore, it may be controversial that such forces can be added to the
standard drag force and the virtual mass force linearly. In the present status
of the development, constitutive equations for some forces are proposed
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Figure 12-14. Schematic diagram of a particle in a shear flow

based on a speculation, and the applicable flow ranges of the constitutive
equations are not given clearly. Thus, unlike the standard drag force, the
constitutive equations for such lateral forces have not been well-developed.
Nevertheless, these forces play an important role in predicting three-
dimensional bubble distribution. In what follows, some constitutive
equations for lift force and turbulent dispersion force, which are often used
in a multidimensional two-phase flow analysis, are explained briefly. A
review of lift force modeling can also be found in Akiyama and Aritomi
(2002).

1.3.1 Lift force

Consider a single spherical particle moving through a very viscous liquid
relative to a uniform simple shear, see Fig.12-14. Then, the particle
experiences a lift force, F>"" , perpendicular to the flow direction as
(Saffman, 1965)

1/2
dvf /

dx

dvf

sgn [—] e,. (12-76)

F5V — _646u.0," v r?
doo KV " Up Ty d

£
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For positive relative velocity and velocity gradient ( v, >0 and
dv, /d:z: > (), the lift force pushes the particle towards the negative z
direction.

Consider a single spherical particle placed in a weak shear flow of an
inviscid flow. Then, the particle experiences a lift force, Efj T as (Auton,
1987)

4
F2 1 =-05p, Em‘j'vm X rotv,. (12-77)

Mei and Klausner (1994) proposed an expression for the shear lift force at
finite Reynolds number and finite shear by interpolating Saffman’s result at
small N, (1965) and Auton’s result at large N, (1987). They also
considered the extension of the lift force to a fluid sphere. The proposed lift
force model is given by

d
FES = ~1(Gou Navo )5 0%, s [vm {i] e,  (1278)
T
f(GBOO’NReoo)
2 1/2
|| 172 (Jsz /N Rm) 16 (12-79)
= Gsoo 12 + _Gmo
NP 9

I (|26 /NRM) ~
0.6765[1+tanh{2.5(1og10 26 [N +0.191)H (12-80)

x|0.667 + tanh{6( 26, [No — 0.32)H

r, dv

v dz

700

G =

850

, (12-81)
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The Reynolds number of a single particle system, Ny, , is defined by
Eq.(12-27).

In the 1980s and 1990s, extensive experiments were performed to
identify important parameters to determine the lateral bubble migration
characteristics. The experiments showed that relatively small and large
bubbles tend to migrate toward a channel wall and center, respectively (Zun,
1988; Liu, 1993; Hibiki and Ishii, 1999). A numerical simulation of single
bubbles in a Poiseuille flow (Tomiyama et al., 1993; 1995) suggested that
the bubble migration toward the pipe center was related closely to a slanted
wake behind a deformed bubble. Thus, it has been indicated that the bubble
size and complex interaction between a bubble wake and a shear field
around the bubble play an important role in the lateral bubble migration
(Serizawa and Kataoka, 1988; 1994). Tomiyama et al. (2002) measured
bubble trajectories of single air bubbles in simple shear flows of glycerol-
water solutions to evaluate transverse lift force acting on single bubbles.
Based on the experimental result, they assumed the lift force caused by the
slanted wake has the same functional form as that of the shear-induced lift
force, and proposed an empirical correlation of the lift coefficient.

Hibiki and Ishii proposed the correlation of the lift coefficient based on
the shear-lift force model of Mei and Klausner (1994) and the concept of the
lift force caused by slanted wake, F Lw (Tomiyama et al., 2002) such as the

doo ?

functional form of F/” to be the same as that of F,°. Thus, the net

. LT . .
transverse lift force, F,_ ,is givenb
doo
LT _ LS LW
Fdoo - Fdoo + Fdoo

d
= —f (G, ) Npeoo )%mzpfvfw sgn [vm gvi] e, (12-82)
i

1 dv

_ LWf(Gsw,NRem)Eﬂm2pfvfw sgn[vm d_af] e,
where (), is the coefficient of the lift force caused by slanted wake. Here,
we assume that the lift force caused by slanted wake pushes the particle
towards the negative x direction for positive relative velocity. The
coefficient was determined based on the data of Tomiyama et al. (2002)
taken under the conditions of —5.5 <log,, M < —2.8, 1.39 < Eo <5.74
and 0 gldvf dxtl <83 s !, where M and Eo are the Morton number and
the E6tvds number, respectively, as defined by
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Figure 12-15. Dependence of lift coefficient on bubble size

_ 4
w= e —n)i (12:8%)
Pr0
2
FEo = M. (12-84)
o

Then, as shown in Fig.12-15, the following correlation of the lift
coefficient is proposed based on the data of Tomiyama et al. (2002) as

*3/2

Copw=1- exp<2Dd ) (12-85)

where D; is the ratio of the bubble diameter to the bubble diameter at the
distorted bubble limit as

1/2
D=t _ B (12-86)
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We may extend the applicability of Eq.(12-82) in a single particle system
to a multiparticle system by replacing N, and G, in Eq.(12-82) with
Ny, and G,, where the Reynolds number of a multiparticle system, Np_, is
defined by Eq.(12-39) and the non-dimensional velocity gradient, G, is
defined by

7 4y

G =

8

. (12-87)

v, dz

Thus, the net transverse lift force in multiparticle system, M f , is
approximated as

(a4
M; =L F/" =—f(G, Ny, ) —21—
d Bd d f( 3 Re) 87'd

3a,p 07 dv
_CLWf(Gs,NRe)—g—mf—sgn[vr Evf_] e,.

A reasonable agreement between the lift force calculated by Eq.(12-88) with
Eq.(12-85) and air-water bubbly flow data (Wang et al., 1987) was obtained,
which implies the lift force model, Eq.(12-88) with Eq.(12-85), to be
promising to predict the net transverse lift force in multiparticle bubbly flow.
Further efforts to examine the applicability of Eq.(12-88) with Eq.(12-85) to
a multiparticle system should be made in a future study. As described above,
the lift force is still poorly understood, and further experimental and
numerical efforts are needed to understand the lift force (Sridhar and Katz,
1995; Ervin and Tryggvason, 1997; Loth et al., 1997).

1.3.2 Wall-lift (wall-lubrication) force

The wall-lift force M ;V has been introduced and it is explained due to
the velocity distribution change around particles near a wall (Antal et al.,
1991). This force was used to predict the observed void profiles for
cocurrent laminar upward and downward flows. This wall-lift force
analogous to a lubrication force acts on a bubble near a wall and prevents the
bubbles from touching the wall.

Consider the drainage of the liquid around a bubble moving in the
vicinity of a wall. The no-slip condition at the wall should slow the drainage
rate between the bubble and the wall, whereas the drainage rate should be
increased on the opposite side. Thus, the asymmetrical drainage of the
liquid around the bubble in the vicinity of the wall may be quite different
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from the symmetrical drainage of the liquid around the bubble in infinite
liquid. As a consequence, the bubble experiences a hydrodynamic force,
namely wall-lift force, which tends to move the bubble away from the wall.
Antal et al. (1991) investigated the wall-lift force acting on a spherical
bubble moving in a laminar flow analytically and numerically, and proposed
the following functional form

2
[6% v
MY — Lpf_!l’_ n, (12-89)

)
Con +Cor [(f]

W

Ta

where o, = ('vg — 'vf)— [nW -('ug — vf)lnw » Cy =—0.104 —0.06u, and
Cy, = 0.147. Here, d,, and ny, are the distance between the bubble and
the wall, and the unit outward normal vector on the surface of the wall,
respectively. Equation (12-89) indicates that the direction of the wall-lift
force is reversed at y, =71, /(0,707+0.408vr) , and does not take into
account the effect of the bubble deformation near the wall. Further
experimental and analytical works should be required to establish the wall-

lift force.
1.3.3 Turbulent dispersion force

The turbulent dispersion force M, is due to the bubble motion
produced by the turbulent energy of the liquid phase (Lahey et al., 1993).
This force was introduced to compensate for the fact that the averaged two-
phase continuity equations do not allow for a phasic diffusion effect. The
turbulence dispersion force is driven by the void fraction gradient, and tends
to flatten the void fraction distribution. On the analogy of the molecular
dispersion force, the turbulent dispersion force is expressed by (Lahey et al.,
1993)

Mj = —CppkVa, (12-90)

where C; = 0.1 and k; is the total turbulent kinetic energy of the liquid
phase. The applicable flow range of Eq.(12-90) is not clearly given.

14 Turbulence in multiparticle system
In a single-phase flow analysis, turbulence structure has been studied

extensively, and several turbulence models have been proposed. The
turbulence model is commonly classified into zero-equation model, one-
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equation model, two-equation model, and stress equation model. The large
eddy simulation and direct numerical simulation of the Navier-Stokes
equation are also possible. However, in a two-phase flow analysis, limited
studies have been performed for turbulence modeling due to the complex
nature of the two-phase flow turbulence. In what follows, some preliminary
turbulence models in bubbly flow regime are explained briefly. In the
models, the turbulent kinetic energy of gas phases is commonly neglected
due to the large density difference between gas and liquid phases. To
emphasize the time-average, the overbar is applied to a symbol. This subject
is also reviewed in Akiyama and Aritomi (2002).

A. Zero-equation Model

The zero-equation turbulence model is commonly expressed as a model
with no differential equation to determine the Reynolds stress. In what
follows, a model proposed by Sato et al. (1981) will be explained briefly as
an example of the zero-equation turbulence model.

Consider two-dimensional fully-developed bubbly flows such as a flow
in a vertical pipe or between two parallel flat walls. The y - and z -axes are,
respectively, normal and parallel to the main flow direction. This model
assumes that (i) only liquid phase contributes to the momentum transfer, and
(ii) there are two kinds of turbulences in the liquid phase independent of and
dependent on bubble agitation. Then, the velocities in the ¢ - and 2 -
directions, v;, and v, are expressed as

v, = 'U},y + vy, (12-91)

v = T+ v, + 0, (12:92)

where v} and v}' are the liquid velocity fluctuations independent of and
dependent on bubble agitation, respectively. v, is the time- averaged liquid
velocity in the z -direction. The turbulent stress for liquid phase, Tf , can
be expressed as

T _ 2 A
Ty = =PsVs Ve — PrVsyV%, (12-93)

where y is the normal-directional distance measured from the channel wall.
Here, the eddy diffusivities ¢’ and £” are defined by
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_ ov e ov,,
—vp v), =€ L% and —of v, =" 12 (12-94)
dy dy
Then, the turbulent stress, TJT , is expressed as
ov,,
7 =p, (e +&") L2 (12-95)

Oy

Thus, the turbulent stress distribution can be calculated provided ¢’ and &”
are given.

For fully developed turbulent bubbly flow, the eddy diffusivity
independent of bubble agitation, £, may be determined empirically based
on the Prandtl’s mixing length theory and the damping factor in the region
close to the smooth wall as

y )
'=04{1—exp|-L
. { exp| 16]}

11{y*) 4(y* S| yt ’
X{l*‘a(ﬁ]ﬁ[ﬁ 3w [

Here, y* = y'v; v, and R* = Ru; v, where v; and R are, respectively,
the friction velocity defined by /7, /Ps and the radius of a pipe or the half

(12-96)

width of a channel with parallel flat walls. The eddy diffusivity that is
dependent on bubble agitation, £” , may be determined empirically based on
the virtual kinematic viscosity of a free turbulent flow (such as a wake
behind a solid body) and the damping factor in the region close to the
smooth wall as

+\2
o 1,2{1 — exp [— ?1/—6]} a, [%B] v (12-97)

where dy and v, are the mean diameter of the bubbles given by Eq.(12-
98) and the terminal velocity in the still liquid, respectively.
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0 0 pm<y<20 um
dy ={4y(dy —y)/d, 20pm<y<dy/f2 (12-98)
d, dy/2<y<R

where 3; is the cross-sectional mean diameter of the bubbles. The
turbulent stress is computed from the above equations and boundary
conditions.

B. One-equation Model

The one-equation turbulence model is commonly expressed as a model
with only one differential equation of turbulent kinetic energy conservation
and constitutive equations for mixing length and other turbulent source terms.
In what follows, a model proposed by Kataoka and Serizawa (1995) will be
explained briefly as an example of the one-equation turbulence model.

Consider steady, fully developed adiabatic bubbly flows in a round tube.
The y - and z-axes are, respectively, normal and parallel to the main flow
direction. The turbulent stress, 7'}1 , is expressed in terms of the mixing
length of two-phase flow, [, , and the turbulent velocity, v, , as

dv
7 = plppv, —2* 12-99
§ = Prlrpl; dy ( )

/ !
v,
v, z,/ f3 £ (12-100)

where 'v} is the liquid velocity fluctuation vector. Thus, the turbulent stress
distribution can be calculated provided I, and v, are given.

The mixing length of two-phase flow is assumed to be expressed by the
linear superposition of the mixing length of the shear-induced turbulence in
single-phase liquid flow, [g,, and the mixing length due to the bubble-
induced turbulence, [, as

bp = lgp + 1. (12-101)

The mixing length of the shear-induced turbulence in single-phase liquid
flow is given by
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lp = 0.4y 1 — exp|— Yo (12-102)
261/f

The mixing length of the bubble-induced turbulence is given based on the
mechanistic model in which the same volume of liquid is exchanged
accompanying the bubble turbulent motion through the control surface as

1 3
gdBO[g EdB SySR
1 3
b=1{z{ds +(y-05d)a}  dy<y<idy  (12:103

P e ) s
o[ llyal] ™

where d is the bubble diameter.

The turbulence velocity, v, , is calculated from the equation of the
turbulent kinetic energy for liquid phase given by

R——ya—y{(R —y)(1- Oég)[%f + @JHTP]Z—I;}

+Bklpp (1 — ag)[%] - (1 — %)@

be (12-104)
3 -
—K,« @-I—K iOzC v’ 11 —exp|— yv;
24, Y4, P 26v,
ok
—l/f —a— = 0
Y

where k is the turbulent kinetic energy of liquid phase given by
k=v, v /2. B,(=0.56), B, (= 0.38), , = 0.18, K, (= 0.075), and

K,(=1.0) are coefficients. In this model, the turbulent velocity is
determined by Eq.(12-100) with the assumption of equilateral turbulence as
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v =, [—. (12-105)

The significance of the various terms in the equation is as follows. The first,
second, and third terms on the right-hand side represents the turbulence
diffusion, turbulence generation due to shear, and the turbulence dissipation,
respectively. The fourth and fifth terms represent the turbulence absorption
due to small scale of interface and the turbulence generation due to bubble
relative motion, respectively. The last term represents the compensation of
numerical error very near to the wall. The turbulent stress is computed from
the above equations and boundary conditions.

C. Two-equation Model

The two-equation turbulence model is commonly expressed as a model
with two differential equations to determine the Reynolds stress. In what
follows, k- model proposed by Lopez de Bertodano et al. (1994) will be
explained briefly as an example of the two-equation turbulence model.

Consider steady, fully developed adiabatic dilute bubbly flows. The
turbulent stress tensor, @}T , is assumed to be expressed by the linear
superposition of the shear-induced (SI) turbulent stress tensor, @:,SI , and the
bubble-induced (BI) turbulent tensor, @}BI , as

¢ =¢” +T”. (12-106)

The shear-induced turbulent stress is computed by

" =pu, {Wj + (Vv—f)+} - %Apfkﬂ (12-107)

where v,, A and k% are the turbulent kinematic viscosity, the turbulence
anisotropy tensor and the turbulent kinetic energy due to the shear-induced
turbulence, respectively. For the isotropic turbulence, A = 7.

The bubble-induced turbulence is computed by

1 . 3. _p
= I 12-108
v+ v, ] ( )

@'BI — -
7 aypf 20
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45 0 0
—a,p, %Cm {0 35 o0
0 0 35

where C,, is the virtual volume coefficient, and the value for potential flow
around a sphere is 1/2. The value of 2.0 and 1.2 are recommended for the
low and high void fraction cases, respectively. The turbulent kinetic energy
due to the bubble-induced turbulence, kP , can be obtained as

K = a %Cm o] . (12-109)

Then, substituting Eqs.(12-108) and (12-107) into Eq.(12-106), yields

&' = o {Ve; + (V)" } - S dp i
a5 0 0 (12-110)
—a k[0 35 0
0 0 35

Thus, the shear stress distribution can be calculated provided v, and k* are
given.

The turbulent kinematic viscosity is assumed to be expressed by the
linear superposition of the turbulent kinematic viscosities due to the shear-
induced turbulence, ;' , and the bubble-induced turbulence, " as

v, =v + v, (12-111)

The turbulent kinematic viscosities due to the shear-induced turbulence and
the bubble-induced turbulence are given as Eqgs.(12-112) and (12-113),
respectively.

kSIZ
V= 0'095—51— (12-112)
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where ¢, is the dissipation of the shear-induced turbulence.

vl = 1.2%3% v, (12-113)

The turbulent kinetic energy and dissipation due to the shear-induced
turbulence can be computed by the shear-induced turbulence kinetic energy
transport equation given by Eq.(12-114) and the shear-induced turbulence
dissipation rate transport equation given by Eq.(12-116).

ST
o =v-[—o‘f” Vi o, (P ) (2-114)
Oy,

where o, (=1.0) is a constant and P is the production of the shear-
induced turbulence given by

P =y, {V'v"‘f + (V@)*} : Vo, (12-115)
ST SI
O D;t =V- [Ozf %VsSI] + aéz (CEIPSI _ 0625.5’1) (12-116)

£

where o, (=1.3), C,(=1.44), and C_,(=1.92) are constants. The
turbulent stress is computed from the above equations and boundary
conditions.



Chapter 13
DRIFT-FLUX MODEL

The basic concept of the drift-flux model is to consider the mixture as a
whole, rather than two phases separately. It is clear that the drift-flux model
formulation will be simpler than the two-fluid model, however it requires
some drastic constitutive assumptions causing some of the important
characteristics of two-phase flow to be lost. However, it is exactly this
simplicity of the drift-flux model that makes it very useful in many
engineering applications. As it is the case with the analyses of two-phase
flow system dynamics, information required in engineering problems is often
the response of the total mixture and not of each constituent phase (Tong,
1965). Furthermore, detailed analyses on the local behavior of each phase
can be carried out with less difficulty, if these mixtures responses are known.

Another important aspect of the drift-flux model is concerned with the
scaling of systems that has direct applications in the planning and designing
of two-phase flow experimental and engineering systems. The similarities of
two different systems can be studied effectively by using the drift-flux model
formulation and mixture properties. The most important aspect of the drift-
flux model is the reduction in the total number of field and constitutive
equations required in the formulation in comparison with the two-fluid
model. The drift-flux model is expressed in terms of four field equations:
the mixture continuity; momentum; energy equations; and the gas continuity
equation.

