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Preface 

This book is intended to be an introduction to the theory of thermo-fluid 
dynamics of two-phase flow for graduate students, scientists and practicing 
engineers seriously involved in the subject. It can be used as a text book at 
the graduate level courses focused on the two-phase flow in Nuclear 
Engineering, Mechanical Engineering and Chemical Engineering, as well as 
a basic reference book for two-phase flow formulations for researchers and 
engineers involved in solving multiphase flow problems in various 
technological fields. 

The principles of single-phase flow fluid dynamics and heat transfer are 
relatively well understood, however two-phase flow thermo-fluid dynamics 
is an order of magnitude more complicated subject than that of the single-
phase flow due to the existence of moving and deformable interface and its 
interactions with the two phases. However, in view of the practical 
importance of two-phase flow in various modem engineering technologies 
related to nuclear energy, chemical engineering processes and advanced heat 
transfer systems, significant efforts have been made in recent years to 
develop accurate general two-phase formulations, mechanistic models for 
interfacial transfer and interfacial structures, and computational methods to 
solve these predictive models. 

A strong emphasis has been put on the rational approach to the derivation 
of the two-phase flow formulations which represent the fundamental 
physical principles such as the conservations laws and constitutive modeling 
for various transfer mechanisms both in bulk fluids and at interface. Several 
models such as the local instant formulation based on the single-phase flow 
model with explicit treatment of interface and the macroscopic continuum 
formulations based on various averaging methods are presented and 
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discussed in detail. The macroscopic formulations are presented in terms of 
the two-fluid model and drift-flux model which are two of the most accurate 
and useful formulations for practical engineering problems. 

The change of the interfacial structures in two-phase flow is dynamically 
modeled through the interfacial area transport equation. This is a new 
approach which can replace the static and inaccurate approach based on the 
flow regime transition criteria. The interfacial momentum transfer models 
are discussed in great detail, because for most two-phase flow, thermo-fluid 
dynamics are dominated by the interfacial structures and interfacial 
momentum transfer. Some other necessary constitutive relations such as the 
turbulence modeling, transient forces and lift forces are also discussed. 

Mamoru Ishii, Ph.D. 
School of Nuclear Engineering 

Purdue University 
West Lafayette, IN, USA 

Takashi Hibiki, Ph.D. 
Research Reactor Institute 

Kyoto University 
Kumatori, Osaka, Japan 

September 2005 



Foreword 

Thermo-Fluid Dynamics of Two-Phase Flow takes a major step forward 
in our quest for understanding fluids as they metamorphose through change 
of phase, properties and structure. Like Janus, the mythical Roman God 
with two faces, fluids separating into liquid and gas, each state sufficiently 
understood on its own, present a major challenge to the most astute and 
insightful scientific minds when it comes to deciphering their dynamic 
entanglement. 

The challenge stems in part from the vastness of scale where two phase 
phenomena can be encountered. Between the microscopic wawo-scale of 
molecular dynamics and deeply submerged modeling assumptions and the 
macro-scalQ of measurements, there is a meso-scalc as broad as it is 
nebulous and elusive. This is the scale where everything is in a permanent 
state of exchange, a Heraclitean state of flux, where nothing ever stays the 
same and where knowledge can only be achieved by firmly grasping the 
underlying principles of things. 

The subject matter has sprung fi-om the authors' own firm grasp of 
fiindamentals. Their bibliographical contributions on two-phase principles 
reflect a scientific tradition that considers theory and experiment a duality as 
fimdamental as that of appearance and reality. In this it differs fi'om other 
topical works in the science of fluids. For example, the leading notion that 
runs through two-phase flow is that of interfacial velocity. It is a concept 
that requires, amongst other things, continuous improvements in both 
modeling and measurement. In the meso-scalQ, this gives rise to new science 
of the interface which, besides the complexity of its problems and the 
fuzziness of its structure, affords ample scope for the creation of elegant, 
parsimonious formulations, as well as promising engineering applications. 
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The two-phase flow theoretical discourse and experimental inquiry are 
closely linked. The synthesis that arises from this connection generates 
immense technological potential for measurements informing and validating 
dynamic models and conversely. The resulting technology finds growing 
utility in a broad spectrum of applications, ranging from next generation 
nuclear machinery and space engines to pharmaceutical manufacturing, food 
technology, energy and environmental remediation. 

This is an intriguing subject and its proper understanding calls for 
exercising the rigorous tools of advanced mathematics. The authors, with 
enormous care and intellectual affection for the subject reach out and invite 
an inclusive audience of scientists, engineers, technologists, professors and 
students. 

It is a great privilege to include the Thermo-Fluid Dynamics of Two-
Phase Flow in the series Smart Energy Systems: Nanowatts to Terawatts, 
This is work that will stand the test of time for its scientific value as well as 
its elegance and aesthetic character. 

Lefteri H. Tsoukalas, Ph.D. 
School of Nuclear Engineering 

Purdue University 
West Lafayette, IN, USA 

September 2005 
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Chapter 1 

INTRODUCTION 

1.1 Relevance of the problem 

This book is intended to be a basic reference on the thermo-fluid dynamic 
theory of two-phase flow. The subject of two or multiphase flow has 
become increasingly important in a wide variety of engineering systems for 
their optimum design and safe operations. It is, however, by no means 
limited to today's modem industrial technology, and multiphase flow 
phenomena can be observed in a number of biological systems and natural 
phenomena which require better understandings. Some of the important 
applications are listed below. 

Power Systems 
Boiling water and pressurized water nuclear reactors; liquid metal fast 

breeder nuclear reactors; conventional power plants with boilers and 
evaporators; Rankine cycle liquid metal space power plants; MHD 
generators; geothermal energy plants; internal combustion engines; jet 
engines; liquid or solid propellant rockets; two-phase propulsors, etc. 

Heat Transfer Systems 
Heat exchangers; evaporators; condensers; spray cooling towers; dryers, 

refrigerators, and electronic cooling systems; cryogenic heat exchangers; 
film cooling systems; heat pipes; direct contact heat exchangers; heat storage 
by heat of fiision, etc. 

Process Systems 
Extraction and distillation units; fluidized beds; chemical reactors; 

desalination systems; emulsifiers; phase separators; atomizers; scrubbers; 
absorbers; homogenizers; stirred reactors; porous media, etc. 
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Transport Systems 
Air-lift pump; ejectors; pipeline transport of gas and oil mixtures, of 

slurries, of fibers, of wheat, and of pulverized solid particles; pumps and 
hydrofoils with cavitations; pneumatic conveyors; highway traffic flows and 
controls, etc. 

Information Systems 
Superfluidity of liquid helium; conducting or charged liquid film; liquid 

crystals, etc. 

Lubrication Systems 
Two-phase flow lubrication; bearing cooling by cryogenics, etc. 

Environmental Control 
Air conditioners; refiigerators and coolers; dust collectors; sewage 

treatment plants; pollutant separators; air pollution controls; life support 
systems for space application, etc. 

GeO'Meteorological Phenomena 
Sedimentation; soil erosion and transport by wind; ocean waves; snow 

drifts; sand dune formations; formation and motion of rain droplets; ice 
formations; river floodings, landslides, and snowslides; physics of clouds, 
rivers or seas covered by drift ice; fallout, etc. 

Biological Systems 
Cardiovascular system; respiratory system; gastrointestinal tract; blood 

flow; bronchus flow and nasal cavity flow; capillary transport; body 
temperature control by perspiration, etc. 

It can be said that all systems and components listed above are governed 
by essentially the same physical laws of transport of mass, momentum and 
energy. It is evident that with our rapid advances in engineering technology, 
the demands for progressively accurate predictions of the systems in interest 
have increased. As the size of engineering systems becomes larger and the 
operational conditions are being pushed to new limits, the precise 
understanding of the physics governing these multiphase flow systems is 
indispensable for safe as well as economically sound operations. This means 
a shift of design methods from the ones exclusively based on static 
experimental correlations to the ones based on mathematical models that can 
predict dynamical behaviors of systems such as transient responses and 
stabilities. It is clear that the subject of multiphase flow has immense 
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importance in various engineering technology. The optimum design, the 
prediction of operational limits and, very often, the safe control of a great 
number of important systems depend upon the availability of realistic and 
accurate mathematical models of two-phase flow. 

1.2 Characteristic of multiphase flow 

Many examples of multiphase flow systems are noted above. At first 
glance it may appear that various two or multiphase flow systems and their 
physical phenomena have very little in common. Because of this, the 
tendency has been to analyze the problems of a particular system, 
component or process and develop system specific models and correlations 
of limited generality and applicability. Consequently, a broad understanding 
of the thermo-fluid dynamics of two-phase flow has been only slowly 
developed and, therefore, the predictive capability has not attained the level 
available for single-phase flow analyses. 

The design of engineering systems and the ability to predict their 
performance depend upon both the availability of experimental data and of 
conceptual mathematical models that can be used to describe the physical 
processes with a required degree of accuracy. It is essential that the various 
characteristics and physics of two-phase flow should be modeled and 
formulated on a rational basis and supported by detailed scientific 
experiments. It is well established in continuum mechanics that the 
conceptual model for single-phase flow is formulated in terms of field 
equations describing the conservation laws of mass, momentum, energy, 
charge, etc. These field equations are then complemented by appropriate 
constitutive equations for thermodynamic state, stress, energy transfer, 
chemical reactions, etc. These constitutive equations specify the 
thermodynamic, transport and chemical properties of a specific constituent 
material. 

It is to be expected, therefore, that the conceptual models for multiphase 
flow should also be formulated in terms of the appropriate field and 
constitutive relations. However, the derivation of such equations for multi­
phase flow is considerably more complicated than for single-phase flow. 
The complex nature of two or multiphase flow originates fi^om the existence 
of multiple, deformable and moving interfaces and attendant significant 
discontinuities of fluid properties and complicated flow field near the 
interface. By focusing on the interfacial structure and transfer, it is noticed 
that many of two-phase systems have a common geometrical structure. It is 
recalled that single-phase flow can be classified according to the structure of 
flow into laminar, transitional and turbulent flow. In contrast, two-phase 
flow can be classified according to the structure of interface into several 
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major groups which can be called flow regimes or patterns such as separated 
flow, transitional or mixed flow and dispersed flow. It can be expected that 
many of two-phase flow systems should exhibit certain degree of physical 
similarity when the flow regimes are same. However, in general, the 
concept of two-phase flow regimes is defined based on a macroscopic 
volume or length scale which is often comparative to the system length scale. 
This implies that the concept of two-phase flow regimes and regime-
dependent model require an introduction of a large length scale and 
associated limitations. Therefore, regime-dependent models may lead to an 
analysis that cannot mechanistically address the physics and phenomena 
occurring below the reference length scale. 

For most two-phase flow problems, the local instant formulation based 
on the single-phase flow formulation with explicit moving interfaces 
encounters insurmountable mathematical and numerical difficulties, and 
therefore it is not a realistic or practical approach. This leads to the need of a 
macroscopic formulation based on proper averaging which gives a two-
phase flow continuum formulation by effectively eliminating the interfacial 
discontinuities. The essence of the formulation is to take into account for the 
various multi-scale physics by a cascading modeling approach, bringing the 
micro and meso-scale physics into the macroscopic continuum formulation. 

The above discussion indicates the origin of the difficulties encountered 
in developing broad understanding of multiphase flow and the generalized 
method for analyzing such flow. The two-phase flow physics are 
fundamentally multi-scale in nature. It is necessary to take into account 
these cascading effects of various physics at different scales in the two-phase 
flow formulation and closure relations. At least four different scales can be 
important in multiphase flow. These are 1) system scale, 2) macroscopic 
scale required for continuum assumption, 3) mesoscale related to local 
structures, and 4) microscopic scale related to fine structures and molecular 
transport. At the highest level, the scale is the system where system 
transients and component interactions are the primary focus. For example, 
nuclear reactor accidents and transient analysis requires specialized system 
analysis codes. At the next level, macro physics such as the structure of 
interface and the transport of mass, momentum and energy are addressed. 
However, the multiphase flow field equations describing the conservation 
principles require additional constitutive relations for bulk transfer. This 
encompasses the turbulence effects for momentum and energy as well as for 
interfacial exchanges for mass, momentum and energy transfer. These are 
meso-scale physical phenomena that require concentrated research efforts. 
Since the interfacial transfer rates can be considered as the product of the 
interfacial flux and the available interfacial area, the modeling of the 
interfacial area concentration is essential. In two-phase flow analysis, the 



1. Introduction 5 

void fraction and the interfacial area concentration represent the two 
fundamental first-order geometrical parameters and, therefore, they are 
closely related to two-phase flow regimes. However, the concept of the two-
phase flow regimes is difficult to quantify mathematically at the local point 
because it is often defined at the scale close to the system scale. 

This may indicate that the modeling of the changes of the interfacial area 
concentration directly by a transport equation is a better approach than the 
conventional method using the flow regime transitions criteria and regime-
dependent constitutive relations for interfacial area concentration. This is 
particularly true for a three-dimensional formulation of two-phase flow. The 
next lower level of physics in multiphase flow is related to the local 
microscopic phenomena, such as: the wall nucleation or condensation; 
bubble coalescence and break-up; and entrainment and deposition. 

1.3 Classification of two-phase flow 

There are a variety of two-phase flows depending on combinations of 
two phases as well as on interface structures. Two-phase mixtures are 
characterized by the existence of one or several interfaces and discontinuities 
at the interface. It is easy to classify two-phase mixtures according to the 
combinations of two phases, since in standard conditions we have only three 
states of matters and at most four, namely, solid, liquid, and gas phases and 
possibly plasma (Pai, 1972). Here, we consider only the first three phases, 
therefore we have: 

1. Gas-solid mixture; 
2. Gas-liquid mixture; 
3. Liquid-solid mixture; 
4. Immiscible-liquid mixture. 

It is evident that the fourth group is not a two-phase flow, however, for all 
practical purposes it can be treated as if it is a two-phase mixture. 

The second classification based on the interface structures and the 
topographical distribution of each phase is far more difficult to make, since 
these interface structure changes occur continuously. Here we follow the 
standard flow regimes reviewed by Wallis (1969), Hewitt and Hall Taylor 
(1970), Collier (1972), Govier and Aziz (1972) and the major classification 
of Zuber (1971), Ishii (1971) and KocamustafaoguUari (1971). The two-
phase flow can be classified according to the geometry of the interfaces into 
three main classes, namely, separated flow, transitional or mixed flow and 
dispersed flow as shown in Table 1-1. 



Chapter 1 

Table 1-1. Classification of two-phase flow (Ishii, 1975) 

Class Typical 
regimes 

Geometry Configuration Examples 

Separated 
flows 

Film flow 

Annular 
flow 

Jet flow 

Liquid film in gas 
Gas film in liquid 

Film condensation 
Film boiling 

Liquid core and 
gas film 
Gas core and 
liquid film 

Film boiling 
Boilers 

Liquidjetingas 
Gas jet in liquid 

Atomization 
Jet condenser 

Mixed or 
Transitional 

flows 

Cap, Slug 
or Chum-
turbulent 

flow 

Bubbly 
annular 

flow 

Droplet 
annular 

flow 

Bubbly 
droplet 
annular 

flow 

Gas pocket in 
liquid 

Sodium boiling in 
forced convection 

Gas bubbles in 
liquid film with 
gas core 

Evaporators with 
wall nucleation 

Gas core with 
droplets and liquid 
fihn 

Steam generator 

Gas core with 
droplets and liquid 
fibn with gas 
bubbles 

Boiling nuclear 
reactor channel 

Dispersed 
flows 

Bubbly 
flow 

Droplet 
flow 

Particulate 
flow 

Gas bubbles in 
liquid 

Chemical reactors 

Liquid droplets in 
gas 

Spray cooling 

Solid particles in 
gas or Uquid 

Transportation of 
powder 

Depending upon the type of the interface, the class of separated flow can 
be divided into plane flow and quasi-axisymmetric flow each of which can 
be subdivided into two regimes. Thus, the plane flow includes film and 
stratified flow, whereas the quasi-axis5nmnetric flow consists of the annular 
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and the jet-flow regimes. The various configurations of the two phases and 
of the immiscible liquids are shown in Table 1-1. 

The class of dispersed flow can also be divided into several types. 
Depending upon the geometry of the interface, one can consider spherical, 
elliptical, granular particles, etc. However, it is more convenient to 
subdivide the class of dispersed flows by considering the phase of the 
dispersion. Accordingly, we can distinguish three regimes: bubbly, droplet 
or mist, and particulate flow. In each regime the geometry of the dispersion 
can be spherical, spheroidal, distorted, etc. The various configurations 
between the phases and mixture component are shown in Table 1-1. 

As it has been noted above, the change of interfacial structures occurs 
gradually, thus we have the third class which is characterized by the 
presence of both separated and dispersed flow. The transition happens 
frequently for liquid-vapor mixtures as a phase change progresses along a 
channel. Here too, it is more convenient to subdivide the class of mixed 
flow according to the phase of dispersion. Consequently, we can distinguish 
five regimes, i.e., cap, slug or chum-turbulent flow, bubbly-annular flow, 
bubbly annular-droplet flow and film flow with entrainment. The various 
configurations between the phases and mixtures components are shown in 
Table 1-1. 

Figures 1-1 and 1-2 show typical air-water flow regimes observed in 
vertical 25.4 mm and 50.8 mm diameter pipes, respectively. The flow 
regimes in the first, second, third, fourth, and fifth figures from the left are 
bubbly, cap-bubbly, slug, chum-turbulent, and annular flows, respectively. 
Figure 1-3 also shows typical air-water flow regimes observed in a vertical 
rectangular channel with the gap of 10 mm and the width of 200 mm. The 
flow regimes in the first, second, third, and fourth figures firom the left are 
bubbly, cap-bubbly, chum-turbulent, and annular flows, respectively. Figure 
1-4 shows inverted annular flow simulated adiabatically with turbulent water 
jets, issuing downward firom large aspect ratio nozzles, enclosed in gas 
annuli (De Jarlais et al, 1986). The first, second, third and fourth images 
firom the left indicate symmetric jet instability, sinuous jet instability, large 
surface waves and skirt formation, and highly turbulent jet instability, 
respectively. Figure 1-5 shows typical images of inverted annular flow at 
inlet liquid velocity 10.5 cm/s, inlet gas velocity 43.7 cm/s (nitrogen gas) 
and inlet Freon-113 temperature 23 °C with wall temperature of near 200 Ĉ 
(Ishii and De Jarlais, 1987). Inverted annular flow was formed by 
introducing the test fluid into the test section core through thin-walled, 
tubular nozzles coaxially centered within the heater quartz tubing, while 
vapor or gas is introduced in the aimular gap between the Uquid nozzle and 
the heated quartz tubing. The absolute vertical size of each image is 12.5 cm. 
The visualized elevation is higher fi-om the left figure to the right figure. 
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3C1 O 

Figure 1-1. Typical air-water flow images observed in a vertical 25.4 mm diameter pipe 

Figure 1-2. Typical air-water flow images observed in a vertical 50.8 mm diameter pipe 

' • • ^ 1 ^ 

Figure 1-3. Typical air-water flow images observed in a rectangular channel of 
200mmX10mm 
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Figure 1-4. Typical images of simulated air-water inverted amiular flow (It is cocurrent down 
flow) 
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Figure 1-5. Axial development of Inverted annular flow (It is cocurrent up flow) 
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\A Outline of the book 

The purpose of this book is to present a detailed two-phase flow 
formulation that is rationally derived and developed using mechanistic 
modeling. This book is an extension of the earlier work by the author (Ishii, 
1975) with special emphasis on the modeling of the interfacial structure with 
the interfacial area transport equation and modeling of the hydrodynamic 
constitutive relations. However, special efforts are made such that the 
formulation and mathematical models for complex two-phase flow physics 
and phenomena are realistic and practical to use for engineering analyses. It 
is focused on the detailed discussion of the general formulation of various 
mathematical models of two-phase flow based on the conservation laws of 
mass, momentum, and energy. In Part I, the foundation of the two-phase 
flow formulation is given as the local instant formulation of the two-phase 
flow based on the single-phase flow continuum formulation and explicit 
existence of the interface dividing the phases. The conservation equations, 
constitutive laws, jump conditions at the interface and special thermo-
mechanical relations at the interface to close the mathematical system of 
equations are discussed. 