It can be seen, therefore, that the drift-flux model follows the standard
approach used to analyze the dynamics of a mixture of gases or of miscible
liquids. It is generally accepted that the drift-flux model is appropriate to the
mixture where the dynamics of two components are closely coupled. This
suggests that the same argument may be used for the macroscopic two-phase
flows. The usefulness of the drift-flux model in many practical engineering
systems comes from the fact that even two-phase mixtures that are weakly
coupled locally can be considered, because the relatively large axial
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dimension of the systems usually gives sufficient interaction times. The
advantages of using the drift-flux model for the studies of system dynamics
and instabilities caused by the low velocity wave propagation, namely, the
void propagation, are demonstrated by Zuber (1967) and Ishii and Zuber
(1970). However, there are some questions in applying the drift-flux model
to the problems of acoustic wave propagations, choking phenomena and high
frequency instabilities, as it has been discussed in detail by Bouré and
Réocreux (1972), Bouré (1973) and Réocreux et al. (1973).

In the drift-flux model formulation we have only four field equations and,
thus, one energy and one momentum equation have been eliminated from the
original six field equations. Then, the relative motion and energy difference
should be expressed by additional constitutive equations. In other words, the
dynamic interaction relations are replaced by the constitutive laws.
Furthermore, it is important to formulate the model based on the mixture
center of mass in order to preserve the additive characteristic of the
extensive variables, as explained in Chapter 4. ‘

In this chapter, we develop a general formulation of the mixture model
(Ishii, 1975) then discuss various special cases (Ishii, 1977) that are
important in practical applications. Since we have carried out the detailed
analysis on the field and constitutive equations for two-fluid model in
Chapter 9, we recall and use these results for the establishment of the drift-
flux model formulation whenever it is helpful. The following diagram
summarizes the establishment of the drift-flux model formulation. Here we
see the special importance of the kinematic, mechanical and thermal
relations between the two phases. It is evident that the elimination of one of
the two momentum equations from the formulation requires the kinematic
relation between the phases, therefore, the relative velocity should be given
by a constitutive law. Similarly, by using only the mixture energy equation
for the balance of energies in a two-phase flow, thermal relation between the
phases should be given.

1.1 Drift-flux model field equations

Formulation Based on the Center of Mass and Drifi-flux Velocities

The most general forms of the four basic field equations for the drift-flux
model have been given in the Section 1.3 of Chapter 5. In this section, first
we put these equations into more realistic form by using some of the analysis
on the constitutive equations for the two-fluid model. Then we discuss some
appropriate simplifications which are important for practical applications.
Here, we formulate the model based on the mixture continuity, momentum
and thermal energy equations plus the continuity equation for one of the
phases. These equations can be reduced to the following forms
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LOCAL INSTANT FORMULATION
Phase 1 Interface Phase 2
Field Equations Jump Conditions Field Equations
Constitutive Laws| Interfacial B.C. Constitutive Laws

| TIME AVERAGING |
[

INTRODUCTION OF MACROSCOPIC VARIABLES
(Mixture Variables)

| DRIFT-FLUX MODEL FORMULATION |

MIXTURE FIELD EQUATIONS RELATION BETWEEN PHASES
Mixture Continuity Eq. Kinematic State
Mixture Momentum Eq. Mechanical State
Mixture Energy Eq. Thermal State
Drift-flux Equation Chemical State
MACROSCOPIC MIXTURE
CONSTITUTIVE LAWS

The mixture continuity equation from Eq.(5-40)

%"w-(pmvm) =0 (13-1)

The continuity equation for phase 2 from Eq.(5-41)

da,p,
ot

+ V- (aypyv, ) =T, = V- (0,0,V;,) (13-2)

The mixture momentum equation from Eqs.(5-42) and (5-43)

0p,,,,
ot

—_— 2 —
+V-T+T" - Z%Wmvm + Pn8n + M,
k=1

+ V- (ppV) = —VD,,
(13-3)



348 Chapter 13

where we have from Eq.(9-127)
M, =2H, Vo, + ME. (13-4)

And in Eq.(13-3) the body force field has been taken as constant. The last
term on the right-hand side of the mixture momentum equation represents
the effects of the surface tension force on the mixture.

There are considerable difficulties obtaining an appropriate thermal
energy equation for the mixture as we have discussed in the Section 1.3 of
Chapter 5. It has been shown there that we have two different methods to
obtain the equation. By adding the thermal energy equation for each phase,
we obtained Eq.(5-53). Consequently, from Egs.(9-154) and (9-150), we
have

8p’m,z'm, . — T

o + V- (pnig0,) ==V (T + q")

) DE L =
~V- Zakpkszkm —I—ZakD—t-{—Zozk@:V'vk
k k=1 k=1

=do Da (13-5)

T,——t+E]
+[ "dT Dt "

2 ~2 _
v _ = __
_Z[Fk%_Mik'vki + Vo, - G, '”m]
k=1

From the definitions of the mixture properties and the interfacial momentum
transfer condition, we have

2 = 2 D
D,p, . Dp = =%
e V. -Vp,—2H, o . 13-6
;a’“ Dt Dt ;a’“ on P 27 Dt (13-6)

For simplicity we define three different effects as follows

2 =
ot =", &V, (13-7)
k=1
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= _Da, —do pg,
¢ =F% _2H o T — = 13-8
A N TR 7" (13-8)
and
‘ 2 o2 =
@;EZ[—F,C%~MM-@+V%-%-@. (13-9)
k=1

Then the thermal energy equation (13-5) reduces to

0P
ot

+ V- (pmimvm) =-V- (a + qT)
(13-10)

2 N me )
_v. [Zakpkikvm] LR L
k=1

The drift-flux model with the mixture thermal energy equation faces
considerable difficulties when the last three terms in the above equation
cannot be neglected. These terms arise from the viscous dissipation, work
due to surface tension forces and interfacial mechanical energy transfer.
This is particularly true, if the term @fn given by Eq.(13-9) has significant
contributions to the thermal energy exchanges. It is evident that in this case
the drift-flux model requires the constitutive equations for the relative
velocity as well as for the interfacial mechanical energy transfer.

The alternative form of the thermal energy equation can be obtained from
Eq.(5-55) by substituting Egs.(9-141) and (9-127), then using the
approximation given by (9-145). These two different forms of the thermal
energy equation do not give an identical drift-flux model formulation, as it
has been discussed in the Section 1.3 of Chapter 5. However, we use the
relation given by Eq.(13-10), which has been obtained by adding the thermal
energy equations for each phase, because it has a relatively simpler form
than the one based on Eq.(5-55).

The above four field equations (13-1), (13-2), (13-3) and (13-10) state the
balance laws which govern the macroscopic mixture field. They have been
obtained by the time averaging applied to the two-phase flow systems with
interfacial discontinuities. We note that mixture continuity, momentum and
energy equations are somewhat similar to those of a single-phase flow.
Actually, the mixture continuity equation has exactly the same form as that
for the continuum without internal discontinuities. This has been done by
using the properly defined mixture properties. The mixture momentum
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equation, however, has two additional terms that do not appear in a single-
phase equation. One is the capillary force that takes into account the surface
tension effects and can be considered as momentum source or sink. The
other is a diffusion stress term, shown as the third stress on the right-hand
side of Eq.(13-3). This term expresses the momentum diffusion due to the
relative motion between two phases in addition to the molecular and
turbulent diffusions that has been taken into account by the stress group

(@' +T T). In the mixture thermal energy equation, we have three
additional terms that do not appear in the single-phase flow equation. The
second term on the right-hand side of Eq.(13-10) is an energy diffusion due
to the transport of energy by relative motions of the phases with respect to
the mixture center of mass. Recalling Eqs.(13-8) and (13-9), the terms given
by @, and &, represent the surface-tension effect and the contributions
from the interfacial mechanical energy transfer, respectively. Under normal
conditions, these two terms and energy dissipation term can be neglected
almost always.

The mixture momentum and thermal energy equations given by Eqgs.(13-
3) and (13-10) describe the momentum and energy exchanges from the
stationary observer. Thus, the convective fluxes with the mixture center of
mass velocity and the additional diffusion fluxes defined with respect to the
barycenter of mixture appear in the equations. These two equations can be
transformed in terms of the convective derivative of Eq.(7-14) as follows

Dv,, _ .
Pn 5 =-Vp, +V-(CT+T")
, (13-11)
-V [Zakp_kvkmvkm] + Pubn + M,
pa
and
Dq 2 Dp
e V- (Gg+qd" V-V oV |+ —=
Prm Dt (‘1+q ) [kzz;akpkzk m] Dt (13-12)

+@L + P7 + P

The above two equations described the transfers of momentum and energy as
seen from the observer moving with the velocity v,, . Because of its special
form, Eq.(13-11) is called the equation of motion.

Field Equations in Several Coordinate Systems
In view of practical importance, we express these four field equations in
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two different coordinate systems. Since the derivatives are straightforward
from the standard vector calculus (Aris, 1962; McConnell, 1957), we only
list the results below.

In rectangular coordinates (,y,%z) we have for the conservation of
mass of mixture

8pm+a( o)+
ot | ogFmiem

0 0
'a—y(pmvym) +5;—(pmvzm> 0 (13'13)

for the drift-flux of mass of phase 2

0
ot

) — —
—|—5;(042p2’vm)} =13 - {%(QZWW) (13-14)

)+ o)+ o

{0V, + o

ay a2p:2vzm )}

for the conservation of mixture momentum

Z -component

0 0 0 0
B;(pmvm)—'_%(pmvmvm)_*— 8'y (pmvym m>+—£(pmvzmvm)
op,, 8

0 — 0 \—
t gy e Tt ra) g (T bl )

Y -component

) 0 0
E(pmvym) + —é;(pmvmvym) +- 8y (pmvym ym)

) o0, (13-15)
+a (pmzm :l/m) —gy—_'_p”‘g’w"'M
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5} 0
&E(T +T +7 )+—5§(Tyy+7'z;j+7';;)

4éa§+@+@)

Z-component

0 0 0
a(pmvzm)—’_—é;(pmvmvzm)_*_ ay (pm ym zm)
o Op,,

9 i M.
o Puten¥n) = == PG +

0 0
+%(T” +T“Tz +T£‘) +a_y(Tyz +T;; +T£s)

L0

e PRy

for the mixture thermal energy balance

0 0 . 0 0 .
ot (pm m)+—8_(pm7‘mvzm)+ 8y (pm'm ym)+5;(pmzmvzm)
0
- _8_[Qz +qa: +Zakpk1'k mkm]
k=1

8_. T et
——\q, +q, +> op.V, ]
8y[y v 2; PR vl (13-16)

0
_8_[qz+qz +Zak‘pk7‘k ]

k=1

op,, apm_+ apm_+ 8pm]

ot Um e T Um Ty oz

+PL + &7 + DL

If the flow is restricted to two dimensions, then it is called a plane flow. In
this case the partial derivative with respect to = as well as the z -component
of the momentum equation can be dropped from the formulation.

Similarly in cylindrical coordinates (r,0,z) we have for the
conservation of mass of mixture
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(13-17)

for the drift-flux of mass of phase 2

0
ot

0 — .
+a(a2p2"’z2) =TI, - {%b%(ra2m2m) (13-18)

10
r 08

( 2/02) + i (;97_ ("no‘zpzz'"ﬂ)"‘%%(%ﬁ__z”oz)

(azmzm) + g'z‘ (azﬁszzm )}

for the conservation of mixture momentum
T -component

0
a
pmvem 8 __%
ot (PUnVn) = = = F Py + M
10 _ 10, _
+;E{7‘<TW+T,7.;+7'3)}+—5~9-<Tr0+7“3;+7‘£)

1, 0
__(Tae + Tag +7—(£9)+
r 0z

10 10
mv'r'm)+ ror (Tpmvmvm)_*__%(pm rmvﬁm)

(TTZ + TT‘Z + T’I‘Z)

6 -component

0

1 0 10
a (vaam ) + ;5 E ("’2 vamvm) == (pm,va,UGm )

r 06
op,,

0
+—é;(pmv6mvzm) = _%— + pmgmé' + MBm (13-19)
1 0

0 (—
+—7—"_—8_{ (Tra + 7—79 + Tr(i)}-i_ %E(T% + Tg; + T|9D€)
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+%(ﬁ;+ T +70)

Z-~component

2 () + 22 (1) + 22 00.0)
+§Z—(pmvm’vm) = —%pz"i + PG + M,
(4 (RREAE) NI RS
+ (L D)

for the mixture thermal energy balance

9
ot

0 . _J1 90
+E(pm7’mvzm) - {'f' Br

. 10 . 10 .
(pm2m> + __(Tpmzmvrm) +—— pmzmv()m)

r Or 'r89(

2
T [Z + qu + Z % Pp %V i ]]
k=1

10 2, —~
+”"a—0[% + ‘I9 + Zak Pk%%m] (13-20)
k=1

0
+3 [qz +q; +Zak:0kzk zkm]}+¢“ + o, + 9,

k=1

m

op,, b 9 Op
o, PPn Yo OPu

ot or r 00 (9z

If the flow is axisymmetric, the partial derivative with respect to 6 drops
from the equations. Furthermore if the flow is free from the circulatory
motion around the z-axis, namely, the flow is restricted to two directions r
and z, then v, is zero, thus the momentum equation for 6 direction can be
eliminated.
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1.2 Drift-flux (or mixture) model constitutive laws

It is evident that the drift-flux model based on the four field equations is
an approximate theory of the two-fluid model. In order to complete the
drift-flux model it is necessary to supply several constitutive laws for
mixtures. We can consider two distinct approaches to accomplish our
purpose. The first method is to start our analysis on the constitutive
equations from the mixture field equations and the mixture entropy
inequality, then to apply various constitutive axioms directly to the mixtures
and independently of the two-fluid model. The second method is to obtain
the necessary constitutive equations by the reduction from the two-fluid
model formulation.

At first it seems to be more logical to follow the former approach,
because it is a self-sufficient and independent formulation of the model for
the mixtures. However, in reality it is confronted by great difficulties which
cannot be overlooked lightly. The main problems arise from the fact that in
general two phases are not in thermal equilibrium, thus it is not possible to
introduce a mixture temperature. This suggests that we cannot expect the
existence of a simple equation of state in terms of the macroscopic mixture
properties.

It can be seen that the thermal non-equilibrium condition and the
structures of the interfaces are the governing factors of the changes of phases.
Furthermore, the kinematic and mechanical state between two phases is
greatly influenced by the interfacial properties and structures. In order to
bring these important effects into the drift-flux model formulation, it is
simpler and more realistic to use reductions from the two-fluid model than
the former approach. Consequently, in this section we develop our analysis
on the mixture constitutive equations in parallel with the Section 1.2 of
Chapter 9.

Principle of Determinism

The drift-flux model field equations have been given by Eqs.(13-1), (13-
2), (13-3) and (13-10) which are not sufficient to describe the system
completely. From the principle of determinism, it is necessary to supply
additional constitutive equations that specify the response characteristics of
certain group of macroscopic two-phase mixtures. In order to keep the
thermal non-equilibrium effects in the drift-flux (or mixture) model
formulation, we introduce a fundamental equation of state for each phase.
Furthermore various mixture properties can be related to the properties of
each phase through definitions of the Section 1.5 of Chapter 4.

By taking into account the above considerations, we have following
variables appearing in the drift-flux model formulation.
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1. Equation of State: o0 Do Ty, 0, Ty 0

2. Conservation of Mass: [N

3. Conservation of Momentum: p_, V,m, T, T' M, o,
4. Conservation of Energy: i, a0, q D, 45,‘;, 515,’”;

5. Drift-flux Equation: r,;

where k£ =1 and 2. Hence the total number of the variables is twenty seven.
For a properly formulated drift-flux model we should have also the same
number of equations. These can be classified into following groups.

Equations Number of Equations
1) Field equations

mixture mass Eq.(13-1) 1

mixture momentum Eq.(13-3) 1

mixture energy Eq.(13-10) 1

drift-flux Eq.(13-2) 1
2) Axiom of continuity

o =1—a, Eq.(4-13) 1
3) Equation of state for phase

thermal equation of state Eq.(9-56) 2

caloric equation of state Eq.(9-57) 2

definition of p,, Eq.(4-66) 1

definition of 1, ' Eq.(4-74) 1

definition of p,, Eq.(4-72) 1
4) Equation of state for interfaces

a_a@) Eq.(9-130) 1
5) Identity on the drift-flux velocities

2 —

Zakﬁkam =0 Eq.(4-90) 1

k=1
6) Kinematic constitutive equation for V,p, 1
7 Mechanical state between two phases

p—p,=—-2H,0C Eq.(9-128) 1

8) Thermal state between two phases
T,-T,=0 1
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9) Phase change condition

7 — p* (?) —2H, 5="2—  Eq(9-163) 1

Py — P

10) Mechanical constitutive equations
viscous stress & 1
turbulent stress &~ 1
mixture momentum source M, 1

11) Energetic constitutive equations
conduction heat flux g
turbulent heat flux g~
dissipation term &/
surface tension effect &,
mechanical energy effect &,

Pt ek i ek

12) Constitutive equation for phase change
mass generation [, 1

This shows that we have also twenty seven equations, thus the present
formulation is consistent. We note here that these field and constitutive
equations are required from the principle of determinism, however they do
not ensure the existence of a solution. It is very difficult to prove for our
system that the problem is properly set, namely, the just setting (Truesdell
and Toupin, 1960) because it concerns with the existence, uniqueness as well
as the proper initial and boundary conditions. Usually, it can be checked
only for very simplified classes of problems. Now we proceed to the
detailed discussion of the above constitutive equations.

Equations of State and Mixture Properties
The axiom of continuity requires that an interface does not stay at a point
for a finite time interval (see Section 1.4 of Chapter 5), thus we have

o +a, =1 (13-21)
The mixture density p,, is defined by
Pu = upy + 0, (13-22)

with the thermal equation of state for each phase given by
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7 =nlT5) (13-23)

P2 =7a(T2r B2 (13-24)
And the mixture pressure is related to the phase pressures by
Pn =D + ;. (13-25)

The mixture density given by Eq.(13-22) with Eqs.(13-23) and (13-24) can
be considered as the mixture thermal equation of state which has constraints
imposed by the thermal, mechanical and the chemical relations between two
phases.

The mixture enthalpy is defined by

im — alplzl + 042p222 (13_26)
Pm

with the caloric equation of state for each phase

4 = i(f, ?1) (13-27)

, = @(f 372)- (13-28)

By substituting Eqs.(13-27) and (13-28) into Eq.(13-26) we obtain the
mixture caloric equation of state which shows the dependence of 4, on the
temperatures, pressures and local void fractions. As in the case of mixture
thermal equations of state, however, it has constraints imposed by the
constitutive equations for the temperature difference and the pressure
difference between two phases as well as by the phase change condition,
Eq.(9-163).