Based on this local instant formulation, in Part II, macroscopic two-phase 
continuum formulations are developed using various averaging techniques 
which are essentially an integral transformation. The application of time 
averaging leads to general three-dimensional formulation, effectively 
eliminating the interfacial discontinuities and making both phases co­
existing continua. The interfacial discontinuities are replaced by the 
interfacial transfer source and sink terms in the averaged differential balance 
equations 

Details of the three-dimensional two-phase flow models are presented in 
Part III. The two-fluid model, drift-flux model, interfacial area transport, 
and interfacial momentum transfer are major topics discussed. In Part IV, 
more practical one-dimensional formulation of two-phase flow is given in 
terms of the two-fluid model and drift-flux model. It is planned that a 
second book will be written for many practical two-phase flow models and 
correlations that are necessary for solving actual engineering problems and 
the experimental base for these models. 



Chapter 2 

LOCAL INSTANT FORMULATION 

The singular characteristic of two-phase or of two immiscible mixtures is 
the presence of one or several interfaces separating the phases or 
components. Examples of such flow systems can be found in a large number 
of engineering systems as well as in a wide variety of natural phenomena. 
The understanding of the flow and heat transfer processes of two-phase 
systems has become increasingly important in nuclear, mechanical and 
chemical engineering, as well as in environmental and medical science. 

In analyzing two-phase flow, it is evident that we first follow the 
standard method of continuum mechanics. Thus, a two-phase flow is 
considered as a field that is subdivided into single-phase regions with 
moving boundaries between phases. The standard differential balance 
equations hold for each subregion with appropriate jump and boundary 
conditions to match the solutions of these differential equations at the 
interfaces. Hence, in theory, it is possible to formulate a two-phase flow 
problem in terms of the local instant variable, namely, F = F [x^t), This 
formulation is called a local instant formulation in order to distinguish it 
fi-om formulations based on various methods of averaging. 

Such a formulation would result in a multiboundary problem with the 
positions of the interface being unknown due to the coupling of the fields 
and the boundary conditions. Indeed, mathematical difficulties encountered 
by using this local instant formulation can be considerable and, in many 
cases, they may be insurmountable. However, there are two fundamental 
importances in the local instant formulation. The first importance is the 
direct application to study the separated flows such as film, stratified, 
annular and jet flow, see Table 1-1. The formulation can be used there to 
study pressure drops, heat transfer, phase changes, the dynamic and stability 
of an interface, and the critical heat flux. In addition to the above 
applications, important examples of when this formulation can be used 
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include: the problems of single or several bubble dynamics, the growth or 
collapse of a single bubble or a droplet, and ice formation and melting. 

The second importance of the local instant formulation is as a 
fundamental base of the macroscopic two-phase flow models using various 
averaging. When each subregion boimded by interfaces can be considered 
as a continuum, the local instant formulation is mathematically rigorous. 
Consequently, two-phase flow models should be derived from this 
formulation by proper averaging methods. In the following, the general 
formulation of two-phase flow systems based on the local instant variables is 
presented and discussed. It should be noted here that the balance equations 
for a single-phase one component flow were firmly established for some 
time (Truesdell and Toupin, 1960; Bird et al, 1960). However, the axiomatic 
construction of the general constitutive laws including the equations of state 
was put into mathematical rigor by specialists (Coleman, 1964; Bowen, 
1973; Truesdell, 1969). A similar approach was also used for a single-phase 
diffusive mixture by MuUer (1968). 

Before going into the detailed derivation and discussion of the local 
instant formulation, we review the method of mathematical physics in 
connection with the continuum mechanics. The next diagram shows the 
basic procedures used to obtain a mathematical model for a physical system. 

Physical System 

Physical Concepts 
Physical Laws 

Particular Class of 
Materials 

Mathematical System 

Mathematical Concepts 
General Axioms 

Constitutive Axioms 
(Determinism) 

Model 

Variables 
Field Equations 

Constitutive Equations 

, 

As it can be seen from the diagram, a physical system is first replaced by a 
mathematical system by introducing mathematical concepts, general axioms 
and constitutive axioms. In the continuum mechanics they correspond to 
variables, field equations and constitutive equations, whereas at the singular 
surface the mathematical system requires the interfacial conditions. The 
latter can be applied not only at the interface between two phases, but also at 
the outer boundaries which limit the system. It is clear from the diagram that 
the continuum formulation consists of three essential parts, namely: the 
derivations of field equations, constitutive equations, and interfacial 
conditions. 

Now let us examine the basic procedure used to solve a particular 
problem. The following diagram summarizes the standard method. Using 
the continuum formulation, the physical problem is represented by idealized 
boundary geometries, boundary conditions, initial conditions, field and 
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Physical Problem 

Initial Conditions 

"—I Boundary Conditions 

t — 
Interfacial Conditions 

Model Experimental Data 

11 Feedback 

Solution 

Assumptions 

constitutive equations. It is evident that in two-phase flow systems, we have 
interfaces within the system that can be represented by general interfacial 
conditions. The solutions can be obtained by solving these sets of 
differential equations together with some idealizing or simplifying 
assumptions. For most problems of practical importance, experimental data 
also play a key role. First, experimental data can be taken by accepting the 
model, indicating the possibility of measurements. The comparison of a 
solution to experimental data gives feedback to the model itself and to the 
various assumptions. This feedback will improve both the methods of the 
experiment and the solution. The validity of the model is shown in general 
by solving a number of simple physical problems. 

The continuum approach in single-phase thermo-fluid dynamics is widely 
accepted and its validity is well proved. Thus, if each subregion bounded by 
interfaces in two-phase systems can be considered as continuum, the validity 
of local instant formulation is evident. By accepting this assumption, we 
derive and discuss the field equations, the constitutive laws, and the 
interfacial conditions. Since an interface is a singular case of the continuous 
field, we have two different conditions at the interface. The balance at an 
interface that corresponds to the field equation is called a jump condition. 
Any additional information corresponding to the constitutive laws in space, 
which are also necessary at interface, is called an interfacial boundary 
condition. 

1.1 Single-phase flow conservation equations 

1.1.1 General balance equations 

The derivation of the differential balance equation is shown in the 
following diagram. The general integral balance can be written by 
introducing the fluid density p^, the efflux /^ and the body source 0̂  of 
any quantity %p^ defined for a unit mass. Thus we have 
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General Integral Balance 

Leibnitz Rule 

Green's Theorem 

Axiom of Continuum 

General Balance Equation 

(2-1) 

where V^ is a material volume with a material surface A^. It states that the 
time rate of change of p̂ V̂ ^ in V^ is equal to the influx through A^ plus 
the body source. The subscript k denotes the A:*-phase. If the functions 
appearing in the Eq.(2-1) are sufficiently smooth such that the Jacobian 
transformation between material and spatial coordinates exists, then the 
familiar differential form of the balance equation can be obtained. This is 
done by using the Reynolds transport theorem (Aris, 1962) expressed as 

d r ^ ..r r OK 

dt' X/'^''=X„i5f^''+l''"""^^ (2-2) 

where v^ denotes the velocity of a fluid particle. The Green's theorem 
gives a transformation between a certain volume and surface integral, thus 

J V• Fi^dV = § n-F^dA. 

Hence, from Eqs.(2-2) and (2-3) we obtain 

\dF, 

(2-3) 

1. 
dt L^'^=L dt 

+ V-KF,) dV. (2-4) 

Furthermore, we note that the Reynolds transport theorem is a special case of 
Leibnitz rule given by 

d r „ ,., r dF. 
dt' 

f F.dV = f ^^dV+ f F.u- ndA 
Jv * Jv dt JA " 

(2-5) 



2. Local Instant Formulation 15 

where V\t) is an arbitrary volume bounded by A(t) and tt • n is the surface 
displacement velocity of A\t). 

In view of Eqs.(2-1), (2-3) and (2-4) we obtain a differential balance 
equation 

9pkA 
dt 

+ V • {V,PM = -V. / , + PA' (2-6) 

The first term of the above equation is the time rate of change of the quantity 
per unit volume, whereas the second term is the rate of convection per unit 
volume. The right-hand side terms represent the surface flux and the volume 
source. 

1.1.2 Conservation equation 

Continuity Equation 
The conservation of mass can be expressed in a differential form by 

setting 

V̂ , = 1 , 0, = 0 , / , = 0 (2-7) 

since there is no surface and volume sources of mass with respect to a fixed 
mass volume. Hence from the general balance equation we obtain 

dp^ 
dt 

+ V-(p,'y,) = 0. (2-8) 

Momentum Equation 
The conservation of momentum can be obtained from Eq.(2-6) by 

introducing the surface stress tensor 7^ and the body force p^, thus we set 

Jk = -T, =P,I~% (2-9) 

^k =9k 

where / is the unit tensor. Here we have split the stress tensor into the 
pressure term and the viscous stress ^ . In view of Eq.(2-6) we have 

^ + V • {p,v,v,) = - V p , + V • ^ + p,g,. (2-10) 
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Conservation of Angular Momentum 
If we assume that there is no body torque or couple stress, then all 

torques arise from the surface stress and the body force. In this case, the 
conservation of angular momentum reduces to 

r, = : (2-11) 

where T^ denotes the transposed stress tensor. The above result is correct 
for a non-polar fluid, however, for a polar fluid we should introduce an 
intrinsic angular momentum. In that case, we have a differential angular 
momentum equation (Aris, 1962). 