The thermal equation of state for the interfaces in the macroscopic field
can be approximated by

7= ?(?) (13-29)

2
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which can be considered as the fundamental equation of state for the
interfaces without surface mass.

Kinematic Constitutive Equation

As it has been explained in the previous section, we should supply a
constitutive equation for the relative motion of phases. Since in the drift-
flux model formulation we have eliminated one momentum equation, the
kinematic constitutive equation stands as a relative equation of motion. It
can be expected, however, that the dynamic interactions between two phases
will be lost by replacing the momentum equation by a kinematic relation.

The diffusion velocity of each phase is related by an identity

ooV, +oy0,V,, = 0. (13-30)

Thus, we should supply only one of the diffusion velocities by the kinematic
constitutive equation. However, since the diffusion velocity V can be

related to the relative velocity between phases or the drift velocities by the
definitions in the Section 1.6 of Chapter 4 as

Vi =Ly, = -0 - 5) =L v,
G50, Pm Pm (13-31)
Py
— 1M1 Vlj
a2pm

the constitutive equation can be given in terms of any of the above velocities.

The relative velocity between two phases depends upon the drag force
acting at the interfaces as well as the interfacial geometry. Thus it can be
expected that relative velocity will vary whenever the interfacial structure of
the mixture changes. It has been shown in the Section 1.4 of Chapter 9 that,
in a dispersed two-phase flow, the drag correlation should be expressed in
terms of the drift velocity ( Jj—v, ) and the Reynolds number based on that
velocity, Eqs.(9-223) and (9-224). This suggests that the kinematic
constitutive equation on the relative motion between phases is best studied in
terms of the drift velocity of the dispersed phase as it has been proposed by
Zuber (1964b), Zuber et al. (1964) and Zuber and Staub (1966).

In view of the results obtained in the above references, it can be said that
the drift velocity is a function of a terminal velocity v of a single particle
in an infinite medium and the void fraction of a continuous phase. In order
to take into account the drift effect due to the concentration gradient, we
propose a linear constitutive law in the following form
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Vo=i-79,=v,(1-0q,) - i

7

Va, (13-32)
ay

where D] is the drift coefficient based on the void fraction cy;. The first
term on the right-hand side takes into account for the effect of gravity and
Jforces which is usually the dominant part of the drift velocity. A detailed
analysis on this term in the bubbly flow regime has been made in Zuber et al.
(1964), and Ishii (1977) also demonstrated that the constitutive equation of
the drift velocity can be derived from the two-fluid model for various flow
regimes. In the absence of the wall and under a steady-state condition
without phase change, the multiparticle system in an infinite medium
essentially reduces to a gravity and drag dominated one-dimensional flow,
since the averaged void and velocity profiles become flat. Solving the
momentum equations for each phase yields the relative velocity law. Thus,
we use the results for drag correlations in Chapter 12.
For a viscous regime, the drift velocity can be given by

2 *

V, ~10 S[NCQAP ]1/3 (1 — Oy )1‘5 f(ad)
i .

& " 13-33
o) () e
1+ 9 (ry ){F ()}
where
flo)=(1-a,)" /_‘j— (13-34)
and
¥(r5) = 0.55 {(1 +0.08r°)" - 1}0'75 (13-35)

. . . . . * .
for the viscous regime. The non-dimensional radius, 7, , is defined by

1/3
r=m ['OCZZA” ] . (13-36)
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For a Newton’s regime (7‘; > 34.65) , the drift velocity can be given by

1/2
V:ij =243 [MA‘_/)] (1 -y )1‘5 f(o‘d)
Pe
18.67

11767 {Fla)}”

(13-37)

For a distorted-fluid-particle regime, the drift velocity can be given by
1.75
ys =)™ ) 55y,
x1(1—ay,) e = By (13-38)
(1=, *  Ha>> e

A
Vy = \/E[agzp
Pe

The above criterion is applicable for N, > 0.11 (1+ %) / ¢8/3 where N, is
the viscosity number given by Eq.(12-28).
For a churn-turbulent flow regime, the drift velocity can be given by

1/4
V. — V2 |(agap) Pe La (g _ o
¥ lor1.57(| p? Ap ‘

(13-39)

1/4
N ﬁ[ogfp]/ PP
P; Ap
In the exact expression for V,; , the proportionality constant J2 s
applicable for bubbly flows and 1.57 for droplet flows. However, in view of
the uncertainty in predicting the drag coefficient, this difference as well as
the effect of the void fraction may be neglected.
For a slug flow regime, the drift velocity can be given by

(13-40)

1/2
V, =0 35[9APD]/
4 — Y

Pe
where D is the diameter of the tube.

Figure 13-1 compares the present analytical result, Eq.(13-37), with the
empirical correlation for solid-particles flow systems (Richardson and Zaki,
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Figure 13-1. Comparison with experimental data for solid-particle system at high Reynolds
number (Ishii, 1977)

1954). An agreement at relatively high void fraction of continuous phase is
excellent. At very high values of «;, Eq.(13-37) predicts much lower drift
velocities than the Richardson-Zaki correlation. However, the original
experimental data of Richardson and Zaki also indicate this trend, which is
predicted by Eq.(13-37). Figure 13-2 shows the relative velocity in both the
bubble and the droplet-liquid flow regimes. These data of Lackme (1973)
clearly indicate the difference in the concentration dependence of the relative
velocity between a bubbly flow and a droplet flow. These characteristics
have been correctly predicted by the model. Figures 13-3 and 13-4 make
further comparisons between the theoretical predictions and experimental
data in both the batch and countercurrent bubbly flows and in a liquid-liquid
dispersion system, respectively. The theoretical predictions agree with the
data very well. Figure 13-5 compares the prediction for churn-turbulent
flow and the experimental data of Yoshida and Akita (1965). The data were
taken for an air-aqueous sodium sulfite solution system with various column
diameters ranging from 7.7 to 60 cm. As can be seen from the figure, the
theory underestimates the gas flux for smaller-column-diameter experiments.
However, for larger column diameters, the agreement between the prediction
and the data becomes increasingly satisfactory. This tendency can be easily
explained by the two-dimensional effect due to the void and velocity profiles.
The dispersed phase is locally transported with the local drift velocity with
respect to local volumetric flux. Therefore, if more particles are
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Figure 13-2. Difference between bubble system and droplet-dispersion system in distorted-
particle regime (Ishii and Chawla, 1979)
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concentrated in higher-flux regions, this will give a higher dispersed-phase
flux than the case with uniform profiles. Then the mean gas volumetric flux
should be somewhat higher than the prediction. For more detailed
discussions on this point, see Zuber and Findlay (1965), Ishii (1977) and
Werther (1974).

Thermodynamic State between Two Phases

As we have discussed in the preceding section it is necessary to specify
the mechanical, thermal and chemical states between two phases. The
simplified normal momentum jump condition gives the mechanical relation
between two phases, thus we have

bh—p= _2—2—1

Qll

: (13-41)

As we see from the above equation, the pressure difference can be important
only if the mean curvature H,, is large, namely, for a bubbly or droplet flow
with small fluid particle diameters. Consequently, in many practical
engineering problems where the drift-flux model can be applied, the pressure
difference between two phases can be neglected. Then we have

D~ D, (13-42)

Q

The chemical state between phases decides the condition of phase changes
and it is given from Eq.(9-163) as

7 p™ (T) =2H, 5|="2_|. (13-43)
Z Pr— 0

However, this can be approximated by
p, ~ " (T) (13-44)

where E denotes the vapor phase pressure. If the mechanical equilibrium
condition (13-42) can be applied, then we have

P =p, = p™ (?) (13-45)

The constitutive equation for the thermal state between two phases is one
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Figure 13-6. Axial temperature distribution (Ishii, 1975)

of the difficult constitutive equations to obtain, since this specifies the
degree of thermal non—equlllbrlum First we note that it can be replaced by
the relation for T, — T, or T, —T,. And if both relations are given, then
the constitutive equation for the mass transfer I, becomes redundant. It is
very important to realize that in many practical problems one of the phases is
approximately in thermal equilibrium with the interfaces thus

ﬂ |

~ T, ~0 fork=1or2 (13-46)

For example in a boiling system we may assume that

= f; for bubbly and mixed flow
(13-47)

S
I
.l

., for droplet flow

as shown in the Fig.13-6.

Mechanical Constitutive Equations: T and T”
The average viscous stress for each phase has been obtained in the
Section 1.2 of Chapter 9, thus we have

. 2

T = {ou |5, +(V8)' |+ 20,0 } (13-48)

k=1
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where the first term on the right-hand side has the standard form of the
viscous stress based on the deformation tensor. The second term takes into
account the effects of the interfaces, and the interfacial extra deformation
tensor /J,; is defined by Eq.(9-73). By substituting the definition of the drift
velocity we obtain

T [; ak;Tk] Vv, +(Vv,)]

X (13-49)
+3° aku:k{{v Vio +(V V,mﬂ + 2/9,@}.

k=1

This shows that if the effects of the relative velocity and the interfacial
2
deformation are small then the mixture viscosity can be given by 2 TR

For a dispersed two-phase flow, the interfacial extra deformation stress
tensor can be put into a simple form, Eq.(9-76), if the mass transfer effects
are not significant. In this case Eq.(13-48) can be reduced to the following
form

—_— 2 -
T =3 om, [Vi+ (Vi)
=1 (13-50)

+oy (g — 1) [V Vy +(V V@H

where j and V; are the volumetric flux of the mixture and the drift
velocity of the dispersed phase, respectively. Furthermore we note that j
can be related to v,, and V; by Eq.(4-93). The above result is important,
since it shows that in a dispersed flow the mixture-deformation tensor should
be based on the velocity of the volume center rather than that of the mass
center. The mixture viscosity is then given by

P = 4y + Q. (13-51)

As we can see from Eq.(13-50), the mixture viscous stress has an additional
term from the relative motion. The kinematic constitutive equation for V;
shows that, in many cases, this term can be expressed as a function of the
void fraction only.

Now let us consider the mixture turbulent stress &~ which appears in
the mixture momentum equation (13-3). It is evident from the definition that
" is the addition of the turbulent stresses for each phase o, &, . In the
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Section 1.2 of Chapter 9 we applied the mixing-length theory to the two-
fluid model formulation, thus we obtained the constitutive equation for &," .
These expressions given by Eq.(9-89) are not appropriate for the drift-flux
model formulation, however, since they are written in terms of the variables
of each phase and not of the mixture.

We can consider two methods to obtain the mixture turbulent flux &7,
namely the derivation of &” from the ones for each phase by using the
definitions of the mixture velocity and the drift velocity, or the establishment
of the mixing length model in terms of the mixture properties in analogy
with single-phase flows. If the two-phases are strongly coupled or the sizes
of eddies are large in comparison with the characteristic dimension of a
dispersed phase, the latter approach is justified. Then we have

T =2up 0* 2D D, D, (13-52)

where

D, = % v, +(va,) | (13-53)

And the non-dimensional coefficient ( ,uf,;*) corresponds to a mixing length
constant.

For a dispersed flow, we may obtain a different expression for & TIf
the dimension of a dispersed phase is comparative to that of turbulent eddies,
the dominant part of the mixture stress is given by that of the continuous
phase. Thus, we have

" =a&" =2a,u " pl* [2D,:D,D, (13-54)

where we have used Eq.(9-89). The total deformation tensor of the
continuous phase 1), is given by Eqs.(9-82), (9-74) and (9-76). Thus, we
have

ay

Dc:—;—[Vj+(Vj)+]*%[ ][Vvdﬁ(vvd,.)*]. (13-55)

1—q

Here we used the definition (4-91) and the identity (4-95). For many
practical cases the drift velocity of a dispersed phase can be taken as a
function of «; only, as we have discussed in connection with the kinematic
constitutive equation. Further simplification can be made if we assume that
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the drift velocity is constant and, then, by combining Eqs.(13-50) and (13-
54) the total mixture stress can be approximated by

cT+T +@”
2
=N o, n, 4+ aul ol 206:06] Vi + (Vi) (13-56)
> oudh VDD || |
77
. Oéd d ‘ded
1 - C“d pm

For a fully developed pipe flow, we have

dj,
dr

2
- {Zakmacuf e

k=1

} dj, (13-57)

The mixture momentum source M, for a dispersed flow can be given
by

M, = V(zﬁ_; ?ad). (13-58)

And for a transitional flow we may take

M, ~0. (13-59)

Energetic Constitutive Equations
The average conduction heat flux for each phase has been obtained in the
Section 1.2 of Chapter 9, thus we have

2 = = —_— =
q= “E oy, K, {VTk + al‘(Ti - Tk)(_vak)} (13-60)
p

k

where the first term on the right-hand side has the standard significance of
the conduction heat transfer due to the temperature gradient. The second
term takes into account the effects of the interfaces. By rearranging the
terms, the above equation reduces to
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2 2 —_
= —[ZakKk]V =Y kv{ak (Tk - T,.)}. (13-61)
k=1

This form of the average conduction heat flux suggests that the concept
of the mixture temperature can be represented by f with the mixture

2 —_
conductivity given by Z%Kw The second term on the right-hand side

k=1
represents the effect of thermal non-equilibrium.

For many practical systems the effect of the pressure drop on the
thermodynamic properties can be neglected, and as we have already
discussed, the temperature of the dispersed phase can be approximated by
the interfacial temperature. Thus by taking

VT, ~0
. (13-62)
T, ~T,
the constitutive equation for the heat flux becomes
§=-K|o(T.- T (13-63)

Furthermore, the turbulent heat flux can be developed in parallel with the
turbulent stress tensor. However, a special care should be taken here
because the mixture temperature is not well defined. In view of the
constitutive equation for the turbulent energy transfer for each phase, Eq.(9-
92), we have

. 2 T 2 o= Vo = =
¢ =Y aq =) oK VT, - —(T, - T, )} (13-64
k=1 k=1 o

where K E is given by Egs.(9-94) and (9-95).

For a dispersed flow, we may use the approximation given by Eq.(13-62),
then we have

q" =-K'V

a, (? - T_—)] (13-65)

In view of Eq.(9-94) we obtain
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K" = = e 3 (13-66)

Consequently we get

= K" pe, 02 2D,:D v[ (?if—_)} (13-67)

Here the non-dimensional coefficient K CT* corresponds to a thermal mixing-
length constant. We expect that it depends on the conductivity, surface area
concentration, mean curvature and the void fraction as shown by Eq.(9-95).

For the terms represented by &, , @, , and &, , we only note that if
these effects due to the viscous dissipation, surface tension and mechanical
energy interaction have to be included in the analyses, then they should be
specified by three constitutive equations. It is evident from the definitions of
these terms, Eqs.(13-7), (13-8) and (13-9), that such constitutive relations are
expected to be quite complicated. This means that most of the advantages of
using the thermal energy equation diminishes if these effects cannot be
neglected.

Constitutive Equation for Phase Change

The constitutive equation for the mass transfer at the interface has been
given by Eq.(9-111). Furthermore, we have noted that for a drift-flux model
it is necessary to supply information on the thermal state between two phases.
In a simplified form it can be given by Eq.(13-47) which is useful for most
of the practical problems. Thus for a dispersed flow regime we have

(%, +KT)

r,=u"
zdz - 7’czt

(T T ) (13-68)

where non-dimensional coefficient ch T s expected to depend on the
following groups.

b =" [%,NJC, adc ,ac] (13-69)
d (1

Geometrical Constitutive Equations
If the effect of the mean curvature I:[21 and the surface area
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concentration have to be included explicitly in the formulation, we should
give two additional geometrical constitutive equations. In general these are
given by Eqs.(9-137) and (9-138), however for a dispersed two-phase flow
they can be simplified to Eqs.(9-213) and (9-215).

1.3 Drift-flux (or mixture) model formulation

The general case of the field and constitutive equations for the drift-flux
model formulation has been discussed in the Sections 1.1 and 1.2 of Chapter
13. We have noted the importance of the mixture center of mass velocity as
well as of the drift velocities in the formulation. It may be appropriate to
call our present model the drift-flux model in order to emphasize that the
effects of relative motions between two phases are taken into account by the
drift velocities V;.

1.3.1 Drift-flux model

In view of the definitions for V,; and V, given by Egs.(4-91) and (4-
89), respectively, the field equations for the drift-flux model can be given as
follows:

The mixture continuity equation from Eq.(13-1)

Opy,
4V, =0 13-70
o TV (Puvs) (13-70)

The continuity equation for phase 2 from Eq.(13-2)

Ay P Po
Pra

Oct, p,
ot

+V-(a,pv,) =1, - V-

sz] (13-71)

The mixture momentum equation from Eq.(13-3)

g;pmvm+v'(pmvmvm)=—\7pm+V-(@:+@’T)
== (13-72)
a, PP
VTV | e + M,
2 m
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The mixture thermal energy equation from Eq.(13-10)

?%”mim + V. (pmz'm'vm) =-V- (6 + qT)
(13-73)

PP ~ = Dp,, o i
_v.taz_mvzj(zz —7,1)]+—17+¢;; + P+ D
Here we have formulated the model in terms of the mixture properties, void
fraction v, and the drift velocity V,,. The model is most effective for a
dispersed two-phase flow, since for this case the constitutive equations can
be reduced to realistic forms as discussed in the Section 1.2 of Chapter 13.

It should be emphasized again that the drift-flux model is useful for the
two-phase flow system analyses. This is particularly true if the motions of
two phases are strongly coupled. Because of its simplicity the model can be
used to make realistic similarity analyses as well as to solve many important
engineering problems.

1.3.2 Scaling parameters

Let us denote the reference parameters by the subscript o. The
characteristic length scale is L, and the time scale is taken as the ratio of L,
to the velocity scale. Then we define the non-dimensional parameters whose
order of magnitude is considered to be 1 as follows:

p:n:p_m,vm:—m7t*: = d ,V*=L0V
pmo ,Umo T" (Lo/vmo )

*:_'O:_l_ . Ev*_&p*_i ‘e Pm
pl plo ’pz p20 M Vijo T F2o ,pm pmovfno
i =l Ay, =20 (13-74)

7’20 T Y Z20 _Zlo

— * T T .

(@+@T) =M,Mm:_y_m___
:u’movmo/Lo 2H21000/Lo

_ * qg+q" ' ok

(q+qT) __49—rgq wr__

a K‘ITLOATO/LO, " (:u’movmo /LO)(/UTILO /LO)
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o &7 , o

m ’¢m -
2H2100 mo/L (plo - p2o),vmo 2]0/L

Substituting these new parameters into the field equations we obtain the
following results:

Non-dimensional mixture continuity equation

L+ V(o) =0 (13-75)

Non-dimensional continuity equation for phase 2

da p* . * * ,
82*2+v (onory) = NIy — N,V - [0‘2;’1p2v;j] (13-76)

pch
m

Non-dimensional momentum equation for mixture

S lril) + V(o) = —'s,
+Lv.(@+e) +—1— ol In (13-77)
Ny, 19|

_N/)lejv*'{[ Q, ]p1p2 V21V2]\+NM

1“052 m

Non-dimensional thermal energy equation for mixture

Pe

G )+ Y i) =~ @)
N

- ° NV | 22fihe V*.A‘*} (13-78)
(l—a2)+a2 D { ; 2] 7’12

Dp 1 * * ’I;*
+Ng, —bt—*+7v;gzs;; +N,o; +(N, 1) NDgpm].

Here we have defined
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Phase change number N, = Tooly

p
pZavmo
V,

Drift number N, = Pro¥as0
pmovmo
= P20

Density ratio N,
plo

Reynolds number Ny, =

Uno
19 L,
2 H2100'0

2
Pro vmo

pmovmoA ) 0
Peclet number N,, = —-I?—A—Tﬁi-

Froude number N, =

Surface number N, =

2
(Y

Eckert number N, = A'Z” . (13-79)
20

We note that these eight groups are the scaling parameters for the mixtures
based on the drift-flux model formulation. These groups are analogous to
the ones obtained for the one-dimensional, two-phase flow model in Ishii
(1971). An exception is the Reynolds and Peclet numbers, however, since
for the latter model they are replaced by the groups from the boundary
conditions, namely, the friction and Stanton numbers.

The distinction between the scaling parameters and the similarity groups
should be clearly made, since they are not synonymous. The similarity
groups are obtainable from the field equations and the boundary and the
initial conditions with all the constitutive equations specified. Consequently,
the similarity criteria cannot be discussed in detail unless the system and the
problem are clearly defined. The scaling parameter enables us to make
various assumptions and approximations, because they give the order of
magnitude of various terms appearing in the field equations.

The first three groups of Eq.(13-79), N,,, N,, and N, are the
kinematic groups. If the phase change number NV, is much larger than the
drift number N, the systems is controlled by the changes of phases.
However, if N, >> N, , then the system is controlled by the
redistributions of phases. The number denoted by Ny, N, and N, are
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dynamic groups, since they scale the various forces arisen in the mixture
momentum equation, whereas the Peclet and Eckert numbers are the energy
groups. We note the particular importance of the Eckert number N, . It is
evident that except for high speed flows, N, is small, thus the terms given
by ¢, &’ and P, in the thermal energy equation can be neglected. As
we have already dlscussed before, this is the single most important
approximation which greatly simplifies the heat transfer problems.

From Eqs.(13-76), (13-77) and (13-78), we set that the drift transport of
mass, momentum and energy are not weighted by the same scaling
parameter. The phase drift and the enthalpy transport due to the relative
motion between phases has approximately the same order N, thus these
two terms should be treated under the same condition. However, the
momentum drift are weighted by N pr) . Thus, depending on the
magnitude of this scaling parameter, it is possible to neglect the drift-stress
tensor independently of the other two effects.

We note that in the scaling parameters, we have introduced the mixture
viscosity and the conductivity given by 4 and K. These parameters need
not to be precisely defined as long as the scaling parameters are concerned,
because only their order of magnitude is important. We may choose them as
the larger v1scos1ty and conductivity among 4, and K, or defined them by

Zako L, and Zak K where o, denotes the reference value of o, for
k=1

example at the system boundary.

However, if the similarity groups are concerned, then the exact
constitutive equations for the stress tensor and heat flux should be used.
Thus, according to the forms and the variables appearing in the constitutive
equations, the correct reference parameters should be chosen. Based on the
order of magnitude analysis and the scaling parameters obtained above, we
discuss some of the important special cases.

1.3.3 Homogeneous flow model

If the drift number N, is much smaller than the phase change number
N oo » then the system is reaction (phase change) controlled and the drift or
diffusion of mass is negligible in view of the continuity equation for phase 2.
Furthermore, if the drift number V), is much smaller than unity, then all of
the drift terms and the interfacial mechanical energy transfer effect ., can
be neglected in the field equations. We may not drop the continuity equation
for phase 2 from the formulation, however, since it takes into account for the
thermal non-equilibrium effect as discussed by Zuber and Dougherty (1967)
in connection with the one-dimensional model. Thus, we have the following

four field equations for the general homogeneous flow model:
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0p,,
RIS v =0

5 TV (Puvn)
oy p, _

82t o v'(azp2”m) =TI,
00, V,, —

5 +V- (pmvmvm) =-Vp,, +V- (@' + @'T) (13-80)
+PuGm + M,
Op i , _ Dp,

o TV (Puav,) ==V (@ +4d") + -
+OF + &L

In this case, the mechanical constitutive equations for the dispersed two-

phase flow can be reduced to the simple forms. Thus, from Eq.(13-50), we
have

T = (i + 1) Vo, +(Vv,)"]. (13-81)
The turbulent stress is given by Eq.(13-52) as
T’ =2 p *2D,:D,D,. (13-82)

Furthermore, the constitutive equations for the heat fluxes are given by

7= Tl (77 139
and
q" =K pe, (22D, D, v{ac ("T_: - ?)] (13-84)

where the dispersed phase has been assumed to be in thermal equilibrium
with interfaces, namely, Eq.(13-62). If the Eckert number N, and the
surface number N are small, then the capillary force M, in the mixture
momentum equation, and the compressibility effect Dp, /Dt , the
dissipation term ®! , and the surface tension effect @7 in the energy
equation can be dropped.
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134 Density propagation model

For a number of systems of practical interest, particularly for systems at
high-reduced pressures without large acoustic interactions, it is reasonable to
assume that each phase is essentially incompressible. Then we have

p, = constant. (13-85)

Furthermore, we consider the case when the drift velocity of phase 2 is
approximately a function of a, only. We recall that this is a valid
assumption for many practical flow regimes as it has been discussed in the
Section 1.3 of Chapter 7 and the Section 1.2 of Chapter 13. Thus we have

V,; = Vo (oy). (13-86)

For simplicity, we also assume that the surface number N, and the Eckert
number N, are small such that

N, <<1 and Ng << (13-87)

Then we obtain from Eqgs.(7-31), (7-38), (13-72) and (13-73) the following
field equations:

v.j:pz[;___;]

ot . P
5 (13-88)
v S
m . . T
a, PP
-V 1—204 P szvzj + PG
2 m
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Di

m

Pm Dt

zﬁv.(q+qT)_v.

where C; and j are given by

Cv=13J +58—(0‘2sz)

93
and

Q, (P=1 - P=2)
P

j=nv, + sz.
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(13-89)

(13-90)

The present density-wave propagation model is best suited for a dispersed
(or mixed) two-phase flow regime. In this case, phase 2 should be taken as
the dispersed phase. Then the constitutive equations for the stresses can be
given by Eqgs.(13-50) and (13-54), whereas the heat fluxes are given by

Egs.(13-63) and (13-67).
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ONE-DIMENSIONAL DRIFT-FLUX MODEL

Two-phase flow always involves some relative motion of one phase with
respect to the other; therefore, a two-phase-flow problem should be
formulated in terms of two velocity fields. A general transient two-phase-
flow problem can be formulated by using a two-fluid model or a drift-flux
model, depending on the degree of the dynamic coupling between the phases.
In the two-fluid model, each phase is considered separately; hence the model
is formulated in terms of two sets of conservation equations governing the
balance of mass, momentum, and energy of each phase. However, an
introduction of two momentum equations in a formulation, as in the case of
the two-fluid model, presents considerable difficulties due to mathematical
complications and uncertainties in specifying interfacial interaction terms
between two phases (Delhaye, 1968; Vernier and Delhaye, 1968; Bouré and
Réocruex, 1972; Ishii, 1975). Numerical instabilities caused by improper
choice of interfacial-interaction terms in the phase-momentum equations are
common. Therefore, careful studies on the interfacial constitutive equations
are required in the formulation of the two-fluid model. For example, it has
been suggested (Réocruex, 1974) that the interaction terms should include
first-order time and spatial derivatives under certain conditions.

These difficulties associated with a two-fluid model can be significantly
reduced by formulating two-phase problems in terms of the drift-flux model
(Zuber, 1967). In this model, the motion of the whole mixture is expressed
by the mixture-momentum equation and the relative motion between phases
is taken into account by a kinematic constitutive equation. Therefore, the
basic concept of the drift-flux model is to consider the mixture as a whole
rather than as two separated phases. The formulation of the drift-flux model
based on the mixture balance equations is simpler than the two-fluid model
based on the separate balance equations for each phase. The most important
assumption associated with the drift-flux model is that the dynamics of two
phases can be expressed by the mixture-momentum equation with the
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kinematic constitutive equation specifying the relative motion between
phases. The use of the drift-flux model is appropriate when the motions of
two phases are strongly coupled.

In the drift-flux model, the velocity fields are expressed in terms of the
mixture center-of-mass velocity and the drift velocity of the vapor phase,
which is the vapor velocity with respect to the volume center of the mixture.
The effects of thermal non-equilibrium are accommodated in the drift-flux
model by a constitutive equation for phase change that specifies the rate of
mass transfer per unit volume. Since the rates of mass and momentum
transfer at the interfaces depend on the structure of interface, these
constitutive equations for the drift velocity and the vapor generation are
functions of flow regimes (Zuber and Dougherty, 1967; Ishii et al., 1975).

The drift-flux model is an approximate formulation in comparison with
the more rigorous two-fluid formulation. However, because of its simplicity
and applicability to a wide range of two-phase-flow problems of practical
interest, the drift-flux model is of considerable importance. Particularly, the
one-dimensional drift-flux model obtained by averaging the local drift-flux
formulation over the cross-sectional area is useful for complicated
engineering problems involving fluid flow and heat transfer, since field
equations can be reduced to quasi-one-dimensional forms. By area
averaging, the information on changes of variables in the direction normal to
the main flow within a channel is basically lost. Therefore, the transfer of
momentum and energy between the wall and the fluid should be expressed
by empirical correlations or by simplified models. In this chapter, we
develop a general one-dimensional formulation of the drift-flux model, and
discuss various special cases which are important in practical applications.
For simplicity, mathematical symbols of time-averaging are dropped in the
formulation in this chapter. The extensive review of this model is given by
Ishii (1977).

1.1 Area average of three-dimensional drift-flux model
The three-dimensional form of the drifi-flux model has been obtained by
using the time or statistical averaging method. The result can be

summarized as follows:

The mixture continuity equation from Eq.(13-70)

dp
Zfm 4 vy =90 14-1
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The continuity equation for dispersed phase from Eq.(13-71)

Oa
L1 (0yppn,) = T _v.[mvdj] (14.2)

m

The mixture momentum equation from Eq.(13-72)

dp, v
mZm 4 7.
6t (pmvmvm)
. (14-3)
=-Vp,+V-|T+T" »—ﬂ—fﬁc—VdjV,ﬁ] + P9
—Qy Py
The mixture enthalpy-energy equation from Eq.(13-73)
O0p, h
ZPnTm N7 (p how
8t (pm m m)
=—V-|ﬁ+qT+M(hd—hcmj] (14-4)
P,
+?_p_m +iv, + m)_vdj] . me + @:z‘
ot Pm

The rational approach to obtain a one-dimensional drift-flux model is to
integrate the three-dimensional drift-flux model over a cross-sectional area
and then to introduce proper mean values. A simple area average over the
cross-sectional area, A, is defined by

(F) = ‘j[ [ Faa (14-5)

and the void-fraction-weighted mean value is given by

— (o F) )
(B =" (14-6)

In the subsequent analysis, the density of each phase p, and p, within any
cross-sectional area is considered to be uniform, so that p, = << Pk>>' For
most practical two-phase flow problems, this assumption is valid since the
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transverse pressure gradient within a channel is relatively small. The
detailed analysis without this approximation appears in a reference (Ishii,

1971). Under the above simplifying assumption, the average mixture
density is given by

() = () pa + (1= () e (14-7)

The axial component of the weighted mean velocity of phase & is

o o) ()
<< k>> () (o)

where the scalar expression of the velocity corresponds to the axial
component of the vector. Then the mixture velocity is defined by

T ) _ (2) Pa ({va)) + (1= (o)) 2 ()
" {pa) (Pm)

and the volumetric flux is given by

(9) = (Ga) + (5) = (@a) ((va)) + (1= {e))((u.))- (14-10)

The mean mixture enthalpy also should be weighted by the density; thus,

(pubn) _ () pa ((ha)) + (1= (aa)) . (1)) , (14-11)

(Pu) (Pm)

The appropriate mean drift velocity is defined by

Vo = ((0)) = (3 = (1= () ({{ua)) = {(.)))- (14-12)

The experimental determination of the drift velocity is possible if the volume
flow rate of each phase, (), , and the mean void fraction <ozd> are measured.
This is because Eq.(14-12) can be transformed into

(14-8)

Il

(14-9)

It

b

Vy = ) ((a)+(4.)) (14-13)

(o)
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where < jk> is given by < jk> =@, / A. Furthermore, the present definition
of the drift velocity can also be used for annular two-phase flows. Under the
definitions of various velocity fields we obtain several important relations,
such as

(o)) =7, — ()  py o (14-14)
R O (A
and
(4) = Q-I—M‘de‘ ats

(Pm)

In the drift-flux formulation, a problem is solved for <ozd> and v,, with a
given constitutive relation for ITd] Thus, Eq.(14-14) can be used to recover
a solution for the velocity of each phase after a problem is solved.

By area-averaging Eqs.(14-1)-(14-4) and using the various mean values,
we obtain

Mixture Continuity Equation

0
Gy %((pm>v_) =0 (14-16)
Continuity Equation for Dispersed Phase

20101 4 2 (o)) = ()| 5T e

Mixture Momentum Equation
o), 0 () \iay_ D
ot s el T) = g {re) (14-18)

0
+5;<nz +75) ~{(Pn) 9
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I T 9 (%)Pdﬂc 72
“2p e T g T ) ) ]
———;ZCOV P Y )

Mixture Enthalpy-energy Equation

8 h - "
Kol | 0, \R) =~ (g4 ")+ B

ot 0z 0z A
_2_ <ad>pdpc Ah V _ i (ad>pdpc Ahdc‘/:i]
0z (pn) 0z| (Pn)

(14-19)

0 (Pn)
———E COV h SRS LY
Bz 4= akpk ”k) ot

o+ <ad>(Pc _pd)W 0

(pw) 7

Here, T,, + 7., denotes the normal components of the stress tensor in the
axial direction and Ah,, is the enthalpy difference between phases; thus,
Ahy, = {({h;)) —{((h,)) . The covariance terms represent the difference
between the average of a product and the product of the average of two
variables such that COV (ayp,th0,) = gakpk'(ﬁk (Uk <<Uk>>) . If the profile
of either 1), or v, is flat, then the covariance term reduces to zero. The
term represented by f (p, )7, [v,|/(2D) in Eq.(14-18) is the two-phase
frictional pressure drop. We note here that the effects of the mass,
momentum, and energy diffusion associated with the relative motion
between phases appear explicitly in the drift-flux formulation, since the
convective terms on the left-hand side of the field equations are expressed in
terms of the mixture velocity. These effects of diffusions in the present
formulation are expressed in terms of the drift velocity of the dispersed
phase V,;. This may be formulated in a functional form as

Vis = Vi (@) (P ) 19,7, etc.). (14-20)

To take into account the mass transfer across the interfaces, a constitutive
equation for <F d> should also be given. In a functional form, this phase-
change constitutive equation may be written as
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(Iyy=(I';) @Q,@Q,ﬁ,%, etc. |. (14-21)

The above formulation can be extended to non-dispersed two-phase flows,
such as an annular flow, provided a proper constitutive relation for a drift
velocity of one of the phases is given.

1.2 One-dimensional drift velocity
1.2.1 Dispersed two-phase flow

To obtain a kinematic constitutive equation for the one-dimensional drift-
flux model, we must average the local drift velocity over the channel cross
section. The constitutive relation for the local drift velocity V, in a
confined channel was developed in the Section 1.2 of Chapter 13. Now we
relate this to the mean drift velocity 17@ defined by Eq.(14-12).

From Egs.(14-6) and (14-12),

Vy = <3‘i’—%:—r>—@ - j> =((Viy)) +(Co = 1) () (14-22)

(v = o) (1423)
(o)

and
C, = (oas)_ (14-24)

The second term on the right-hand side of Eq.(14-22) is a covariance
between the concentration profile and the volumetric flux profile; thus it can
also be expressed as COV (a,5)/(e,) - The factor C,, which has been used
for bubbly or slug flows by several authors (Zuber and Findlay, 1965;
Nicklin et al., 1962; Neal, 1963) is known as a distribution parameter. The
inverse of this parameter was also used in the early work of Bankoff (1960).
Physically, this effect arises from the fact that the dispersed phase is locally
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transported with the drift velocity V. with respect to local volumetric flux j
and not to the average volumetric flux (j). For example, if the dispersed
phase is more concentrated in the higher-flux region, then the mean transport
of the dispersed phase is promoted by higher local j.

The value of C; can be determined from assumed profiles of the void
fraction «; and total volumetric flux 7 (Zuber and Findlay, 1965), or from
experimental data (Zuber et al., 1967). By assuming power-law profiles in a
pipe for 7 and o, we have

1:1_(L]m
[ &,
Qq — Yw :1_[L]
| X0 — Paw Ry

(14-25)

where j,, a9, 0w, T, and Ry, are, respectively, the value of j and o at
the center, the void fraction at the wall, radial distance, and the radius of a
pipe. By substituting these profiles into the definition of C| given by
Eq.(14-24), we obtain

2
m+n-+2

Cy=1+

- O‘dW']. (14-26)

)

The distribution parameter based on the assumed profiles above is further
discussed in a reference (Zuber et al., 1967).
Now Eq.(14-22) can be transformed to

((us)) = ) _ Co (4) +{{(Va)) (14-27)

where <<v d )> and (j) are easily obtainable parameters in experiments,
particularly under an adiabatic condition. Therefore, this equation suggests a
plot of the mean velocity <<v d>g> versus the average volumetric flux (j). If
the concentration profile is uniform across the channel, then the value of the
distribution parameter is equal to unity. In addition, if the effect of the local
drift <Vdj) is negligibly small, then the flow becomes essentially
homogeneous. In this case, the relation between the mean velocity and flux
reduces to a straight line through the origin at an angle of 45°. The deviation
of the experimental data from this homogeneous flow line shows the
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magnitude of the drift of the dispersed phase with respect to the volume
center of the mixture.