Conservation of Energy 
The balance of energy can be written by considering the total energy of 

the fluid. Thus we set 

A u, +• 

(t>k=9k-'"k+ — 
Pk 

(2-12) 

where Uj^, g^ and ĝ  represent the internal energy, heat flux and the body 
heating, respectively. It can be seen here that both the flux and the body 
source consist of the thermal effect and the mechanical effect. By 
substituting Eq.(2-12) into Eq.(2-6) we have the total energy equation 

9pk 
. .2\ 

U. + 

dt + v- Pk 
..2\ 

Uu + Vu (2-13) 

= - V • g, + V • (r,. v,) + p,g^ 'V^+q,. 

These four local equations, namely, Eqs.(2-8), (2-10), (2-11) and (2-13), 
express the four basic physical laws of the conservation of mass, momentum, 
angular momentum and energy. In order to solve these equations, it is 
necessary to specify the fluxes and the body sources as well as the 
fundamental equation of state. These are discussed under the constitutive 
laws. Apart from these constitutive laws, we note that there are several 
important transformations of above equations. A good review of 
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transformed equations can be found in Bird et al. (1960). The important 
ones are given below. 

The Transformation on Material Derivative 
In view of the continuity equation we have 

dpkA „ , , . (dtp, „ , 
- ^ ^ + V • {PkA'"k) = Pk\-^ + Vk • VV'jt = Pk 

Dk^, k'rk 

Dt 
(2-14) 

This special time derivative is called the material or substantial derivative, 
since it expresses the rate of change with respect to time when an observer 
moves with the fluid. 

Equation of Motion 
By using the above transformation the momentum equation becomes the 

equation of motion 

ft^ = - V p , + V - ^ + P , p , . (2-15) 

Here it is noted that JD̂ .v̂ ./jDt is the fluid acceleration, thus the equation of 
motion expresses Newton's Second Law of Motion. 

Mechanical Energy Equation 
By dotting the equation of motion by the velocity we obtain 

d_ 

dt 

. .2^ 

Pk + V' Pk-j^'"k 

-% • ̂ Pk + Vfc • ( V • ^ ) + PkVk • 9k' 

(2-16) 

For a symmetrical stress tensor 

^ : V i ; , ^ ( ^ - V ) - t ; , = V - ( ^ - t ; , ) - t ; , - ( V - ^ ) . (2-17) 

Thus, Eq.(2-16) may be written as 
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( ..i\ 
% 

P.y 
( ..2 ^ 

+ V' % d_ 
P^y^fc (2-18) 

This mechanical energy equation is a scalar equation, therefore it represents 
only some part of the physical law concerning the fluid motion governed by 
the momentum equation. 

Internal Energy Equation 
By subtracting the mechanical energy equation from the total energy 

equation, we obtain the internal energy equation 

^ + V • {PAV,) = - V • g, - p,V • V, + %:Vv, + q,. (2-19) 

Enthalpy Equation 
By introducing the enthalpy defined by 

ik=u,+^ (2-20) 
Pk 

the enthalpy energy equation can be obtained as 

^ + V • {PM) ^ - V - q , + ^ + %;Slv, + q,. (2-21) 

1.1.3 Entropy inequality and principle of constitutive law 

The constitutive laws are constructed on three different bases. The 
entropy inequality can be considered as a restriction on the constitutive laws, 
and it should be satisfied by the proper constitutive equations regardless of 
the material responses. Apart from the entropy inequality there is an 
important group of constitutive axioms that idealize in general terms the 
responses and behaviors of all the materials included in the theory. The 
principles of determinism and local action are frequently used in the 
continuum mechanics. 

The above two bases of the constitutive laws define the general forms of 
the constitutive equations permitted in the theory. The third base of the 
constitutive laws is the mathematical modeling of material responses of a 
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certain group of fluids based on the experimental observations. Using these 
three bases, we obtain specific constitutive equations that can be used to 
solve the field equations. It is evident that the balance equations and the 
proper constitutive equations should form a mathematically closed set of 
equations. 

Now we proceed to the discussion of the entropy inequality. In order to 
state the second law of thermodynamics, it is necessary to introduce the 
concept of a temperature T̂  and of the specific entropy 5^. With these 
variables the second law can be written as an inequality 

j-X,MV^§^f^n,M-l^^^,V><>. (2-22) 

Assuming the sufficient smoothness on the variables we obtain 

d 

T,j 
- ^ = Z\̂  > 0 (2-23) 

where Z\̂  is the rate of entropy production per unit volume. In this form it 
appears that Eq.(2-23) yields no clear physical or mathematical meanings in 
relation to the conservation equations, since the relations of s^ and J], to the 
other dependent variables are not specified. In other words, the constitutive 
equations are not given yet. The inequality thus can be considered as a 
restriction on the constitutive laws rather than on the process itself. 

As it is evident from the previous section, the number of dependent 
variables exceed that of the field equations, thus the balance equations of 
mass, momentum, angular momentum and total energy with proper 
boundary conditions are insufficient to yield any specific answers. 
Consequently, it is necessary to supplement them with various constitutive 
equations that define a certain type of ideal materials. Constitutive equations, 
thus, can be considered as a mathematical model of a particular group of 
materials. They are formulated on experimental data characterizing specific 
behaviors of materials together with postulated principles governing them. 

From their physical significances, it is possible to classify various 
constitutive equations into three groups: 

1. Mechanical constitutive equations; 
2. Energetic constitutive equations; 
3. Constitutive equation of state. 
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The first group specifies the stress tensor and the body force, whereas the 
second group supplies the heat flux and the body heating. The last equation 
gives a relation between the thermodynamic properties such as the entropy, 
internal energy and density of the fluid with the particle coordinates as a 
parameter. If it does not depend on the particle, it is called 
thermodynamically homogenous. It implies that the field consists of same 
material. 

As it has been explained, the derivation of a general form of constitutive 
laws follows the postulated principles such as the entropy inequality, 
determinism, frame indifference and local action. The most important of 
them all is the principle of determinism that roughly states the predictability 
of a present state from a past history. The principle of material frame-
indifference is the realization of the idea that the response of a material is 
independent of the frame or the observer. And the entropy inequality 
requires that the constitutive equations should satisfy inequality (2-23) 
unconditionally. Further restrictions such as the equipresence of the 
variables are frequently introduced into the constitutive equations for flux, 
namely, ^ and q^, 

1.1.4 Constitutive equation 

We restrict our attention to particular type of materials and constitutive 
equations which are most important and widely used in the fluid mechanics. 

Fundamental Equation of State 
The standard form of the fundamental equation of state for 

thermodynamically homogeneous fluid is given by a function relating the 
internal energy to the entropy and the density, hence we have 

^k =^k{h^Pk)' (2-24) 

And the temperature and the thermodynamic pressure are given by 

n-f̂ , -P.^^y (2-25) 

Thus in a differential form, the fundamental equation of state becomes 

du^ = T,ds^ - p,d 
^l' 

[Pk) 
(2-26) 
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The Gibbs free energy, enthalpy and Helmholtz free energy function are 
defined by 

9k = % - TA + ^ (2-27) 
Pk 

h^^k+— (2-28) 
Pk 

fk=Uk- T,s, (2-29) 

respectively. These can be considered as a Legendre transformation* (Callen, 
1960) which changes independent variables from the original ones to the 
first derivatives. Thus in our case we have 

9k=9k{Tk,Pk) (2-30) 

* If we have 

/ \ T^ dy 

then the Legendre transformation is given by 

i=\ 

and in this case Z becomes 

Thus, we have 
dz=-Y:^,dP,+Y.Pidx,. 
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h=h{h^Pk) (2-31) 

fk = fk{T„P,) (2-32) 

which are also a fundamental equation of state. 
Since the temperature and the pressure are the first order derivatives of 

Uj^ of the fundamental equation of state, Eq.(2-24) can be replaced by a 
combination of thermal and caloric equations of state (Bird et al., 1960; 
Callen, 1960) given by 

P,-P,{pk.T,) (2-33) 

u. = n,{pM. (2-34) 

The temperature and pressure are easily measurable quantities; therefore, it 
is more practical to obtain these two equations of state from experiments as 
well as to use them in the formulation. A simple example of these equations 
of state is for an incompressible fluid 

pj^ = constant 
/ N (2-35) 

And in this case the pressure cannot be defined thermodynamically, thus we 
use the hydrodynamic pressure which is the average of the normal stress. 
Furthermore, an ideal gas has the equations of state 

Pk = RuTkPv 

where R^ is the ideal gas constant divided by a molecular weight. 

Mechanical Constitutive Equation 
The simplest rheological constitutive equation is the one for an inviscid 

fluid expressed as 

^ = 0. (2-37) 
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For most fluid, Newton's Law of Viscosity apples. The generalized linearly 
viscous fluid of Navier-Stokes has a constitutive equation (Bird et al., 1960) 

^ = )". [Vt;, + {Vv,X\ -\^h- \](V • v,)l (2-38) 

where /x̂  and Â  are the viscosity and the bulk viscosity of the A:̂ -phase, 
respectively. 