An important characteristic of such a plot is that, for two-phase flow
regimes with fully developed void and velocity profiles, the data points
cluster around a straight line (see Figs.14-1-14-3). This trend is particularly
pronounced when the local drift velocity is constant or negligibly small.
Hence, for a given flow regime, the value of the distribution parameter C|,
may be obtained from the slope of these lines, whereas the intercept of this
line with the mean velocity axis can be interpreted as the weighed mean
local drift velocity, <§Vd]>> The extensive study by Zuber et al. (1967)
shows that C,, depends on pressure, channel geometry, and perhaps flow
rate. An important effect of subcooled boiling and developing void profile
on the distribution parameter has also been noted by Hancox and Nicoll
(1972). Here, a simple correlation for the distribution parameter in bubbly-
flow regime is presented based on study by Ishii (1977). First, by
considering a fully developed bubbly flow, we assumed that C;, depends on
the density ratio Py /Ps and on the Reynolds number based on liquid
properties, GD/u, , Where G, D, and M, are the total mass flow rate,
hydraulic diameter, and the viscosity of the liquid, respectively. Hence,

p, GD
c, =0, |, 2= (14-28)
Py Hy
15 M ¥ M T v T T T
- O Smissaert (1963)
E D=70cm
— P=0.1 MPa
A <jr>=0'30'5 cm/s
A
Aw 10
¥ Co=1.21
Z
3
;, 5
]
3
<<Vn,>>forCh\melaw
0 0 2 4 6 8 10 12

Total Volumetric Flux, <> [m/s]

Figure 14-1. Fully developed air-water flow data (Ishii, 1977)
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Figure 14-2. Experimental data for cocurrent upflow and cocurrent downflow of steam-water
system (Ishii, 1977)
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Figure 14-3. Experimental data for cocurrent upflow and cocurrent downflow of heated
Santowax-R system (Ishii, 1977)
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A single-phase turbulent-flow profile and the ratio of the maximum
velocity to mean velocity give a theoretical limiting value of C; at a; — 0
and p sp, — 0, since in this case all the bubbles should be concentrated at
the central region. Thus from the experimental data of Nukuradse (1932) for
a round tube, which gives the ratio of the maximum to mean velocity, we
have

C. =1lim ) <O‘d>j? =1393 - 0.0155 1n[@

(a)(g)  {ea)(5) oy

as a; — 0 and p,/p;, — 0. Furthermore, as the density ratio approaches
unity, the distribution parameter C,, should also become unity. Thus,

(14-29)

C, —1 (14-30)

as p, jpy — 1. Based on these limits and various experimental data in a fully

developed flow, the distribution parameter can be given approximately by
C,=C,—(C.-1) Jp,]p; /P; (14-31)

where the density group scales the inertia effects of each phase in a
transverse void distribution. Physically, Eq.(14-31) models the tendency of
the lighter phase to migrate into a higher-velocity region, thus resulting in a
higher void concentration in the central region (Bankoff, 1960). For a
laminar flow, C_ is 2, but, due to the large velocity gradient, C, is very
sensitive to <ozd> at low void fractions.

Over a wide range of Reynolds number, GD/uf , Eq.(14-29) can be
approximated by C__ = 1.2 for a flow in a round tube. Furthermore, for a
rectangular channel, the experimental data show this value to be
approximately 1.35. Thus, for a fully developed turbulent bubbly flow,

1.2-0.2 Py [Ps round tube
C ~

~ 14-
° 7 135035 /p, /ps:  rectangular channel. (14-32)

Figures 14-4 and 14-5 compare the above correlation with various
experimental data. Each point in the figures represents anywhere from five
to 150 data points. For example, the original experimental data of Smissaert
(1963), shown in Fig.14-1, are presented by a single plot in Fig. 14-4. Each
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Figure 14-4. Distribution parameter for fully developed flow in a round tube (Ishii, 1977)

point in Fig.14-1 can be used to obtain a corresponding value for C, by
using the existing correlation for the mean local drift velocity Vd].> .
However, in view of the strong linear relation between the mean velocity of
the dispersed phase and the total flux, the average value of C obtained by
linear fitting has been used in Figs.14-4 and 14-5.

In the velocity-flux plane (see Figs.14-2 and 14-3), three operational
modes can be easily identified. In the first quadrant, the flow is basically
cocurrent upward; therefore both the liquid and vapor phases flow in an
upward direction. In the second quadrant, the vapor phase is moving
upward; however, there is a net downward flow of mixture. Consequently,
the flow is countercurrent. The cocurrent downflow operation should appear
in the third quadrant of the velocity-flux plane, as shown in Figs.14-2 and
14-3. These data indicate that the basic characteristic described by Eq.(14-
27) is valid for both cocurrent up and down flows with an identical value for
the distribution parameter, C;. This fact demonstrates the usefulness of
correlating the drift velocity in terms of the mean local drift velocity <<V;j >>
and C,.

In two-phase systems with heat addition, the change of void profiles from
concave to convex can occur. The concave void-fraction profile is caused by
the wall nucleation and delayed transverse migration of bubbles toward the
center of a channel. Under these conditions, most of the bubbles are initially
located near the nucleating wall, although even in adiabatic flow, small
bubbles tend to accumulate near the wall region at low void fraction. The
concave profile is particularly pronounced in the subcooled boiling regime,
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Figure 14-5. Distribution parameter for fully developed flow in a rectangular channel (Ishii,
1977)

because here only the wall-boundary layer is heated above the saturation
temperature and the core liquid is subcooled. This temperature profile will
induce collapses of migrating bubbles in the core region and resultant latent
heat transport from the wall to the subcooled liquid. A similar concave
profile can also be obtained by injecting gas into flowing liquid through a
porous tube wall (Rose and Griffith, 1965).

In the region in which voids are still concentrated close to the wall, the
mean velocity of vapor can be less than the mean velocity of liquid because
the bulk of liquid moves with the high core velocity. However, as more and
more vapor is generated along the channel, the void-fraction profile changes
from concave to convex and becomes fully developed. For a flow with
generation of void at the wall due to either nucleation or gas injection, the
distribution parameter C,, should have a near-zero value at the beginning of
the two-phase flow region. This can be also seen from the definition of C,
in Eq.(14-24). Hence, we have

lim C, = lim <ad]> = <ad>JW =0 for I', > 0. (14-33)

(0s)-0 (@) () (aa){5)

With the increase in the cross-sectional mean void fraction, the peak of the
local void fraction moves from the near-wall region to the central region.
This will lead to the increase in the value of C, as the void profile develops.
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Figure 14-6. Distribution parameter in developing flow due to boiling (Data for the
rectangular duct have been modified by a factor of 1.2/1.35 to obtain corresponding data for a
round tube.) (Ishii, 1977)

In view of the basic characteristic described above and various
experimental data (Zuber et al, 1967, Maurer, 1956; Pierre, 1965;
Marchaterre, 1956) the following simple correlation is proposed (Ishii, 1977)

C, = [COO ~(C. = 1) Ju /05 }(1 - e‘18<“d>). (14-34)

This expression indicates the significance of the developing void profile in
the region given by 0 < <Ozd> < 0.25; beyond this region, the value of C|,
approaches rapidly to that for a fully developed flow (see Fig.14-6). Hence,
for I') > 0, we obtain

C, =
(1 2-02 /p, /pf)(l—e'm(“'i)): round tube (14-35)

(1 35-035 Jp,/p; ) (1_ 6-18<04d>): rectangular channel.

For most droplet or particulate flows in the turbulent regime, the
volumetric flux profile is quite flat due to the turbulent mixing and particle
slips near the wall, which increases the volumetric flux. The concentration
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of dispersed phase also tends to be uniform, except for weak peaking near
the core of the flow. Because of these profiles for j and «,, the value of
the distribution parameter C, is expected to be close to unity
(1 0<C, < 1.1) . Thus, by assuming that the covariance terms are
negligibly small for droplet or particulate flows, we have

v, = (V) (14-36)

in which case the local slip becomes important.

The calculation of ((V,}) based on the local constitutive equations is the
integral transformation, Eq.(14-23); thus, it will require additional
information on the void profile (Ishii, 1976). Since this profile is not known
in general, we make the following simplifying approximations. The average
drift velocity %}Vdj 2> due to the local slip can be predicted by the same
expression as the local constitutive relations given in a reference (Ishii,
1976), provided the local void fraction «; and the non-dimensional
difference of the stress gradient are replaced by average values. These
approximations are good for flows with a relatively flat void-fraction profile;
also, they can be considered acceptable from the overall simplicity of the
one-dimensional model.

For a fully developed vertical flow, the stress distribution in the fluid and
in the dispersed phase should be similar; thus, the effect of shear gradient on
the mean local drift velocity can be neglected. Under these conditions we
obtain the following results.

Undistorted-particle Regime
o . . 108
Vi =(Co —1){5) + —ﬁ%(l —{ou))’

y p? (14 ) Pe — Pa (14-37)

144

where (1} ) = 0.55((1+ 0.08r")" - 1]0'75 for 1 <34.65 and (r; ) =17.67

for r; > 34.65. The limiting case of the undistorted-particle regime is the
Stokes regime in which the mean drift velocity reduces to
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Vdj: (Co _1)<j>+§

A 2 -
7,,2 gap 1—{a #’c Pe P (14'38)
‘n, (1= () (o) Ap

Distorted-particle Regime (1.75 < n < 2.25)

/4
7= (€00 + 2|05 (o)) e s
Pe

Here the value of # depends on the viscosities as

n=1.75 VMg <<
n=2 M S, (14-40)
n =225 PoMg S>> U,

Churn-turbulent-flow Regime

14
T : ogAp | p.—p
Vy=(Co-1) (i +2 [ . ] Yk (14-41)

Here the mean mixture viscosity (Ishii, 1976) is given by

~2.5004m (pg+0A1te) (4 + e )
(n) [1 - @] . (1442

He

ey,
The value of maximum packing, o, = 0.62, is recommended for solid
particle-fluid systems, although it can range from 0.5 to 0.74. However, for
a bubbly flow, the theoretical value of «v,, can be much higher. If we
consider the standard range of interest of void fraction in bubbly flow, o,
may be approximated by «,, = 1. Hence, for a bubbly flow, the mixture
viscosity becomes

() _ 1
K. 1_<O‘d>'

(14-43)

However, for a particulate flow with a low particle concentration, namely,
(a ) <<1, (p, ) canbe approximated by
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el = 1 (o) ™. 1440

In a horizontal flow with a complete suspension of the dispersed phase,
the transverse mixing, which keeps the particles suspended, can significantly
influence the stress gradient of each phase; thus, the stress gradient effect
may not be neglected. However, in view of the present state of the art, the
assumption <<V:i]>> ~ (0 may be used as a first-order approximation,

particularly in high-flux flows. As explained at the end of this chapter, the

actual local drift velocity depends also upon the pressure gradient due to

friction and, therefore, in strict sense it is not zero even in horizontal flow.
For high-flux flows, the effect of the local drift <V >? on the mean drift

velocity is small in comparison with the covariance ferm (C’ - 1)( ).
Thus, by neglecting the former, we have
— Co — 1) {0 )V

)= (G )< o) (P —pa)

For bubbly flows, the above equation imposes a condition on applicable
void-fraction ranges; thus, we should have (p ) > (C; - 1){a,)(p; — p.)-
Here, a simple criterion for the boundary between the high- and low-flux
flow can be obtained by taking the ratio of the total volumetric flux and the
terminal velocity. If this ratio is more than 10, the flow can be considered a
high-flux flow.

The other limiting case of the dispersed two-phase flow in a confined
channel is slug flow. When the volume of a bubble is very large, the shape
of the bubble is significantly deformed to fit the channel geometry. The
diameters of the bubbles become approximately that of the pipe with a thin
liquid film separating the bubbles from the wall. The bubbles have the bullet
form with a cap-shaped nose. The motion of these bubbles in relatively
inviscid fluids can be studied by using a potential flow analysis around a
sphere (Dumitrescu, 1943), and the result is shown to agree with
experimental data. Thus,

Vy =

J

1/2
=02(j)+0 35{9DAp] (14-46)
P,

which was originally proposed by Nicklin et al. (1962) and Neal (1963).
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1.2.2 Annular two-phase flow

In annular two-phase flow, the relative motions between phases are
governed by the interfacial geometry, the body-force field, and the
interfacial momentum transfer. The constitutive equation for the vapor-drift
velocity in annular two-phase flow has been developed by taking into
account those macroscopic effects of the structured two-phase flows (Ishii et
al., 1976). Assuming steady-state adiabatic two-phase annular flow with
constant single-phase properties, we have the following one-dimensional
momentum equations for each phase.

dpm _ Ti‘Pi -
_(72_ n pggz] ROy (14-47)
and
_ (9P ]___ Twhy TR ]
[ az P (1= ()4 (1-(a,))4 -

where 7;, 7,0, F;, and P, are the interfacial shear, wall shear, interfacial
wetted perimeter, and wall wetted perimeter, respectively. The hydraulic
diameter and the ratio of wetted perimeters are defined by D = 44/P . and
¢ = P,/P,, . By assuming that the film thickness 0 is small comparec{ with
D, we have 45/D ~1— <a g>. Furethermore, for an annular flow in a pipe,
§ reducesto /o, .

The wall shear can be expressed through the friction factor with a

gravity-correction term by 7. = f,.p; <<vf>>‘<<vf>>1 /2 — Apg,§/3, where

fwf can be given by the standard friction-factor correlation: f,. = 16/Re;,
for laminar film flows and f,, = 0.0791Re;** for turbulent flows. Here the
liquid-film Reynolds number is given by Re, = p, |< jf>| D /Hf . Similarly,

the interfacial shear can be expressed as 7, = fp, |ﬁ|ﬁ/2 with the

interfacial friction factor given by f = 0.005[1 + 75(1 — <Oég >)] for rough
wavy films (Wallis, 1969).

By definition, the vapor-drift velocity is related to v, , namely,
V. = (1 - <ag> 7. Hence, by eliminating the pressure gradient from the

@ ! . .
momentum equations, we obtain for a laminar film
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2
= 1“’ (3) , 28D (1= {eu) (14-49)
pgfs | D 48 |
and for a turbulent film
3
Vo= <a9>(1p_1§;‘9>) D
gJi

P (14-50)

‘0-005%‘ Gl 1

xl D(1_<O‘9>)3 3

Here, the negative root is taken when the term within the absolute signs
becomes negative. The drift velocity in the form expressed by Eqgs.(14-49)
and (14-50) is convenient for use in analyzing steady-state adiabatic or
thermal-equilibrium flows since, in these cases, the value of < jf> can be
easily obtained.

In a general drift-flux-model formulation, V. should be expressed in
terms of the mixture velocity v,, rather than (j f> , as U, is the velocity
used in the formulation. From the definition, we have

1=

By substituting Eq.(14-51) into Eq.(14-49), we obtain for a laminar film

‘Tw_ — is'u’f <a9>2 “1+11+ f;D<Pm>2 <1_3<a9>>§
<Pm>Dfi§ 4p, <ag> P,
i~ (14-52)
| Qpg.D’ (1 (o >>
X|v, +
48,

which is valid for the laminar range given by
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(1- (ag>)(p<m>1;_m —{Pn)(35),
_ (1_<a9>)<:m>2—;+<pm><jf>w
b (o) e,

Here the laminar turbulent-transition volumetric flow is defined by (7,
= 32004, /p;D. The negative root of Eq.(14-52) applies when the term
within the absolute signs becomes negative. It is easy to show that, for V

< (1 - <Oég >) {pm) T / ((%> pg) , the flow is cocurrent upward, whereas, for

V_m. larger than the above limit, the liquid flow is downward. The solution
for the case of turbulent film flow is somewhat more complicated. For
convenience, let us introduce the following parameters.

<7,
(14-53)

_ &P,
a = 2
0005}, (1 (o)
_ {ay)n,
b= o (1 = <ag>) (14-54)
. Apg,D (1 — <o¢g>)
—0.015p,
Then, for upward liquid flow, we have
g —2 g2\ W2
b, +[avm +2(a b )c} o B0
V.= . (a =) (14-55)
———v"ébic ifa—b5>=0
,Um

which applies under the condition 7 > _/cb? /a . However, in the transition
regime given by —/c <7~ < cbz/a , where the liquid film flow is

downward with upward interfacial shear forces on the film, the vapor-drift
velocity becomes
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oVt +asv)e”

) 14-56

e a+ b ( )
In the range of v,, givenby v, < —/c,
12
_ —b@;—[aﬁ2 —(a—b2)c]/

V, = (14-57)

a—b?

which applies to the cocurrent downward flow.
The above solution can be applied only if the following turbulent-flow
criterion is satisfied.

7 < <1 - <04_,,>)<Pm>5n: <pm><]f>tr
9= (@) P,
lor (14-58)
oo (1= () a5 + (e ),
g ),

These results do not have a very simple form for a turbulent film. However,
if the absolute value of the mixture velocity is large, so that the flow is
essentially cocurrent and the gravity effect is small, then the turbulent
solution can be approximated by the simple form

T (1 B <a9>>5;"- 14-59
. <a9>pg+ €pg[1+75(1—(a9>)] 7’ (45

<pm> <ag>pf

Equation (14-59) for the drift velocity can be transformed to obtain the slip
ratio v, /v, under the simplifying assumption that the average liquid
velocity is much smaller than the vapor velocity. Then we have
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M: Pr \/@ " 14-60
(o) \/214—75(1—(@9)) (1469

for an annular flow in a pipe for which ¢ = /(« ). The above expression
for slip ratio is similar to that obtained by Fauske (1962), namely

<<Ug>> /<<vf>> = \/Pf/—Pg , which has no dependence on the void fraction.

The factor that takes the void fraction into account in Eq.(14-60) varies
roughly from 0.24 to 1 for the range 0.8 <(a,) <1. Therefore, for a
turbulent film, the Fauske correlation should give reasonably accurate results
at high void fractions.

The drift-velocity correlation for the annular flow has been expressed in
terms of the mixture velocity, since v,, is the basic variable in the
formulation of the general drift-flux model. However, it is also interesting
and important to resolve the expression for V_ in terms of the total
volumetric flux (j), since (j) was the variable used to correlate ITw. in
dispersed two-phase flow regimes.

By considering the turbulent film-flow regime and using the definition
<jf> = (1 - <ag >)(y) - <ag>1_/; , we can resolve Eq.(14-50) for the mean drift

velocity I_/;. The result does not have a simple form; however, for most
practical cases, it can be approximated by a linear function of < J > .