The body forces arise from external force fields and from mutual 
interaction forces with surrounding bodies or fluid particles. The origins of 
the forces are Newtonian gravitational, electrostatic, and electromagnetic 
forces. If the mutual interaction forces are important the body forces may 
not be considered as a function only of the independent variables x and t. 
In such a case, the principle of local actions cannot be applied. For most 
problems, however, these mutual interaction forces can be neglected in 
comparison with the gravitational field force g. Thus we have 

9k = 9- (2-39) 

Energetic Constitutive Equation 
The contact heat transfer is expressed by the heat flux vector q^, and its 

constitutive equation specifies the nature and mechanism of the contact 
energy transfer. Most fluids obey the generalized Fourier's Law of Heat 
Conduction having the form 

q,=-K,-VT,. (2-40) 

The second order tensor iT^ is the conductivity tensor which takes account 
for the anisotropy of the material. For an isotropic fluid the constitutive law 
can be expressed by a single coefficient as 

9 . = - ^ . ( n ) V r , . (2-41) 

This is the standard form of Fourier's Law of Heat Conduction and the scalar 
K^. is called the thermal conductivity. 

The body heating q^ arises from external energy sources and from 
mutual interactions. Energy can be generated by nuclear fission and can be 
transferred from distance by radiation, electric conduction and magnetic 
induction. The mutual interaction or transfer of energy is best exemplified 
by the mutual radiation between two parts of the fluid. In most cases these 
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interaction terms are negligibly small in comparison with the contact heating. 
The radiation heat transfer becomes increasingly important at elevated 
temperature and in that case the effects are not local. If the radiation effects 
are negligible and the nuclear, electric or magnetic heating are absent, then 
the constitutive law for body heating is simply 

?, = 0 (2-42) 

which can be used in a wide range of practical problems. 
Finally, we note that the entropy inequality requires the transport 

coefficients /i^, Â  and K^^ to be non-negative. Thus, viscous stress works 
as a resistance of fluid motions and it does not give out work. Furthermore, 
the heat flows only in the direction of higher to lower temperatures. 

1.2 Interfacial balance and boundary condition 

1.2.1 Interfacial balance (Jump condition) 

The standard differential balance equations derived in the previous 
sections can be applied to each phase up to an interface, but not across it. A 
particular form of the balance equation should be used at an interface in 
order to take into account the singular characteristics, namely, the sharp 
changes (or discontinuities) in various variables. By considering the 
interface as a singular surface across which the fluid density, energy and 
velocity suffer jump discontinuities, the so-called jump conditions have been 
developed. These conditions specify the exchanges of mass, momentum, 
and energy through the interface and stand as matching conditions between 
two phases, thus they are indispensable in two-phase flow analyses. 
Furthermore since a solid boundary in a single-phase flow problem also 
constitutes an interface, various simplified forms of the jump conditions are 
in frequent use without much notice. Because of its importances, we discuss 
in detail the derivation and physical significance of the jump conditions. 

The interfacial jump conditions without any surface properties were first 
put into general form by Kotchine (1926) as the dynamical compatibility 
condition at shock discontinuities, though special cases had been developed 
earUer by various authors. It can be derived from the integral balance 
equation by assuming that it holds for a material volume with a surface of 
discontinuity. Various authors (Scriven, 1960; Slattery, 1964; Standart, 
1964; Delhaye, 1968; Kelly, 1964) have attempted to extend the Kotchine's 
theorem. These include the introduction of interfacial line fluxes such as the 
surface tension, viscous stress and heat flux or of surface material properties. 
There are several approaches to the problem and the results of the above 
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authors are not in complete agreement. The detailed discussion on this 
subject as well as a comprehensive analysis which shows the origins of 
various discrepancies among previous studies have been presented by 
Delhaye (1974). A particular emphasis is directed there to the correct form 
of the energy jump condition and of the interfacial entropy production. 

Since it will be convenient to consider a finite thickness interface in 
applying time average to two-phase flow fields, we derive a general 
interfacial balance equation based on the control volume analyses. Suppose 
the position of an interface is given by a mathematical surface / (a;, t) = 0. 
The effect of the interface on the physical variables is limited only to the 
neighborhood of the surface, and the domain of influence is given by a thin 
layer of thickness 8 with 6^ and 62 at each side of the surface. Let's denote 
the simple connected region on the surface by ^ , then the control volume is 
bounded by a surface Z". which is normal to A^ and the intersection of ^ 
and E^ is a closed curve C^. Thus E. forms a ring with a width 6 , 
whereas the boundaries of the interfacial region at each side are denoted by 
A^ and A^. Our control volume V^ is formedhy E^, A^ and A^. 

Since the magnitude of 6 is assumed to be much smaller than the 
characteristic dimension along the surface ^ , we put 

rij = -n^ (2-43) 

where n^ and n2 are the outward unit normal vectors fi^om the bulk fluid of 
phase 1 and 2, respectively. The outward unit vector normal to E^ is 
denoted by N, then the extended general integral balance equation for the 
control volume V^ is given by 

dt 
.6, 

~i r Ni{'^~'^i)p^+JY^(^c+jp(i)dv. 
(2-44) 

The first two integrals on the right-hand side take account for the fluxes firom 
the surface A^, A^ and E.. In order to reduce the volume integral balance 
to a surface integral balance over Ai, we should introduce surface properties 
defined below. 

The surface mean particle velocity v^ is given by 

P . ' ^ / = f P'^dS (2-45) 
U —6') 
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Figure 2-1. Interface (Ishii, 1975) 

where the mean density p^ and the mean density per unit surface area p^ 
are defined as 

Pa = Ps^^ j Pd^ (2-46) 

Then the weighted mean values of ij) and 4> are given by 

Pai^s^ J ^pi^d^ (2-47) 

and 

Pa(t>s= i PH^- (2-48) 

The notation here is such that a quantity per unit interface mass and per unit 
surface area is denoted by the subscript 5 and a, respectively. 

The control surface velocity can be split into the tangential and normal 
components, thus 

^i = '^ii + ^n (2-49) 
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where 

% (2-50) 

|V/| 

Hence the normal component is the surface displacement velocity and the 
tangential component is given by the mean tangential particle velocity v^^. 
Since the unit vector N is in the tangential plane and normal to C^, we 
have 

N-v,=N-v^. (2-51) 

Thus, from Eqs.(2-45) and (2-51) we obtain 

P pN • {v^ - v)d5 = 0 (2-52) 

and 

f'^ fnpN• {v^ -v)d8= f^ pi^N• {v^ - v)dS. (2-53) 

In view of Eqs.(2-44) and (2-53) we define the average line efflux along C^ 
by 

Ja = P^ [j - [Vs - '») Pi^} dS. (2-54) 

Using the above definitions the integral balance at the interfacial region 
becomes 

d 
—- f p„ip,dA 

2 

J2 J^'^'^ ii''>^ -'"i)PkA+Jk]dA-J^N-JJC (2-55) 

+J^pAdA. 
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As in the case for the derivation of the field equation, here we need two 
mathematical transformations, namely, the surface transport theorem and the 
surface Green's theorem (Weatherbum, 1927; McConnell, 1957; Aris 1962). 
The surface transport theorem is given by 

where djdt denotes the convective derivative with the surface velocity v. 

defined by Eq.(2-50), and V^ denotes the surface divergence operator. The 
surface Green's theorem is given by 

j ^ N. JJC = /^ A-'g,^ (t:f;l, dA. (2-57) 

Here, A^^, g^^, t^ and [ ] ,̂  denote the surface metric tensor, the space 
metric tensor, the hybrid lensor, and the surface covariant derivative, 
respectively (Aris, 1962). 

The surface flux, J^ in space coordinates is expressed by /^' which 
represents the space vector for mass and energy balance and the space tensor 
for momentum balance. The essential concepts of the tensor symbols are 
given below. First the Cartesian space coordinates are denoted by 
{VvVi'^y^) a^d a general coordinates by {x^^X2>>x^^, then the space metric 
tensor is defined by 

^̂ " irT dx' dx"" 

which relates the distance of the infinitesimal coordinate element between 
these two systems. As shown in Fig.2-2, if the Cartesian coordinates y^ 
give a point of a surface with the surface coordinates of nj}^u^] as 
y^ = y {v}^u^], then the surface metric tensor is defined by 

^ „ . _ ^ M ^ .2 59) 

and the small distance ds is given by 
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f 

Figure 2-2. Relationship between Cartesian coordinates and surface coordinates 

{dsf = (dy'f + (dy'f + (dy'f = A'"'du''du'. (2-60) 

By introducing the general space coordinates, the surface position is 
given by x' = a;' \v},uj. The hybrid tensor is then defined by 

dx' 
(2-61) 

The covariance surface derivative ( ) ,̂  is similar to the space derivative 

but it also takes into account for the curved coordinate effects. Furthermore, 
if JV • /^ has only a tangential component as in the case of surface tension 

force, A'^^gJ^lf^ = f^jf. Hence, the surface flux contribution can be 

written as \t'^Ja)'>p or {ta^^aj^^ where t^ denotes the hybrid tensor in 

vector notation. It is noted that for the momentum transfer, the dominant 
interfacial momentum flux is the isotropic surface tension a . Then, 
r^ = a A " ^ In this case, the surface flux contribution becomes as follows 

(tM"')., = ^Han + t^A"'ia),,. (2-62) 
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The first term represents the net effect of the curved siirface and gives the 
normal component force with the mean curvature H, whereas the second 
term represents the tangential force due to surface tension gradient. 

Since we assumed that 8 is sufficiently small, the surface A^ and A^ 
coincide with At geometrically. Thus, Eq.(2-55) reduces to 

r 2 
= X . VD.Pk'^krt'k • {% - '^i) + n, • J,] (2-63) 

lk=\ 

-A"'9^[t:f:),,^-pA]dA. 