~ 1—({a) (14-61)

N

% <j>+\/Apng(1“<O‘g>)

0.015p,

This expression may be further simplified for p, /Ps <<1 as

1-{a,) . |4pe.D(1—{a,))
<ag>+4m <J>+\[ 0015, . (14-62)

112

9
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From the comparison of Eq.(14-62) to Eq.(14-22), the apparent distribution
parameter for annular flow becomes

OO:1+< Lofoy) (o <<1). (14-63)

ag> + 4 /pg/pf ’

This indicates that the apparent C,, in annular flow should be close to unity.
1.2.3 Annular mist flow

As the gas velocity increases in the annular flow, the entrainment of
liquid from the film to the gas-core flow takes place. Based on criteria
developed for an onset of entrainment (Ishii and Grolmes, 1975), the critical
gas velocity for a rough turbulent film flow can be given by

1
for N“f <

P | N 15
; ag fi uf
(,)> = \[— x[ (14-64)
iy \p, (01146 gy 1
15

1/2
where N, = p, / {pfd /g/gAp]/ . However, in general, the vapor flux is

much larger than the liquid flux in the annular-mist-flow regime. Then, for a
weakly viscous fluid such as water or sodium, the above correlation may be
replaced by

(3, = ) >

2

Py

/4
A
P9 ] N2, (14-65)

If Inequality (14-65) is satisfied, then the droplet entrainment into the gas-
core flow should be considered; otherwise the correlation for annular flow,
Eq.(14-62) can be applied.

The correlation for ITW. in annular mist flow can be readily developed by
combining the previous results for a dispersed flow and pure annular flow.
The area fraction of liquid entrained in the gas core from total liquid area at
any cross section is denoted by E,, and the cross-sectional-area-averaged
void fraction by («, ). Then the film-area fraction is given by
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_ liquid-film cross-sectional area

core

1—
total cross-sectional area (14-66)

=(1- (o)1 - B,)
and the mean liquid-droplet fraction in the gas core alone is given by

cross-sectional area of drops
Oédmp =

cross-sectional area of core
I L (é-en

11— {a,))1- By’

Consequently, «,,. should be used in the annular-flow correlation, Eq.(14-
62), to obtain the relative motion between the core and the film, whereas
@4, should be used in the dispersed-flow correlation to obtain a slip
between droplets and gas-core flow.

By denoting the gas-core velocity, liquid-drop velocity, and film velocity
by Vye s Vg and Vg, respectively, the total volumetric flux is given by

<‘7> = [’Ugc (l - admp) + adroplvfc} Qe + /Uff (1 - acore) . (14-68)

Furthermore, by denoting the total volumetric flux in the core based on the
core area by 7., we have from the annular correlation, Eq.(14-62),

(1—<a9>)(1—Ed)
<a9>+4\/m

12

Joore = {J) (14-69)

. <j>+JA’)gZD(1‘<“g>>(l‘Ed) .

0.015p,

From the dispersed-flow correlations, it can be shown that, for a distorted-
droplet or churn-droplet flow regime, the drift velocity can be given
approximately by
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ogtp)” Bl (o,
<<”g>>—jcm=ﬁ[ p?] <ag>+(Ed (i_z)%». (14-70)

Here we have used an approximation based on {1 — @, 2’<< 1. However,
depending on the core-gas velocity, the dispersed-flow drift-velocity
correlation for a much smaller particle should be used. When the droplets
are generated by the entrainment of liquid film, the following approximate
form is suggested for an undistorted-particle regime outside the Stokes
regime (Ishii, 1976).

(g4p)’
u!]pg

1/3
( ) (14-71)

(o >+E(1—<a>)

where the particle radius may be approximated from the Weber-number
criterion at the shearing-off wave crests. Thus,

((9,)) = Juore = 057,

/60—“&. (14-72)

1

T

The above relations apply only when the total volumetric flux is
sufficiently high to induce fragmentations of the wave crests. Hence,
Eq.(14-71) should be used when

- 1/12

4 2
IG) > 1 456[“9Ap ] el . (14-73)
py0

T ) norea

By combining the above results, we obtain

(- (a)o-5)

T {oy) + 4o,y
diis \/ApgzD(l — (o)1 E,)

0.015p;

(14-74)
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E, (1 —({a >)

+ X {or
<a9> +E, (1 N <a9 >) 273
30|(94p) " 1
Pol topy | (3

where the latter expression applies under the condition given by Eq.(14-73).
If the radius of the particle is very small, then the essential contribution to
the relative motion between phases comes from the first term of Eq.(14-74),
and the core flow may be considered as a homogeneous dispersed flow. In
such a case, Eq.(14-74) reduces to

_— (1= (o)1 - B,)

4 — <ag>+4\/ﬂg/—Pf
+\/ApgzD(l—<ag>>(1——E'd) |

0.015p,

(14-75)

This expression shows a linear decrease of drift velocity in terms of
entrained liquid fraction, which can be observed in various experimental data
(Alia et al., 1965; Cravarolo et al., 1964).

1.3 Covariance of convective flux

In the one-dimensional drift-flux model, the momentum and energy
convective fluxes have been divided into three terms: the mixture convective
flux; the drift convective flux; and the covariance term, as can be seen from
Eqgs.(14-18) and (14-19). In other words, the convective flux of quantity 1
for the mixture can be written as

NS (opitn)| = 2 (o)
8zk=1kkkk ZaN
e o (14-76)
) PaPe A, T
P oal oy AT |+ 5. 20OV (eupithe)
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where Ay, = ((4,)) — ((v,)) and COV (aypf, ) = <O‘kpk1/’k (vk —{(w >>)>

Therefore, for the momentum flux, we have ¢, = v, and Ay,
=V / (1 — <ag>). For the enthalpy flux, we have v, = h, and Ay,

= <(hd >> — <<hc >> , Which is equivalent to the latent heat if phases are in
thermal equilibrium.

To close the set of the governing equations, we must specify relations for
these covariance terms. This can be done by introducing distribution
parameters for the momentum and energy fluxes. If we define a distribution
parameter for a flux as

<0‘k1/)kvk>
(o) <<¢k >> <<“k »

the covariance term becomes

(14-77)

C¢ k

COV (pythv,) = p <ak¢k (”k - <<'Uk >>)>
= (Cou = 1) p{n ) () {(0)).

For the momentum flux, the distribution parameter is defined by

(14-78)

2
(o) (14-79)

(o) {(w)

Physically, C,, represents the effect of the void and momentum-flux
profiles on the cross-sectional-area-averaged momentum flux of k phase. A
quantitative study of C,, can be made by considering a symmetric flow in a
circular duct and introducing the power-law expressions in parallel with the
analysis of C, in the Section 1.2.1 of Chapter 14. Hence we postulate that

Cvk

1l

Y = Y _q_ [_7'_] (14-80)
Qg — Oy, R,

and
v, r
— =1 14-81
Uro [Rw] ( )
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where the subscripts 0 and w refer to the value at the centerline and at the
wall of a tube.

For simplicity, it is assumed that the void and velocity profiles are
similar; namely, n = m . This assumption is widely used in mass-transfer
problems. It may also be reasonable for fully developed two-phase flows if
one considers that the vapor flux and, hence, the void concentration greatly
influence the velocity distributions. Under this assumption, it can be shown
that

nt f [O‘m + Aoy, 33—73,2] [akw + Aoy, " 2)
o nt — n+ (14-82)
[akw + Aq, "

where Aoy, = oy — -
For a dispersed vapor phase, o, << A« ,» hence,

3In+3

C )
In+2

vg

112

(14-83)

However, from Eq.(14-26), the volumetric-flux-distribution parameter C,
becomes

n+2

C .
0 n+1

112

(14-84)

Therefore, in the standard range of n, the parameter C,, can be given
approximately by

C, ~14+05(C,—1). (14-85)

For a liquid phase in a vapor-dispersed-flow regime, o, = 1 and
a;y <1. Then from Eq.(14-82) it can be shown that, for a standard range
of a;, in the bubbly- and churn-flow regimes, Cvf can be approximated by

C,=1+15(C, —1). (14-86)

For an annular flow, the momentum covariance term can also be
calculated by using the standard velocity profiles for the vapor and liquid
flows. Thus we obtain
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1.02  (turbulent flow)
C, =

U

14-8
133 (laminar flow). (14-87)

The above result for the individual phases can now be used to study the
mixture covariance term. By defining the mixture-momentum-distribution
parameter as

C _ Cvdpd <ad> + Cvcpc <ac>

= (p ) (14-88)
the covariance term becomes
2
Z cov (akpkv,f)
k=1
— 1 — PePa <0‘d> 72 )
R O e IR A e

+M(Cvd —-C )r{Td]

{Pm)

In view of the above analysis, the order of magnitude of (Cvd — CW) is the
same as that of (Cm — 1) or less; therefore, the last term on the right-hand
side of Eq.(14-89) can be neglected for almost all cases. This term may be
important_only in the near critical regime and if 7_ ~ ITd] However, in
general, V,, becomes insignificant as the density ratio approaches unity.
Hence, under the above conditions, the convective term itself becomes
relatively small. Consequently, even for this case, the term may be dropped.
Thus we have

(14-90)

The value of C,, can be evaluated from Eq.(14-88) by using Eqs.(14-
85) and (14-86) or Eq.(14-87). In the bubbly- and churn-flow regimes of
practical importance, C,, can be given approximately by
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C,, =1+15(C, —1). (14-91)

However, in the near critical regime, C,, depends also on the void fraction
and the density ratio. Furthermore, at very low void fractions in a fully
developed flow or in a developing flow, the value of C, should be reduced
to the one for the single-phase flow given by Eq.(14-87). The effect of the
development of the void profile into that given by the power law may be
taken into account by a similar void-fraction correction term used in the
correlation for C, in Eq.(14-34). By recalling that for a turbulent flow
C,, =10 at a; — 0, we obtain for a round tube

wmn

C, =1 +o.3(1— W) (1—6“8<°‘d>) (14-92)

which may be used both for a fully developed flow and for a developing
flow.

For a turbulent-annular-flow regime, we have, from Eqs.(14-87) and (14-
88), C,, =~1.02 . For all practical purposes, this may be further
approximated by :

c,, ~1. (14-93)

In reality, the transition from the value given by Eq.(14-92) to that given by
Eq.(14-93) is a gradual one through the churn-annular (or slug-annular)-flow
regime in which characteristics of churn and annular flows alternate. If a
single correlation for C,, is preferred, regardless of the flow-regime
transitions, then Eq.(14-92) may be safely extrapolated into higher-void-
fraction regime by a simple modification given by

Cc,,~=1+03 (1 — /py/pf){l - 6_18<04d>(1“<ad>)}. (14-94)

A similar analysis can be carried out for the enthalpy-covariance term by
assuming the void, velocity, and enthalpy profiles. In general,

2 —
Z cov (akthk”k) = (Chm = 1) <Pm> B,

k=1

2B (6, 1) () + (€ - DT

(Pm) '

(14-95)
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where
C, EZ hkpk < k>>/(<Pm>B;) (14-96)
C = (o) /(o) () (00)-

For a thermal-equilibrium flow, h, = h,, and h; = h,, where h, and
hy, are the saturation enthalpies of vapor and 11qu1d Smce, in this case the
enthalpy profile is completely that for each phase, the distribution
parameters become unity; namely, Cy=Cy=0C,,=1. 1tis also
evident that if one of the phases is in the saturated condition, then C,, for
that phase becomes unity.

In the single-phase region, the distribution parameter can be calculated
from the assumed profiles for the velocity and enthalpy. Using the standard

power-law profiles for a turbulent flow, namely, '”/Uo _ (y / Rw)l/n and
(h— hw)/ (b —h,) = (y/Rw)l/m , where y is the distance from the wall, we

can show that the covariance term is negligibly small both for developing
and fully developed flows.

From the above two limiting cases, we can conclude that the enthalpy
covariant term may become important only in highly non-equilibrium flow.
Even in that case, the energy associated with phase change is considerably
larger than that associated with changes in transverse temperature profiles.
Therefore, except for highly transient cases, the enthalpy covariance can be
neglected. Hence,

—ZCOV 0P, ) = 0 (14-97)
0245
14 One-dimensional drift-flux correlations for various

flow conditions

In this section, conmstitutive equations of the one-dimensional drift-flux
model for various flow conditions, which are of practically importance, are
summarized.
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14.1 Constitutive equations for upward bubbly flow

The constitutive equation of the distribution parameter of upward
adiabatic bubbly flow in a round tube, Eq.(14-32), has been improved by
considering the bubble lateral migration characteristics as (Hibiki and Ishii,
2002b; 2003b)

Co _ 2-06*0.000584Ref + 12(1 B 6¥22<DS'">/D )

—0.000584 Re;

x(l—e 2.0e

112 (1 _ g 2Dsn)/D ) (1 _ ¢ 0000584Rey ) B 1] Py
Ps

~0.000584Re; ) B [ (14-98)

where Re; is defined by < jfZD v;. The bubble diameter Dy, in Eq.(14-
98) can be predicted by the bubble diameter correlation (Hibiki and Ishii,
2002a). As can be seen from Eq.(14-98), as the liquid Reynolds number
increases, the distribution parameter predicted by Eq.(14-98) asymptotically
approaches Eq.(14-32). The constitutive equation of the drift-velocity in
gas-liquid bubbly flow is given by

/4
(va))=+2 Agzg U] (1=(o))™ (<<, (14-99)
f
14.2 Constitutive equations for upward adiabatic annulus and

internally heated annulus

The applicability of Eqgs.(14-98) and (14-99) has been confirmed by
upward air-water turbulent bubbly flow data taken in a vertical concentric
annulus at atmospheric pressure (Hibiki et al., 2003b). The constitutive
equation of the distribution parameter of boiling bubbly flow in an internally
heated annulus has been derived from Eq.(14-35) by considering the channel
geometry difference as (Hibiki et al., 2003a)

12-02 [P
Py

C,=

[1 e ] (14-100)
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The drift-flux model with Eqs.(14-99) and (14-100) can predict the data
taken in an internally heated annulus well (Hibiki et al., 2003a).

14.3 Constitutive equations for downward two-phase flow

The constitutive equation of the distribution parameter of downward two-
phase flow for all flow regimes is given by (Goda et al., 2003)
Cy =(-0.0214(5")+0.772) +(0.0214(;") +0.228) 1

Py

for —20<(j") <0,

c, = [0‘2eo.oos4s{<j‘>+2o] N 1-0] B 0.2eo.oos4s[<j‘)+zo] A
Py

(14-101)

for <j“><_20

where < V=) {‘«Vw > The constitutive equation of the drift velocity of
downward two-phase flow for all flow regimes is approximated by

V4
(V)= ﬁ[Apga] . (14-102)

9 2
Py

These constitutive equations for distribution parameter and drift velocity
were developed by one-dimensional data, and they have not been validated
separately by detailed local flow data. Thus, they should not be used
individually.

1.4.4 Constitutive equations for bubbling or beiling pool systems

In bubbling or pool boiling systems, the ratio of the vessel diameter to the
length is often large in comparison with forced convection systems. It is
noted that a recirculation flow pattern may develop in a large vessel at low
flow. This may significantly affect the transverse velocity and void fraction
profiles. The constitutive equation of the drift velocity for bubbling or
boiling pool systems (< J f> = () is given by (Kataoka and Ishii, 1987)
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Low viscous case: N uf S 2.25%10°?

0.157
((vs))=0.0019D;°* [&] N,*% for Dy <30

Py
st (14-103)

(V)= 0.030[&] N for D}, >30

Py

Higher viscous case: N ,. > 2.25x10° }
-0,157

<<ng >> =0.92 %—] for D}, >30 (14-104)

1

where <<V;>>=<<Vm>>/(0gAp/p§>U4 and D;=DH/\/M. The

constitutive equation of the distribution parameter in bubbling or pool
boiling system is given in terms of channel geometry as Eq.(14-32).

14.5 Constitutive equations for large diameter pipe systems

In a large diameter channel (D, > 40 Ia/( gAp) ), slug bubbles cannot be

sustained due to the interfacial instability and they disintegrate to cap
bubbles. A recirculation flow pattern may develop in a large diameter
channel at a low-flow rate. A flow regime at a test section inlet and a flow
regime transition in a developing flow may also have an influence on the
liquid recirculation pattern. The liquid recirculation, inlet flow regime and
flow regime transition may affect the transverse velocity and the void
fraction profile significantly. The constitutive equation of the drift velocity
for upward bubbly flow in large diameter pipe systems is approximated by
(Hibiki and Ishii, 2003a)

+

<<Vg;” >> = <<ng3 >> o ) I <<Vg-7|'-,P >> [1 1l

where <<Vw+ B>> and <<V;P>> are, respectively, given by Eq.(14-102) and

Bqs.(14-103) and (14-104), and (57} =(j,)/(09Ap/p?)" . The constitutive
equation of the distribution parameter for upward bubbly flow in large
diameter pipe systems is given by

>] (14-105)
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Case for inlet flow regime as uniformly distributed bubbly flow

R e R K o A N
Py
for 0 < <]g+>/<]+> <0.9
. . (4-106)
_ <Jg > <]g > Py
C,=1—2.88 | T4.08; —1—-2.88| —(43.08; |—
(") () Z
for 0.9 §<jg+>/<j+> <1
where <j+> = <j)/(ogAp/p§)l/4
Case for inlet flow regime as cap bubbly or slug flow
R 1
Py
for 0<(j7)<1.8
(4-107)

C,=

0.0 2019 1.2] -

0.6c A0 0.2] \/p:g
. Pt

These constitutive equations for distribution parameter and drift velocity
were developed by one-dimensional data, and they have not been validated
separately by detailed local flow data. Thus, they should not be used
individually. In slug, churn, and annular flow regime, the distribution
parameter effect is dominant over the local slip effect, namely,
VI <<C, gff . Thus, the constitutive equations detailed in the Section 1.2
of Chapter 14 can be applicable to such flow regimes.

for 1.8 < (5*)

1.4.6 Constitutive equations at reduced gravity conditions

To extend the applicability range of the drift-flux model to reduced
gravity conditions, the constitutive equations of the drift velocity detailed in
the Section 1.2 of Chapter 14 have been reformulated by considering the
frictional pressure loss in addition to the gravitational pressure loss as
(Hibiki et al., 2004)
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Bubbly Flow Regime (Distorted-fluid-particle Regime)

e e A

Py

18.67 (14-108)
x”—m -

#y 1417.67{F (o, )}

The frictional pressure gradients in single-particle system, M, _, and in
multi-particle system, M, are defined by

= I

My =550 <> 55" <Jf> andMFE[—Z—p] (14-109)

F

where f is the wall friction factor. The function, F’ (<a . >) , s defined by

Apg, (1 (a,)) + M, ]1/2

Apgz + MFoo

F({a,)) =

Equation (14-108) holds for N, > 0.11{1-}- ¢(n*)} /{ ” (7{)}8/3 . The
parameter, ) (rb*), is given by

ﬁf.]. 14110)
K,

34

(r) =055 {(1 +0.087 )" - 1} (14-111)

where = 7;){,0!, (Apg, + M oo)/,u,f}l/s.

Slug Flow Regime

(V)= 0.35((41792 +M,) D}vz

Py

y {Apgz (1—(%>)+MF}

(Apg, + MFOO)(1~<ag>)

2 (14-112)
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Churn Flow Regime

y4
Apg, + M
() = o ||t

(14-113)
20 (- e,) + )"

Annular Flow Regime

In separated flows, local relative velocity between two phases cannot be
defined (Hibiki and Ishii, 2003b). If small liquid droplets are entrained in
the gas core or small gas bubbles are entrained in the liquid film, local
relative velocity may be approximated to be zero due to large gas and liquid
velocity, resulting in <Vm, ~ 0. This approximation may be acceptable in
annular flows where the entrainment of liquid from the film to the gas-core
flow is negligibly small.

The constitutive equations of the distribution parameter have been
improved by considering the gravity effect on the void distribution (Hibiki et
al., 2004) as

Bubbly Flow Regime

3
-5.55(i]
9N

CO _ 2'06—0.000584Ref +11.2¢

3

{Dsy) 5559
—-22 — e
+12|1—¢ D ]le o @—eOWMMRﬁ
. (14-114)
5552 _5{Psm)
(2,007 0004 Ry L J1oe ) 4qol1—e D
3
5552 —0.000584 Re 1Y
x|1—e o @-e : f)—1-i.

Py
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where g, is the normal gravitational acceleration (=9.8 m/s?).

Slug Flow Regime

C,=12-02 |2 (14-115)
P

Churn Flow Regime

c,=12-02 % (14-116)
Py

Annular Flow Regime

\/ Apg.D(1{ar) (14-117)
1+

+1




Chapter 15
ONE-DIMENSIONAL TWO-FLUID MODEL

The two-fluid model is the most detailed and accurate macroscopic
formulation of the thermo-fluid dynamics of two-phase systems. In the two-
fluid model, the field equations are expressed by the six conservation
equations consisting of mass, momentum and energy equations for each
phase. Since these field equations are obtained from an appropriate
averaging of local instantaneous balance equations, the phasic interaction
term appears in each of the averaged balance equations. These terms
represent the mass, momentum and energy transfers through the interface
between the phases. The existence of the interfacial transfer terms is one of
the most important characteristics of the two-fluid model formulation. These
terms determine the rate of phase changes and the degree of mechanical and
thermal non-equilibrium between phases, thus they are the essential closure
relations that should be modeled accurately. However, because of
considerable difficulties in terms of measurements and modeling, reliable
and accurate closure relations for the interfacial transfer terms are not fully
developed. In spite of these shortcomings of two-fluid models, there is,
however, no substitute available for modeling accurately two-phase
phenomena where two phases are weakly coupled. Examples of these are:

Sudden mixing of two phases;

Transient flooding and flow reversal;
Transient countercurrent flow;

Two-phase flow with sudden acceleration.

A three-dimensional, two-fluid model has been obtained by using
temporal or statistical averaging. In view of practical engineering problems,
a one-dimensional, two-fluid model obtained by averaging local two-fluid
formulation over the cross-sectional area is useful for complicated
engineering problems involving fluid flow and heat transfer. This is due to
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the fact that field equations can be reduced to quasi-one-dimensional forms.
By area averaging, the information on changes of variables in the direction
normal to the main flow within a channel is basically lost. Therefore, the
transfer of momentum and energy between the wall and the fluid should be
expressed by empirical correlations or by simplified models. In this chapter,
we develop a general one-dimensional formulation of the two-fluid model,
and discuss various special cases that are important in practical applications.
For simplicity, mathematical symbols of time-averaging in one-dimensional
formulation are dropped in the formulation in this chapter.

1.1 Area average of three-dimensional two-fluid model

The three-dimensional form of the two-fluid model has been obtained by
the temporal or statistical averaging method. For most practical applications,
the model developed by Ishii (1975) can be simplified to the following
forms:

Continuity equation

do, p, =
_Ogtpk +V. (akpk'vk) =T, (15-1)

Momentum equation

day, p, v, = —
_%%Ji +V- (%Pk'vk"’k) =—4Vp,
V| (B + &7 + i + Tl + M, (152)

—Vay & + (g — ) Voy
Enthalpy energy equation

Oaupihy | . (iBeln®y) = —V - o, (@5 + )
o (15-3)

D, —
+a, +hF + a,q] + P,
Dtpk q

Here I',, M, , 7%— , g, and @, are the mass generation, generalized
interfacial drag, interfacial shear stress, interfacial heat flux and dissipation,
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respectively. The subscript £ denotes k-phase and i stands for the value at
the interface. 1/a, denotes the length scale at the interface and g, has the
physical meaning of the interfacial area per unit volume (Ishii, 1975; Ishii
and Mishima, 1981). Thus,

interfacial area
g, = 084 , (15-4)
mixture volume

From the above field equations it can be seen that several interfacial
transfer terms appear on the right-hand side of the equations. Since these
interfacial transfer terms also should obey the balance laws at the interface,
interfacial transfer conditions could be obtained from an average of the local
jump conditions (Ishii, 1975). They are given by

r,=0

M, =0 (15-5)

a3 el K
- 10 T

(Fk@ + aiqls/n/') =0.

>
I
-

Therefore, constitutive equations for M, , Gﬂ}: and aiq;; are necessary for
the interfacial transfer terms. The enthalpy interfacial transfer condition
indicates that specifying the heat flux at the interface for both phases is
equivalent to the constitutive relation for I, if the mechanical energy
transfer terms can be neglected (Ishii, 1975). This aspect greatly simplifies
the development of the constitutive relations for interfacial transfer terms.

The rational approach to obtain a one-dimensional model is to integrate
the three-dimensional model over a cross-sectional area and then to
introduce proper mean values. A simple area average over the cross-
sectional area A is defined by Eq.(14-5) and the void-fraction-weighted
mean value is given by Eq.(14-6). In the subsequent analysis, the density of
each phase within any cross-sectional area is considered to be uniform so
that p, = <<pk>> . For most practical two-phase flow problems this
assumption is valid since the transverse pressure gradient within a channel is
relatively small. The axial component of the weighted mean velocity of
phase & is



422 Chapter 15

() = = 159

where the scalar expression of the velocity corresponds to the axial
component of the vector. By area averaging Egs.(15-1) to (15-3), and
making some simplifications which are applicable to most practical
problems, the following field equations can be obtained

Continuity equation

eie L 0 (o) () = (1) a5

Momentum equation

(15-8)

where o, and 7, are the mean void fraction at the wall and wall shear
stress, respectively. The pressure difference and void gradient term can be
important for horizontal stratified flow. Except for this case, this term may
be neglected. <M ,f> is the total interfacial shear force given by

(M) = (M, — Vo, 7). (15-9)

The first term on the right-hand side is the generalized particle drag which is
important for a dispersed flow. The second term is the effect of the
interfacial shear and the void gradient. This term is particularly important
for a separated flow. In the convective term, the distribution parameter for
the k-phase momentum, C,, , appears due to the difference between the
average of a product of variables and the product of averaged variables.
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Enthalpy energy equation

2 fond ) + 20l () ()

= ';%<ak><<qk T qkT>>z + <O‘k>%<<1’k>> (15-10)

+%"amqﬁ; (1) () + (agh) + (%)

where ¢, and q,g,, are the heated perimeter and wall heat flux, respectively.
C,, is the distribution parameter for the k-phase enthalpy. From the
macroscopic jump conditions at the interface the following relations between
the interfacial transfer terms hold,

>(n) =0
é;(M:) = Z<M"’C ~ Vo -7,). =0 (15-11)
S +fat)} =0

1.2 Special consideration for one-dimensional

constitutive relations
1.2.1 Covariance effect in field equations

In a one-dimensional model, a very careful examination of transverse
distributions of various variables and their effects on the balance and
constitutive equations is essential. If this is not done properly, the resulting
two-phase flow formulation can be inconsistent. Improper modeling, or
disregard of the distribution effects, may lead not only to a grossly
inaccurate model, but also to various numerical instabilities.  The
distribution effects can be divided into two groups. The first one is the
covariance effect which directly affects the form of the convective term in
the field equation. The second effect appears in the averaging of the various
local constitutive relations. These two effects are discussed separately below.

The covariance of the convective terms is defined by
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COV(P};%%%) = <%Pk¢k (”k - <<Uk>>)> (15-12)

To close the set of the governing equations we must specify relations for
these covariance terms. This can be done by introducing distribution
parameters for the momentum and energy fluxes. If we define a distribution
parameter for a flux as

<O‘k1/}k")k>
(o) <<¢k >> <<”k >>

the covariance term becomes

Cp = (15-13)

COV (pthv,) = py <ak1/1k (v - <<vk)>)>
= (ka - l)f’k (O‘k><<¢k>><(”k>>-

For the momentum flux, the distribution parameter is defined by

(15-14)

2
_(owm) (15-15)

(o) <<”k>>2 '

Physically, C, represents the effect of the void and momentum-flux
profiles on the cross-sectional-area-averaged momentum flux of k-phase. A
quantitative study of C, can be made by considering a symmetric flow in a
circular duct and introducing the power-law expressions in parallel with the
analysis of the drift-flux modeling (Zuber and Findlay, 1965; Ishii, 1977).
The following is the summary obtained by Ishii (1977).

Hence, for bubbly, slug and churn-turbulent flow, it is postulated that

Cvk

I

Mg — Mgy, w

O — Oy :1_[RL] (15-16)

and

Yo [L] (15-17)
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where the subscripts 0 and w refer to the value at the centerline and at the
wall of a tube. For simplicity it is assumed that the void and velocity
profiles are similar; namely, » = m . This assumption is widely used in
mass-transfer problems, and it may not be unreasonable for fully developed
two-phase flows if one considers that the vapor flux and, hence, the void
concentration greatly influence the velocity distributions. Under this
assumption, it can be shown that

' ] (15-18)

where Aq, = o, — o, The volumetric-flux-distribution parameter C, of
the drift-flux model is given by

(n+2)
(n+1)

C, =~ (15-19)

where C, can be given by the following empirical correlation (Ishii, 1977)

C,=12-0.2 Py Ps (15-20)

for a fully developed flow in a round tube. For a subcooled boiling or flow
in a rectangular channel, see Eq.(14-35) or Eq.(14-32), respectively.
Therefore, in the standard range of 7, the parameter Cvg can be given
approximately by

C,, ~1+0.5(C, —1). (15-21)

For a liquid phase in a vapor-dispersed-flow regime, o, ~1 and
oy < 1. Then from Eq.(15-18) it can be shown that, for a standard range of
&y, in the bubbly- and churn-flow regimes, Cvf can be approximated by

C,=1+15(C,—1). (15-22)

For an annular flow, the momentum covariance term can also be
calculated by using the standard velocity profiles for the vapor and liquid
flows. Thus we obtain
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1.02  (turbulent flow)

C, = 15-23
* 71133 (laminar flow). (1523)

Similarly, the distribution parameter for the enthalpy flux can be defined
by

h.v
C, = <O‘k k k>

(o) <<hk>> <<”k>> .

For a thermal-equilibrium flow, h, = h, and h, = h,, where h  and H
are the saturation enthalpies of vapor and liquid. Since, in this case, the
enthalpy profile is completely flat for each phase, the distribution parameters
become unity; namely, C, = C,, =1. It is also evident that if one of the
phases is in the saturated condition, then C,, for that phase becomes unity.
In the single-phase region, the distribution parameter can be calculated
from the assumed profiles for the velocity and enthalpy. Using the standard

(15-24)

power-law profiles for a turbulent flow; namely, 'U/Uo = (y/R)l/n and
(h— hw)/ (hy — h,) = (y/R)l/ " where y is the distance from the wall, we

can show that the covariance term is negligibly small both for developing
and fully developed flows under normal conditions. Then

C,, ~1.0. (15-25)

Therefore, except for highly transient cases, the enthalpy covariance may be
neglected.

1.2.2 Effect of phase distribution on constitutive relations

The greatest shortcoming of the conventional two-fluid model is in the
modeling of the constitutive equation for the interfacial shear (M} ) defined
by Eq.(15-9). This is particularly true when the two-fluid model was applied
to other than a separated flow. The problem is twofold:

1. Modeling of the averaged drag (M i >z ;
2. Modeling of the effect of interfacial shear (— Ve, - T, >z .

These will be discussed separately below.
For a dispersed two-phase flow the averaged interfacial drag term could
be given approximately by
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3C
(M), = 2 (0, (0 )

Ty

(15-26)

Here, only the steady-state drag force part of M, is considered because it is
the most important term. The above approximate form is obtained based on
the experimental observation that the local relative velocity v, is
comparatively uniform across a flow channel (Serizawa et al., 1975; Hibiki
and Ishii, 1999; Hibiki et al.,, 2001a) and the fact that the local relative
velocity is much smaller than the phase velocities in most two-phase flow.

The important point, however, is that the averaged drag force should be
related to the averaged local relative velocity <vr> given by

(v,) = ;1- f v.dA (15-27)

and not to the difference between the area averaged mean velocities of
phases given by

% = (o)~ (o)) 1529

In general,
(v,) =7, (15-29)

The difference between these two relative velocities can be very large. The
reason is that in one-dimensional formulation, the slip, v, , between two
phases is caused by two completely different effects; namely, the local
relative motion and integral effect of the phase and velocity distributions.
The existence of these two effects is already well-known (Zuber and Findlay,
1965; Ishii, 1977; Bankoff, 1960). The first effect is the true relative motion
between two phases at a local point and does not require any further
explanation. The second effect of the distribution arises due to the area
averaging. For example, if the dispersed phase is more concentrated in the
high velocity core region, then the mean velocity of the dispersed phase
should be much higher than that of the continuous phase which is
concentrated near the low velocity wall region. This is true even when the
two phases are locally moving with the same velocity.

Based on the drifi-flux model formulation it can be shown that the
approximate expression for <’Ur> is given by
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) 55 ) - o 1530

for bubbly, slug and churn turbulent flow. Therefore, from the flow regime
criterion (Ishii and Mishima, 1981; Ishii, 1977), it is applicabie under the
following conditions.

1
<Oég> < —60—, and
(15-31)

(3,) AZ;D > (a,)—0.1

This criterion is valid when the tube diameter is relatively small. For more
general conditions, see Ishii and Mishima (1981). The constitutive equation
for C| for a simple case is given by Eq.(15-20).

The expression for the drag force given by Eq.(15-26) with Eq.(15-30)
compensates for the slip due to the distributions of phases and velocities.
This difference between v, and (v,) has never been taken into account in
the conventional two-fluid model. In most two-phase flow systems, the slip
due to the distribution of phases is much greater than the local slip between
phases. Therefore, neglecting the above-mentioned effect will lead to large
errors in predictions of the void fraction and velocities in bubbly, slug and
churn turbulent flow regimes. As a result, even the steady-state predictions
from two-fluid model were not as good as those from a drift-flux model in
these flow regimes. This was one of the most significant shortcomings of
the conventional two-fluid model and it should be corrected in all future
analyses.

1.2.3 Interfacial shear term

The total interfacial shear force denoted by (M} > has two sources;
namely, the generalized drag (M, g’ and the contribution of the interfacial
shear and void gradient <—Vak - T;), 88 shown in Eq.(15-9). In a separated
flow, the second term is the dominant one. For example, for an annular flow
in a tube it can be shown that
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( Va, - 7;), = “—f 27T’I’d7“
1 ¢ (15-32)
=—21§qu1:)1 5 8:7g¢27rrdr:~—ij.

where ¢, is the wetted perimeter of the gas core.
The constitutive relation for 7; in this case can be given in terms of the
standard interfacial friction factor as

£
Tg'i '——Epg'l)r Ur

(15-33)

where 7. = <<’Ug>> — <<,Uf>> There are a number of correlations for the
interfacial friction factor f,. The Wallis correlation is given by

£ =0.005[1+75(1- (@))] (15-34)

which is applicable to the case with rough wavy films.

For annular flow, this interfacial shear term has been correctly taken into
account in the conventional two-fluid model. However, the effect of this
term in the bubbly, slug and churn turbulent flows has been generally
neglected. The inclusion of this term is important for the proper modeling of
the interfacial momentum coupling between phases. In order to obtain a
constitutive relation for this interfacial shear term, several assumptions are
necessary since it requires information on the void and shear stress
distributions. For this purpose the following power-law distribution is
assumed

r m
o~ — . 15-35
el 55

From this and the void profile of Eq.(15-16), it can be shown that

~(Va, 7,) =~ 4;1" (a,) . _7: ;“fm (15-36)

where «, is the void fraction of dispersed phase. By introducing the
distribution parameter C_ given by
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c —_n"nt2 (15-37)
n+1l1+m

the interfacial shear term for a dispersed two-phase flow becomes

_ 4r,

—(Vay,-7,) = > (e, )C, (15-38)

where C is expected to be very close to one. In a horizontal channel this
term will contribute to the slip between phases even under a steady state
condition. The inclusion of this term does not alter the overall momentum
balance of a two-phase mixture because of the macroscopic momentum
jump condition. However, it indicates that the momentum interaction
between phases is affected by the wall shear stress through the interfacial
shear and void gradient distributions.
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Nomenclature

Latin

aff

PP N

R R N

surface of a volume

frontal area of bubble

surface metric tensor (Aris, 1962)
turbulence anisotropy tensor
projected area of a typical particle

mathematical surface between A, and A,
surface area
surface bounding the interfacial region and adjacent to

phase k&
surface of fixed mass volume

projected area of a particle

cross sectional radius of cap or slug bubble
mobility of the fluid at the interface
interfacial area concentration

isentropic and isothermal sound velocities based on the
average thermodynamic properties
volume of a typical particle

balance at an interface
balance in each phase

Transport coefficients associated with interfacial
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transfer of mass, momentum and energy

C wave velocity

C constant

C, drag coefficient

Cop.. ideal drag coefficient

C, variable defined by _[2gAp /pf

Cu distribution parameter

Cin mixture-enthalpy-distribution parameter

C, closed curve on an interface

Cy kinematic wave velocity

Crw coefficient of lift force caused by slanted wake

Cy virtual mass constant

C, adjustable parameter

(o distribution parameter

C,. virtual volume coefficient

C,n mixture-momentum-distribution parameter

C. distribution parameter

C distribution parameter for flux

ok shape factor

C, distribution parameter

C,. propagation velocity

C, asymptotic value of distribution parameter

C, mass concentration of phase &

Cote s Cu specific heat at constant pressure and density based on
averaged properties