This balance equation holds for any arbitrary portion of an interface with 
A^» 8^, thus we obtain a differential balance equation 

= Yl {pkA'^k • (̂ ^ - '̂ O + îfc • ^ 4 (2-64) 
k=\ 

We note here this result has exactly the same form as the one derived by 
Delhaye (1974), although the method used and the definition of the surface 
velocity v^ is different. Let's define a surface quantity and a source per 
surface area as 

(2-65) 

(2-66) 

A 
and 

0a 

= PaA 

= Pa4>s-

Then the surface balance equation becomes 

d. 2 

dt^ fcf'- (2-67) 
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The left-hand side represents the time rate of change of ip^ from the 
observer moving at v., plus the effect of the siirface dilatation. Whereas the 
three terms on the right-hand side are the fluxes from the bulk phases, the 
line flux along the surface, and the surface source respectively. We note that 
Eq.(2-6) and Eq.(2-67) govern the physical laws in the bulk phases and at an 
interface. 

In order to obtain a simpler expression for interfacial jump of quantities, 
we make further assumptions which are consistent with our thin layer 
assumption given by 

8^ « 4. (2-68) 

First the mass density of interface p^ is negUgibly small so that its 
momentum and mechanical energy can also be neglected. Secondly, all the 
molecular diffusion fluxes along the line are neglected, namely, no surface 
viscous stress or surface heat flux. Furthermore all the surface sources are 
neglected, namely, no particular body force other than the gravity and no 
radiation effect. 

The thermodynamic tension and hence the interfacial energy are included 
in the following analysis, consequently from the principle of determinism we 
should postulate the existence of the surface equation of state. Under these 
assumptions we obtain 

Interfacial Mass Balance 

J2pkn,-{v,-v,)^0. (2-69) 
k=\ 

By defining the interfacial mass efflux from the A:*-phase as 

m. 'k ft^i^'K-'^O (2-70) 

we have from Eq.(2-69) 

2 

EK=0- (2-Vl) 
A ; = l 

This equation simply states that there is no capacity of mass at the interface, 
hence phase changes are pure exchanges of mass between the two phases. 
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Interfacial Momentum Balance 

(2-72) 
k=l 

Equation (2-72) is a balance between the momentum fluxes from the bulk 
fluids and the interfacial tension. 

Interfacial Energy Balance 
Substituting the interfacial energy u^ per unit surface area for ijj^, we 

obtain from Eq.(2-67) 

dt 
2 

= E 
k=\ 

+ (KA 

• « a V , • v^ 

' 

Pk^k • {Vk -

"''^•«0'/3-

( . . 2 ^ 

-V.) [ 2} 
+ nr{~T,'V,+q,) (2-73) 

The left-hand side represents the rate change of the surface energy, whereas 
the right-hand side accounts for the energy transfer from the bulk at each 
side and for the work done by the surface tension. 

1.2.2 Boundary conditions at interface 

As in the case of the three-dimensional field equations the surface 
balance equations should be supplemented by various constitutive laws. In 
order to establish the principle of determinism, first we introduce a simple 
equation of state. Since the mass of interface is negligible, we have 

n = u 'ai^a) (2-74) 

where u^ and s^ are the specific internal energy and the specific entropy 
per unit surface area, respectively. 

The thermodynamic tension is given by 

C7 = - T A + « , 

where the temperature T. is defined by 

(2-75) 
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du„ 

ds„ 

33 

(2-76) 

Thus, in a differential form, Eq.(2-74) becomes 

d\ = T,ds^ 

and the Gibbs-Duhem relation is given by 

sJT,+da = 0. 

The interfacial enthalpy is defined by 

i = ^a - ^• 

From Eq.(2-78) we have 

da 

dT, = ~s^. 

Hence, from Eqs.(2-77) and (2-80) we obtain 

du, = -T,d 
da 

ydT,. 

By combining Eqs.(2-75), (2-79) and (2-80) we get 

\ = -T, 
da 

'dT, 
\ ) 

+ ^;i = --T, da 

Thus the thermal equation of state 

^-^{T^ 

{2-11) 

(2-78) 

(2-79) 

(2-80) 

(2-81) 

(2-82) 

(2-83) 

supplies all the necessary information to interrelate the thermodynamic 
properties. By substituting Eq.(2-81) into Eq.(2-73) we obtain an energy 
jump condition in terms of the surface tension as 
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- T . 
'\dt 

da + da 
V 'V. 

^ s I 

= {t^A"'a)„-v, 

+E 
k = l 

rriu 
2 ^ 

%.+ + nr{-TrV,+q,)\ 

(2-84) 

Interfacial Entropy Inequality 
Following the above discussion, we assume the existence of the surface 

temperature T. which enables us to write an entropy inequality at the 
interface. Thus, in the absence of surface heat flux and source terms, we 
have 

A dt 
'^+sys'%~Y. 

k=l 
^kh + • 

Uu 
> 0 . (2-85) 

The entropy s^ in above inequality can be eliminated by using the energy 
balance equation, Eq.(2-73), and the equation of state, Eq.(2-77), hence we 
obtain 

TAa - E 
A ; = l 

m. . _ e T . + ^ ^ ^ - ; i + ^ ^k "^k^ i 

- ^ i f c - ^ - K ~ - ^ i ) + f̂c-9ifc 1 „ ± L 
T. k J 

Pk 

> 0 . 

(2-86) 

We note here that this expression has the same form as the one obtained by 
Delhaye (1974). Also a similar result was derived by Standart (1968) 
without considering the surface properties and the surface tension term, but 
including the effect of chemical reactions. 

In general, the interfacial jump conditions, Eqs.(2-69), (2-72) and (2-84), 
do not constitute sufficient matching conditions which are necessary to 
define the problem uniquely. Consequently, they should be supplemented 
by various boundary conditions that restrict the kinematical, dynamical and 
thermal relations between two phases. These relations can also be 
considered as interfacial constitutive laws, satisfying the restriction imposed 
by the entropy inequahty (2-86). They may be obtained from the standard 
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argument of the irreversible thermodynamics. In order to do so, first suitable 
combinations of fluxes and potentials should be postulated in the inequality 
(2-86), and then the fluxes were expanded linearly in terms of the potentials. 
Here, the principle of equipresence and the symmetric relations between the 
expansion coefficients are normally used. The standard procedure for a 
general system is discussed in detail by De Groot and Mazur (1962) among 
others, and it has been applied to an interface by Standart (1968), and 
Bomhorst and Hatsopoulos (1967). Standart based his argument on the 
correct jump conditions and the entropy inequality and obtained the 
interfacial constitutive laws with great care, though he neglected fi-om the 
beginning all the surface properties and the surface tension that are generally 
important in a two-phase system. The results of Bomhorst are limited to 
particular cases and the argument is based on the classical thermodynamic 
tools of piston, reservoir, homogeneous system, etc. 

The analysis based on the constitutive laws of the interface may be 
important for a detailed study of a two-phase system. However, they are 
generally too complicated to apply as boundary conditions. Furthermore, the 
effects of the potentials, namely, the discontinuities of temperature, chemical 
potential, tangential velocity, etc., as driving forces of transfer of quantities, 
or resulting interfacial resistances to heat, momentum and mass transfer are 
relatively insignificant in the total system. 

Consequently a much simpler theory for providing the necessary 
boundary conditions is desirable. As a limiting case, it is possible to 
consider the case when entropy production of the interface A^ becomes zero. 
This means that there are no resistances to interfacial transfer of quantities. 
Hence, the exchanges between two phases are governed by the conditions of 
the bulk fluid at each side, but not by the interface itself. Furthermore, fi'om 
the classical thermodynamic point of view, the transfer at the interface is 
said to be reversible. This is not so for a shock discontinuity in a single-
phase flow. 

By setting the entropy production of Eq.(2-86) to be zero we obtain 

' ^k 
/ ^ rp 
k=\ J- i 

I - P ^ I I A; i \ nnk 
yk ' ' 

2 pj^ 

2 

+Y.i'^k' Qk + ^k^T,) 

~T.T^'{^tk~^ti) 
k ^i 

'\ p 
(2-87) 

k=\ yT, Tkj 
= 0. 

Moreover, we assume that the three terms in Eq.(2-87) are independently 
zero for all combinations of the mass flux, the tangential stresses and the 
heat fluxes. 
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Thermal Boundary Condition 
Thus, from the last term of Eq.(2-87), we obtain a thermal equilibrium 

condition at the interface 

Tu = T,, = T, (2-88) 

that is consistent with the assumption of the existence of the equation of state 
at the interface, Eqs.(2-74) and (2-83). In view of Eqs.(2-82) and (2-84) this 
thermal boundary condition sets the energy level of the interface. In contrast 
to the above equation, the energy jump condition, Eq.(2-73), specifies the 
relation between the energy transfers to the interface. Furthermore, the 
thermal equilibrium condition, Eq.(2-88), eliminates a variable T., and it 
stands as a matching condition for the temperature of each phase at the 
interface. We note here that, in reality, the discontinuity of the temperature 
at the interface exists and can be estimated from the kinetic theories 
(Hirschfelder et al., 1954). However, its value in comparison with the 
absolute temperature is very small for most materials with few exceptions, 
such as for liquid metals (Brodkey, 1971). Thus, the influence on the 
interfacial transfer is negligible under the standard conditions. 

No-Slip Condition 
In view of the definition of the interfacial surface velocity v^, Eq.(2-50), 

the tangential velocity v^. is an unknown parameter, whereas the normal 
component is directly related to the position of the interface. Furthermore, it 
appears in the dissipation term in the entropy inequality (2-86) and Eq.(2-87). 
Thus, it is natural to supply a constitutive relation between the tangential 
stress T̂ ^ and the tangential relative velocity v^j^ ~'^u^ ^^ ^^ ^^^ hQQn 
discussed previously. However, in the present analysis we have assumed 
that the interfacial entropy production is identically zero. By taking the 
second term of Eq.(2-87) to be zero independently, we obtain a no-slip 
condition 

^ti = ^t2 = ^tr (2-89) 

The no-slip condition for a moving viscous fluid in contact with a solid wall 
is well established (Goldstein, 1938; Serrin, 1959). It is called a classical 
adherence condition and it has been verified experimentally and also 
analytically from kinetic theories. The relation given by Eq.(2-89) can be 
used to eliminate the interfacial tangential particle velocity and then it can be 
utihzed as a velocity boundary condition at an interface. 
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However, it should be noted here that for an inviscid fluid the no-sHp 
condition (2-89) is not necessary and cannot be satisfied generally, due to the 
tangential component of the momentum jump condition, Eq.(2-72). This is 
in complete agreement with our analysis, since the viscous dissipation term 
in Eq.(2-87) is identically zero for an inviscid fluid and does not appear in 
the entropy inequality. Consequently, Eq.(2-89) cannot be obtained. 
Furthermore, under the condition of no-slip, the momentum jump condition, 
Eq.(2-72), in the tangential and the normal directions becomes 

Y^r^.^A^H^ia) 
k=\ 

5a (2-90) 

and 

E 
Pk 

= —IH^iTl^CT (2-91) 

where the normal and the tangential viscous stress is given by 

'^k'^k—'^nk'^^ik— '^k^nnk + ^tk* (2-92) 

And the mean curvature H21 is taken from phase 2 to 1, namely, i?2i > 0 if 
the interface makes a convex surface in phase 1. 

Chemical (Phase Change) Boundary Condition 
In analogy with the preceding discussion, the chemical (or phase change) 

boundary condition can be obtained by setting the first term of Eq.(2-87) to 
be independently zero for all values of m^. This implies that the entropy 
production due to a phase transition is zero, and hence the phase change is 
considered not as a transfer due to non-equilibrium forces, but rather as an 
equilibrium transformation of state. 

Substituting the thermal equilibrium condition, Eq.(2-88), into the first 
term of Eq.(2-87) and equating it to zero, we obtain 

( ^ 1 - ^ 2 ) = 
"^1-% 1̂ 1 - '^i 

|2^ 
T. nnl T, nnl 

[Pi Pi ) 
(2-93) 

The phase change condition given by the above equation shows that the 
difference in the chemical potential compensates for the mechanical effects 
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of the relative kinetic energy difference and of the normal stresses. Here it 
should be noted that this phase change condition is only applicable to the 
case when the transfer of mass across the interface is possible. In other 
words, if the transfer of mass is identically zero for all conditions as in the 
case of two immiscible non-reacting liquids, the boundary condition should 
be 

m, = 0 (2-94) 

which replaces the condition on the chemical potentials. 

1.2.3 Simplified boundary condition 

In the preceding sections the interfacial jump conditions and 
supplementary boundary conditions have been given. It is important to 
reaUze that the thermal equilibrium condition, Eq.(2-88), normal component 
of the momentum jump condition, Eq.(2-91), and the phase change boundary 
condition, Eq.(2-93), correspond to the standard thermal, mechanical and 
chemical equilibrium conditions of the thermostatics (Gibbs, 1948). The 
difference is that the present analysis takes into account the dynamic effects 
of mass transfer and of the normal stresses in the mechanical and phase 
change boundary conditions. These interesting properties between the 
results of dynamical analysis and of the thermostatic theory can be 
summarized in the following table. 

It can be seen from the table that except the thermal condition these 
interfacial relations are still very complicated for many practical applications. 
This is mainly due to the terms arisen from the mass transfer and from the 
normal stresses. The former contributes as a thrust force due to the density 
change in the mechanical boundary condition and also as an impact kinetic 
energy change in the chemical (phase) boundary condition. The latter 
introduces complicated coupling effects of the flow fields with the 
thermodynamic properties at the interface. Under standard conditions, 
however, the normal stresses may be neglected with respect to the pressure 
terms, which greatly simplify the mechanical boundary condition, Eq.(2-91). 
The same argument can be applied to the chemical boundary condition, since 
the order of magnitude of the term p^g^ is p^, thus the normal stress terms 
can be neglected also in Eq.(2-93). Similarly the mass transfer terms are 
negligibly small in most practical problems, though they can be important 
for problems with large mass transfer rate or with vapor film boiling. 

Since in the standard formulation of field equations the Gibbs free energy 
g^ does not appear explicitly, it is desirable to transform the variable g^. in 
the chemical boundary condition, Eq.(2-93), into other variables which have 
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Table 2-1. Interfacial relations of thermodynamic potentials (Ishii, 1975) 

39 

"̂"""---v..,̂ ^ Analysis 

Condition "̂̂ -̂ --̂ ..̂ ^̂  

Thermal 

Mechanical 

Chemical 
(phase change) 

Thermostatics 

T,-T^=0 

Pi-P2=0 

9i-92=^ 

Present Dynamical Analysis 

T,-T,=0 

p^-p^ = -2H2^a-Tfi^ 
1 1 

.Pi Pi 

1 r 
IA Pi] 

+ 

"I" Vnnl '^nnl) 
) 

^nnl ^nn2 

A Pi . 

already been used in the field equations. For this purpose, we recall here 
that the Gibbs free energy expressed as a function of the temperature and 
pressure is a fundamental equation of state, Eq.(2-30), thus we have 

9k = 9k{Tk,Pk) 

and 

dQk =-^dT,+—dp,. 
Pk 

The thermostatic phase equilibrium condition is then given by 

Ti = r , = T'"*; p,=p, = p'"'; and g, = g,. 

Hence from Eqs.(2-95) and (2-97) we obtain 

9i[T ,P ) = 9i[T ^P ) 

which reduces to the classical saturation condition 

p =p [T ) . 

(2-95) 

(2-96) 

(2-97) 

(2-98) 

(2-99) 

This relation shows that the thermostatic equilibrium condition uniquely 
relates the thermodynamic potentials of each phase. Furthermore, the 
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differential form of Eq.(2-99) known as the Clausius-Clapeyron equation can 
be obtained from Eqs.(2-27) and (2-28) and Eqs.(2-96) and (2-97) 

dp sat 

dT sat 

T 

\-h 
sat - - ^] 

.Pi Pil 

(2-100) 

where all values of the right-hand side are calculated on the saturation line 
given by Eq.(2-99). 

If we assume that the deviations of the interface pressures of each phase 
from the saturation pressure corresponding to the interfacial temperature T. 
are sufficiently small in comparison with the pressure level, the Gibbs free 
energy ftinction can be expanded around the static saturation point. Thus we 
have 

P.(pf,T,) 

where Sp^. is defined by 

Since we have 

9Ar'{T^T)^g,(p-\T,),T,). 

Equation (2-93) can be reduced to 

(2-101) 

(2-102) 

(2-103) 

hi SPi 

A Pi ~2 

2 ^ 1 1 N / 
1 ^ 2 „ 2 , 

[Pi Pi ) 
+ 

T T 
nn\ nnl 

I Pi Pi } 
(2-104) 

whereas the mechanical boundary condition, Eq.(2-91), with the definition 
of 8pf. becomes 

^P\ " ^Pi = —2̂ 2̂1(7 — mf L_J_ 
iPi pi 

+ {rnnl-rnnl)- (2-105) 
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These above two equations can be solved for the pressure deviation from the 
saturation pressure as 

8p, = -IH^.a 

and 

( \ 
A 

\Px-Pi) 

Pi 

+ 
-̂ ^̂ 1 P K) 

\Pi Px) 
+ r, nn\ 

(2-106) 

\Px-Pi) 
+ 

(m,) " \ 1^ 

A A J 
+ r, nnl* 

This result shows that neither phase is in the saturation condition given 
byEq.(2-99). Theamount of deviation of pressure from p*"** depends on the 
mean curvature, the surface tension, the mass transfer rate and the normal 
stress. An interesting result follows if we take into account only the effect of 
the surface tension and drop the other terms which are generally negligibly 
small. In this case, we can approximate 

•̂ p̂ = ^^ff 
Ps 

and 8pj = 2Hj^a Pf 

[Pf 9 J 

(2-107) 

Since the mean curvature of the liquid phase H^^ is positive for a droplet 
and negative for a bubble, the phase pressures at the interface are both over 
the saturation pressure for a droplet flow, and they are both under it for a 
bubbly flow. 

Now we recall the existence of the limits on heating of liquid or cooling 
of vapor beyond the saturation condition in terms of the pressure deviation at 
fixed temperature, namely, the instability points of the equation of state in 
the thermostatics. Thus, we write 

SPf>SPf^{T,) 
(2-108) 

which are shown in Fig.2-3. 
Figure 2-3 shows the saturation line corresponding to the Clausius-

Clapeyron equation or Eq.(2-99) and the limits of the metastable liquid and 
vapor phases. These two limits can be obtained from the van der Waals 
equation of state given by 
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Critical Point 

Vapor Phase 

Eq.(2-99); Saturation Line 

Figure 2-3. p-J diagram (Ishii, 1975) 

P + 
(M/P) [P 

= RT (2-109) 

where R and M are the gas constant and the molecular weight, 
respectively, a and b are empirical constants. The thermodynamic theory 
states that the intrinsic thermodynamic stability requires 

dp 

a(i/p 
< 0 . (2-110) 

Therefore, by using the van der Waals equation, the loci of dp Id (Vp] = 0 

can be found. These loci actually represent two limits, namely the 
superheated liquid limit and subcooled vapor limit. These two loci are 
shown by the broken curves in Fig.2-3. 

It is interesting to note that Eq.(2-107) with the limiting condition of 
Eq.(2-108) gives the smallest droplet and the bubble sizes. In other words, 
these sizes are the lowest natural level of the disturbances in the statistical 
sense. Beyond these limits the liquid or the vapor phase cannot stay without 
changing the phase, because the statistical fluctuations create a core which 
can grow to a bubble or a droplet. 

The relations given by Eqs.(2-107) and (2-108) at a temperature T^ are 
exhibited in Fig.2-4. The widely used interfacial condition that the vapor 
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Figure 2-4, 6pg-8pf relation (Ishii, 1975) 

interfacial pressure equals the saturation pressure 'p^°'^ at a temperature T. 
can be derived as a further approximation to Eq.(2-107). Since the density 
ratio between phases is very large at a small reduce pressure, namely, 
VIVc < < 1 where p^ is the critical pressure, Eq.(2-107) can be 
approximated by 

(2-111) 

1.2.4 External boundary condition and contact angle 

The external boundary condition is a special case of the jump and the 
supplemental interfacial boundary conditions which have been discussed in 
the previous section. For a standard single-phase flow problem, these 
conditions become particularly simple because the mass transfer rate m^, 
the effect of the surface tension and the velocity of the solid-wall interface 
are all set to be zero. Similar simplifications could also be applied to a two-
phase flow system, however, two exceptional characteristics should be taken 
into account here. These are: 

1. The wall microstructure effect on bubble nucleations; 
2. The intersection of a phase interface with the external boundary. 
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W//MW////MW/////A 

Figure 2-5. Contact angle (Ishii, 1975) 

The first effect characterizes the necessity to consider the existence of 
surface nucleation sites which have irregular geometries deviating fi*om the 
standard idealized wall boimdary. These microstructures and the gas content 
in these sites often decide the bubble nucleation conditions and the degree of 
thermodynamic non-equilibrium. The second case is the singularity created 
by meeting of two different interfaces, see Fig.2-5. As a bubble or a droplet 
comes in contact with the external boundary, the vapor-liquid interface 
attaches to the wall and forms a singular curve at the intersection. When 
such a contact line is formed, the angle of contact 6 measured though the 
liquid characterizes the condition along the curve. An analysis similar to the 
one for the interface can be developed also for this singular line. In this case, 
since the area of transport from the bulk fluids is the thickness of the 
interface 6, the effects of the mass transfers and of the fluxes of the fluids 
can be neglected. Hence, only the surface fluxes and possibly the properties 
associated with the curve, namely, energy of the contact line, are important. 
By considering only the surface fluxes, we have from the force balance in 
the normal plane to the singular curve 

cos 9 -Z^LZ^ (2-112) 
a fg 

where a. , a and a. denote the surface tension between vapor-liquid. 'fs 
vapor-solid, and liquid-solid respectively. 

We note here that Eq.(2-112) is consistent with the jump conditions, if 
we neglect the tension tangent to the singular curve and thus the thermal 
energy of the curve. If these effects are neglected, Eq.(2-112) is the only 
condition obtainable in parallel with the jump conditions. Hence, as it has 
been mentioned, the contact angle 6 characterizes the phenomenon and an 
appropriate constitutive law should be supplied if a^^ and a^^ are not 
available. The static contact angle 6 is well measured and tabulated for 
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various interfaces: in reality however it is greatly influenced by the surface 
roughness, the deposit of foreign materials and the purity of fluid itself. 

Furthermore, the dynamic contact angle of a moving interface can be 
significantly different from the static values. However, in the absence of a 
well estabUshed constitutive law for 9 under dynamic condition, the static 
values are frequently used in practical problems. We only note here that it is 
generally accepted that the apparent difference between the static and the 
dynamic contact angle is a function of a surface tension a^^ and the normal 
slipping velocity of the singular curve (Schwartz and Tejada, 1972; Phillips 
andRaddiford, 1972). 

In summarizing this section we list standard external boundary conditions 
at the soKd wall: 

The position of an external boundary 

/„(a;) = 0 (2-113) 

No-mass transfer condition 

^ n . = ^ „ » = 0 (2-114) 

No-slip condition for a viscous fluid 

«.. = « * » = 0 (2-115) 

The force balance from the momentum jump condition 

n,-T,+n^-T^^(i (2-116) 

The energy balance from the energy jump condition 

n , - 9 , + n , - g , = 0 (2-117) 

The thermal equilibrium condition 

Tk=T^ (2-118) 

These above conditions can be applied where a fluid is in contact with 
the wall. It cannot be applied however at an intersection of an interface with 
the solid boundary. On such a singular curve the constitutive equation for 
the contact angle 6 should be given. Finally, we summarize the local 
instant formulation of a two-phase flow system in the following diagram. 
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EXTERNAL BOUNDARY CONDITIONS 

Position of the Wall 
Constraints 

7 1 
PHASE 1 

Field Equations 
Continuity Eq. 
Momentum Eq. 
Energy Eq. 

Constitutive Equations 
Equation of State 
Mechanical C. E. 
Energetic C. E. 

INTERFACE 
Jump Conditions 

Mass J. C. 
Momentum J. C. 
Energy! C. 

Interfacial B. C. 
Thermal B. C. 
(No-slip B. C.) 
(Chemical B. C.) 

Jump Conditions 
Interfacial B. C. 
Contact Angle 

PHASE 2 
Field Equations 

C.E. 
M.E. 
E.E. 

Constitutive Equations 
E. S. 
M. C. E. 
E. C. E. 

INITIAL CONDITIONS 

1.3 Application of local instant formulation to two-phase 
flow problems 

1.3.1 Drag force acting on a spherical particle in a very slow stream 

As an example of applying local instant formulation to two-phase flow 
problems, let us study the drag constitutive equation of a solid sphere of 
radius r̂  in a very slow stream of speed U^ (creeping flow) (Stokes, 1851; 
Schlichting, 1979). In order to analyze this problem analytically, we assume 
(1) Newtonian viscous fluid with constant viscosity, (2) incompressible flow 
(fluid density is constant), and (3) very small Reynolds number 
( i ?e l= IT^PJJQ/IJL] < < 1) where viscous effects dominate the flow and 
the inertia term can be neglected in the momentum equation. Then, the 
continuity equation, Eq.(2-8), and the momentum equation, Eq.(2-10), can 
be linearized as 

V • v. = 0 (2-119) 

Vp, = fi,V\ (2-120) 

The gravity term is dropped by considering the pressure field which 
excludes the hydrostatic effect. The velocity components and the pressure in 
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spherical coordinates (r,0) with ^ = 0 in the direction of U^ can be 
derived under the boundary condition of no-slip on the soUd sphere as 

UQCOS6 
2 r IT" 

(2-121) 

'»6c = -C^ocos^ 
A r Ar' 

3^ 

(2-122) 

IT 
(2-123) 

where p ^ is the uniform freestream pressure. The shear stress acting on the 
soKd sphere, T^Q^ , is given by 

r. TQC \f=a = Mc 
dr [r 09 

= ^^^sme. 
\r=rd 

2 n 
(2-124) 

Thus, the total drag force, F^ , acting on the solid sphere is given by 
integrating the pressure and the shear stress around the surface as 

FD "= I ^roc sin 6dA - I Pc cos 6dA 
(2-125) 

where A is the surface area. This indicates that the drag consists of the 
pressure and shear forces even in this viscosity dominated flow. Then, we 
define the drag coefficient, (7^, by 

Co 
\PcUl\ 

(2-126) 

where A is the projected area of a particle. Thus, we have 
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Cn = 
Re' 

Chapter 2 

(2-127) 

This analysis was extended by Rybczjmski (1911) and Hadamard (1911) to 
creeping motion of a spherical fluid particle in an infinite Navier-Stokes 
fluid (Brodkey, 1967; Soo, 1967). Thus, the total force acting on a fluid 
particle is given by 

FD =67rr^/^eKoo-f'd) 
2/ie + 3/id 

Then, we define the drag coefficient, Cjj^, by 

(2-128) 

^Doo — J 

and the particle RejTiolds number by 

ite^ — 

(2-129) 

(2-130) 

It is evident here that v^^ and v^ are the undisturbed flow velocity and the 
particle velocity. Thus, we have 

^Doo — 
24 

Re, 
^f^c + ^l^d 

^{f^c+f^d) 
\;Re, <1. (2-131) 

The drag law given by Rybczynski and Hadamard is good up to a Reynolds 
number of about 1. 

1.3.2 Kelvin-Helmholtz instability 

As another example of application of local instant formulation to two-
phase flow problems, let us study the Kelvin-Helmholtz instability 
(Hehnholtz, 1868; Kelvin; 1871; Lamb, 1945). The Kelvin-Helmholtz 
instability arises at the interface of two fluid layers of different densities p^ 
and p2 flowing with average velocities v^ and V2 in a horizontal duct. In 
order to analyze this problem analytically, we assume: (1) inviscid flow 
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(viscous force is negligible); (2) incompressible flow (fluid density is 
constant); and (3) irrotational flow. It is convenient to use rectangular 
coordinates {x,y) where x and y indicate the coordinate in the horizontal 
direction and the coordinate in the vertical direction measured from the 
average interface of the two fluid layers, respectively. Then, the velocity 
components are given in terms of the velocity potential, c/)̂ , as 

dx ^ ̂  dy 
v.,-^-^,Vy,^~^- (2-132) 

Thus, the continuity equation, Eq.(2-8), is given in terms of the velocity 
potential as 

and the momentum equation, Eq.(2-10), is given by 

^ + ^vl+gy = ^ + F{t) (2-134) 
Pk 2 dt 

where F (t) is the function of t, respectively. The shape of the interface 
between two phases are approximated by a sinusoidal wave as 

T] = ryoSin {k {x - Ct)} (2-135) 

where rj^, k, and C are the amplitude, the wave number, and the wave 
velocity, respectively. Then, the velocity potentials of the upper fluid 
{k = 1) and lower fluid {k = 2) are derived under the boundary condition 
of no fluid penetration on the upper and lower duct surfaces and the 
assumption of small perturbation. 

, cosh.\k(k ~ yVt . , ,. 
0̂  = -v,x + 77o [v, - C) > A , , . ^^cos{fc(:z; - Ct)] (2-136) 

sinh(fc/iij 

-v,x - r?o K - ^ ) ^ ^ ^ ^