D hydraulic-equivalent diameter

D’ length scale ratio

D, bubble diameter

D,, critical bubble size

D, ratio of D, to Dg

D, o maximum diameter of stable bubble

D_. volume-equivalent diameter of a bubble at boundary
between groups 1 and 2

D maximum distorted bubble limit

d,maz
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ratio of bubble diameter to bubble diameter at distorted
bubble limit

volume-equivalent diameter of a fluid particle

eddy diameter

effective diameter of mixture volume that contains one
bubble

hydraulic-equivalent diameter

non-dimensional hydraulic-equivalent diameter
diffusion coefficient

total deformation tensor of phase &

bulk deformation tensor

interfacial extra deformation tensor

drift coefficient

Sauter mean diameter

surface-equivalent diameter of a fluid particle

bubble diameter

cross-sectional mean diameter of bubbles
average energy required for bubble breakup
area fraction of liquid entrained in gas core from total

liquid area at any cross section

average energy of a single eddy

total energy gain through interfaces for phase &
mixture total energy source from interfaces

mixture energy gain due to changes in mean curvature
Eotvis number

weighted mean virtual internal energy (with turbulent
kinetic energy included) at the bulk phase and at the

interfaces
general function

Basset force

standard drag force

lift force

turbulent dispersion force
virtual mass force
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wall lift force
drag force

general function associated with phase k
function for interface position

molecular density function

collision frequency

friction factor

correction factor for drag coefficient

interfacial friction factor

Helmholtz potential

particle density function of the n™-kind particles
two-phase friction factor

mass velocity

cap bubble thickness

non-dimensional velocity gradient

gravity field

body force field

Gibbs free energy: local instant, bulk mean and

interfacial mean values
space metric tensor (Aris, 1962)

normal gravitational acceleration

local instant and averaged mean curvature (TI__21 >0 if

phase 2 is the dispersed phase)
bubble height
average thickness of upper (1) and lower (2) fluid

layers
weighted mean virtual enthalpy (with turbulent kinetic

energy included) at the bulk phase and at the interfaces
mixture virtual enthalpy

unit tensor
interfacial source term in the balance equations for

phase k
interfacial source term for mixture balance equations

interfacial source terms in the shock conditions for
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phase k& and for mixture

local instant and mean enthalpies

mean enthalpy of phase k at interfaces
mixture enthalpy

local instant surface enthalpy per area
flux

drift flux

line flux for interface

surface flux for phase &

turbulent fluxes

Jacobians based on macroscopic field
volumetric fluxes of phase k and mixture
non-dimensional mixture volumetric flux
non-dimensional mixture volumetric flux

constant
thermal conductivity

thermal conductivity tensor
turbulent conductivity
thermal mixing length coefficient

wave number

turbulent kinetic energy due to shear-induce turublence
wave number of eddy

pitch of slug unit
cylindrical bubble length

area concentration of j™-interface
total area concentration

mean traveling distance between two bubbles for one

collision

effective wake length

mixing length

mixing length due to bubble-induced turbulence
mixing length of single-phase flow

mixing length of two-phase flow

mass per a single eddy
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local instant and mean mass transfer rates per unit area

(mass loss)
Morton number
frictional pressure gradient in multi-particle system

frictional pressure gradient in single particle system
generalized interfacial drag
state density functions for phase & and interface
momentum sources for phase k and mixture

force due to changes in mean curvature
form, skin and total drag forces
force associated with mixture transverse stress gradient

unit normal vector to a curve on an interface
number of samples
number of bubbles

drift number

drag number

number of eddies of wave number k, per volume of
fluid

Eckert number

Euler number

Froude number

converted enthalpy ratio

Jakob number

phase change number

interfacial phase change effect number
Peclet number

turbulent Prandtl number

interface heating number

Reynolds number

interfacial Reynolds number

Strouhal number

Weber number

surface tension number
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Prandt]l number
number of bubbles inside effective volume
viscosity number

density ratio

fluid particle number per unit mixture volume

unit normal vector
bubble number density

number of eddies of wave number per volume of two-

phase mixture
outward unit normal vector for phase k

production of shear-induced turbulence
probability for a bubble to move toward neighboring
bubble

partial pressure tensor

interfacial wetted perimeter

wall wetted perimeter

pressure

critical pressure

partial, bulk mean and interfacial mean pressure
mixture pressure

heat flux

diffusion (drift) heat flux

mean conduction and turbulent heat fluxes

mixture conduction and turbulent heat fluxes
local instant body heating

average heat transfer pert interfacial area (energy gain)

mean conduction heat flux
ideal gas constant

radius of a pipe

radius of curvature

variable defined by Rv; v

mean radius of fluid particles
particle number source and sink rate
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R, tube radius

Re Reynolds number

(Re), particle Reynolds number

T radial coordinate

'rd* non-dimensional radius

S5, S, surface available to collision

S, particle source and sink rates per unit mixture volume

due to j-th particle interactions such as disintegration
or coalescence
S, particle source and sink rates per unit mixture volume

due to phase change

S entropy

s, surface entropy per area

Sy 58 weighted mean entropy at bulk phase and at interfaces
S, mixture entropy

temperature

instant and mean interface temperature

5|

mean temperature at bulk phase and at interface

CIG RS
N

stress tensor

t time

to time required for bubble coalescence

t; time when the j®-interface passes the point

t"(ort)) hybrid tensor of interface, see Aris (1962)

U velocity of shock in mixture

U, velocity of stream

Ug, Ug volume available to collision

U internal energy

U, surface energy per area

Uy mean fluctuation velocity

Up, Uy bubble velocity

u, eddy velocity

(TRRT™ weighted mean internal energy at bulk phase and at
interfaces

U, mixture internal energy
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averaged relative velocity between leading bubble and

bubble in wake region
root-mean-square approaching velocity of two bubbles

critical fluctuation velocity
volume

time derivative of volume V'
critical bubble volume

non-dimensional drift velocity

interfacial region

drift velocity

diffusion velocity

fixed mass volume

ratioof V, ., to V, .

effective wake volume

peak bubble volume in group 1

velocity

liquid velocity fluctuation independent of bubble
agitation

liquid velocity fluctuation dependent on bubble
agitation

friction velocity

average center-of-volume velocity of dispersed phase
velocity of interface

weighted mean velocity at bulk phase and at interfaces

mean turbulent kinetic energy

mixture center of mass velocity
average local particle velocity weighted by particle

number
relative velocity

difference between area averaged mean velocities of

phases
relative velocity of a single particle in an infinite

medium
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velocity of interfacial particles
work due to fluctuations in drag forces

Weber number
critical Weber number

convective coordinates
spatial coordinates

spatial coordinate
spatial coordinate

variable defined by yv; 7

spatial coordinate

void fraction in slug bubble section
ratio of liquid-film cross-sectional area to total cross-

sectional area
average overall void fraction

ratio of cross-sectional area of drops to cross-sectional

area of core
critical void fraction when center bubble cannot pass

through free space among neighboring bubbles
maximum void fraction

time (void) fraction of phase £

ratio of mixing length and width of wake

variable to take account of overlap of excluded volume
thermal expansivity based on averaged properties

constant
mass generation for phase k&

constant

ratio of specific heats

interfacial entropy generation per area

entropy generation for phase £

inter-group mass transfer rates from group 1 to group 2

time interval of averaging
time interval to drive daughter bubble apart with
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characteristic length of D),

time interval for one collision

time intervals associated with phase & and interfaces
average time interval for a bubble in wake region to
catch up with preceding bubble

thickness of interface

film thickness

collective parameter
critical film thickness where rapture occurs

initial film thickness

pressure deviation from saturation pressure
volume element in y space

energy dissipation rate per unit mass

time associated with the /®-interface

dissipation of shear-induced turbulence

eddy diffusivity

rate of volume generated by nucleation source per unit
mixture volume

amplitude

contact angle

angle in cylindrical coordinates
wake angle

variable defined by 1 — ezp|—C v /D’
frts

isentropic and isothermal compressibilities of phase &
interfacial thermal energy transfer term in the averaged
equation

wavelength

constant

breakup efficiency

coalescence efficiency
critical wavelength
bulk viscosity
viscosity

mean molecular and turbulent viscosities
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T*

7 mixing length coefficient
[T mixture viscosity
v kinematic viscosity
v, turbulent kinematic viscosity
I3 particle (phase) velocity in Boltzmann statistical
average
£ ratio of V,, to V,
2
¢ variable defined by 2(1—0.2894D)
1 variable defined by P, / P,
p density
P, surface mass per area
Dr +Pr partial and mean densities
o modified density defined by p,coth (kh,)
P mixture density
o surface tension
a viscous stress tensor
z? diffusion (or drift) stress tensor
@}BI bubble-induced turbulent stress tensor
@J',SI shear-induced turbulent stress tensor
T N mixture viscous and turbulent stress tensors
z..¢" average viscous and turbulent stress tensor
z" average viscous stress
z, T, interfacial shear stress
To contact time for two bubbles
T interfacial shear stress
7, reference time constant
Tus T tangential and normal stresses at interface
Tof wall shear
P velocity potential
qﬁ,f turbulent work effect in enthalpy energy equation
! interfacial mechanical energy exchange effect in the

mixture thermal energy equation
o viscous dissipation
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o mixture viscous dissipation

o surface tension effect in the mixture thermal energy
equation

0] source term

o, interfacial source per area

b, source and sink rate for interfacial area concentration

o, velocity potential

X coefficient accounting for contribution from inter-

group transfer
property of extensive characteristics

shape factor

mass weighted mean values for mixture and phase k
property per interfacial area

Mg e
&)

potential function

Subscripts and Superscripts

a surface (property per area)
c continuous phase
d dispersed phase
f liquid phase
g vapor phase
] interface
J jﬂ‘-interface
k each phase : (k=1 & 2), (k=c & d), (k=f & g)
ki K®-phase at interfaces
mixture (in macroscopic formulation)
m {ﬁxed mass (in local instant formulation)
n normal to interface
0 reference
RC random collision
r,0,z cylindrical coordinate
sat saturation
s

surface (surface property per mass)
solid phase
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ST surface instability
SO shearing off
TI turbulent impact
WE wake entrainment
t tangential to interface
w wall
T,Y,2 rectangular coordinate
+,— + and — side of shock in macroscopic field
1,2 phase 1 and phase 2
Symbols and Operators
A tensor
A vector
A scalar
A-B dot product
AB dyadic product of two vectors (=tensor)
A:B double dot product of two tensors (=scalar)
\Y divergence operator
\Y% gradient operator
V,- surface divergence operator (Aris, 1962)
(A)Jr transposed tensor
D, o . -
k. =—+47, - V
Dt ot "
D 0
— = —+4 v, - \V/
Dt ot
D 0
. =—+C,-V
Dt ot
D, g
_t =—47 - V
Dt ot
% surface convective derivative with v, (Aris, 1962)

time average

g

weighted mean value
K®-phase weighted mean value

il ) =y

phase average
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k®-phase mass weighted mean value

mixture mass weighted mean value

fluctuating component with respect to mean value
fluctuation component with respect to surface mean
value

surface average

mass flux weighted mean value at interfaces
surface covariant derivative (Aris, 1962)

with (.=T,S,1,2) ; sets of time intervals

summation on both phases

summation on the interfaces passing in At at



Index

A

Angular momentum (Conservation of ----- in single-phase flow), 16
Area averaging, 63-65
Area concentration (Surface), 108-109, 192-195
Averaged fields (Kinematics of), 129-141
Averaging (Area), 62-65
Averaging (Botlzmann), 58-61, 120-128
Averaging (Ensemble cell), 66
Averaging (Eulerian), 58-61
Averaging (Lagrangian), 58-61
Averaging (Statistical), 58-61, 65-66, 119-128
Averaging (Time), 64-65
Averaging (Various ----- in connection with two-phase flow analysis), 61-66
Averaging (Various methods of), 55-66
Averaging (Volumetric), 62-63
B

Balance equation (Single-phase flow general), 13-15
Balance equation (Surface), 30
Balance equation (Time averaged), 93-117
Basset force, 256, 302-308

Boltzmann averaging,
C

Center of mass velocity,

Change (Phase ----- boundary condition),
Chemical boundary condition,
Churn-turbulent-flow regime,

58-61, 120-128

86

37-38

37-38

6-8, 228, 281, 290, 307-308, 315, 325-327
330, 361, 396,404-405, 417-418
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Classification of two-phase flows, 5
Clausius-Clapeyron equation, 40
Concentration, 82-86
Concentration (Surface area), 108-109, 192-195
Conservation equation (Single-phase), 13-24
Constitutive axioms, 18
Constitutive laws (Drift-flux model), 355-372
Constitutive laws (Two-fluid model), 169-197
Constitutive laws or equations, 12, 18-24
Contact angle, 43-46
Continuity equation (Single-phase), 15
Convective coordinates, 129-132
Convective derivatives, 129-132
Coordinates (Convective), 129-132
Covariance, 406-411, 423-426
Creeping flow, 46
D

Density propagation equation, 138
Density propagation model, 378-379
Derivatives (Convective), 129-132
Derivatives (Time average of), 78-82
Diffusion flux, 90
Dilatation, 140
Discontinuities (Shock), 110-112
Dispersed flows, 5-7
Displacement velocity, 80
Distorted-fluid-particle regime, 323-325, 361
Distribution parameter, 257, 328, 387-395, 403, 408, 412-418, 425
Distribution parameter (----- for a flux), 407, 424
Distribution parameter (----- for enthalpy flux), 426
Distribution parameter (----- for k-phase enthalpy), 423
Distribution parameter (----- for k-phase momentum), 422
Distribution parameter (Mixture-momentum -----), 409
Drag force in multiparticle system, 308-329
Drag force acting on a spherical particle in a very slow stream, 46-48
Drag force (Interfacial), 189-191
Drift-flux model, 62, 345-379
Drift-flux model constitutive laws, 345-372
Drift-flux model field equations, 103-108, 346-354
Drift-flux model formulation, 372-379
Drift velocity, 88, 136-137,372
E

Energy (Conservation of ----- in single-phase flow), 16-17
Enthalpy equation (Single-phase flow), 18
Entropy inequality (Interfacial), 34-35

Entropy inequality (Single-phase flow), 18-20



Eulerian averaging,

Eulerian statistical average,

External boundary condition,

Extra deformation tensor (Interfacial),

F

Field equations,
Field equations (Diffusion model),
Field equations (Two-fluid model),

Field equations (Two-phase ----- based on time average),

Fields (Kinematics of averaged),
Fluctuating component,

Flux (Diffusion),

Flux (Volumetric),

Fundamental identity,

G

Green’s theorem,
Green’s theorem (Surface),

H

Heat flux (Interfacial),
Homogeneous flow model,

I

Identity (Fundamental),

Instant (Local ----- formulation),

Interface (Quasi-stationary),

Interfacial area transport equation,

Interfacial area transport equation (One-group -----),
Interfacial area transport equation (Two-group -----),
Interfacial boundary condition,

Interfacial conditions,

Interfacial drag force,

Interfacial energy balance,

Interfacial energy source,

Interfacial energy transfer,

Interfacial entropy inequality,

Interfacial extra deformation tensor,

Interfacial heat flux,

Interfacial mass balance,

Interfacial mass transfer,

Interfacial momentum balance,

Interfacial momentum source,

Interfacial momentum transfer,

459

58-61
119-120
43

179

12

103-108, 346-354
98-103, 156-169
55-128

129-141

78

90

87, 135-136
89-92

14
28

191-192
376-378

89-91

11-46

108-110

10, 195, 217-299
227-228,257-276
228-242,246-248, 276-299
13,32-38

12

190-191

32

196-197

149-154

34-36

179

191-192

31

143-144, 188-190
32

192-195

145-149
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Interfacial shear term,
Interfacial structure,
Interfacial transfer condition,
Interfacial transport,

Internal energy equation (Single-phase flow),

J

Jump conditions,

Jump conditions (Macroscopic),

K

k-£ model,

Kelvin-Helmholtz instability,
Kinematic shock wave,
Kinematic wave,

Kinematics of averaged fields,

L

Lagrangian averaging,
Leibnitz rule,

Lift force,

Local instant formulation,

M

Mass weighted mean values,

Material derivative (Transformation on),

Mean values (Mass weighted),
Mean values (Weighted),

Mechanical energy equation (Single-phase flow),

Mixed flows,
Mixture properties,
Mixture viscosity,

Momentum equation (Single-phase),
Momentum source (Interfacial),
Motion (Equation of ~---- in single-phase flow),

N

Newton’s regime,
Normal vector,
Number transport equation,

o)

One-dimensional drifi-flux model,
One-dimensional two-fluid model,

428-430
3

95
143-145
18

13,24-32
110-113

341-343
48-52,313
138-140
136-138
129-141

58-61
14
331-335
11-46

75-76
17
75-76
73-711
17

4-6
82-86
303, 316-320, 367, 376, 396
15
192-195
17

315, 320-323
80
219-220, 229-230

381-418
419-430



One-equation model,
P

Phase average,

Phase change boundary condition,
Propagation (Density ----- equation),
Propagation (Density ----- model),
Propagation (Void ----- equation),

R

Rayleigh-Taylor instability,
Reynolds transport theorem,

S

Scaling parameters,

Scaling parameters (Drift-flux model),

Scaling parameters (Two-fluid model),

Second law of thermodynamics (Single-phase systems),

Separated flows,

Shock (Kinematic ---- wave),

Shock discontinuities,

Similarity groups,

Single-phase flow conservation equations,

Slip (No ----- condition),

Slug-flow regime,

Source and sink terms in one-group interfacial area transport equation,
Source and sink terms in two-group interfacial area transport equation,
State (Equation of),

Stationary (Quasi =~--- interface),
Statistical averaging,

Streamline,

Structure (Interfacial),

Surface area concentration,

T

Thermal boundary condition,

Three-dimensional model based on time-averaged,
Time average,

Time average (Three-dimensional model based on),
Time average (Two-phase field equations based on),
Time average of derivatives,

Time averaged balance equation,

Time averaging,

Time fraction (Local),

Transfer condition (Interfacial),

461

339-341

75
37-38
138
378-379
136-138

52-53
14

375
373-376
205-210

19

3-6
138-140
110-112
375-376

13-24

36

315, 327-330, 361
257-276

276-299

20-22

108-110

58-61, 65-66, 119-128

132-133
3
108-109, 192-195

36

129-216, 345-379
73-71

129-216, 345-379
55-128

78-82

93-117

64-65

72-73

95
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Transitional flow,

Transport (Interfacial),

Transport theorem,

Transport theorem (Surface),
Turbulence in multiparticle system,
Turbulent dispersion force,
Two-equation model,

Two-fluid model,

Two-fluid model (Modified ----- )y
Two-fluid model constitutive laws,
Two-fluid model field equations,
Two-fluid model formulation,

Two-group void fraction transport equation,

\%

Velocity (Center of mass),
Velocity (Diffusion),
Velocity (Displacement),
Velocity (Drift),

Velocity field,

Virtual mass force,
Viscous regime,

Void fraction (Local),
Void propagation equation,
Volume transport equation,
Volumetric averaging,
Volumetric flux,

w

Wall lift force,

Wave (Kinematic),
Weighted mean values,

Z

Zero-equation model,

3-7

143-154

14

28

336-343

336

341-343

62, 155-216
245-257
169-197
98-103, 156-169
198-205
230-234, 246

86

87

80

136-137, 372
86-89

256, 302-308
310-311, 315-320, 322, 330, 360
72-73
136-138
220-222

62

87, 135-136

302, 335-336
136-138
73-77

337-339





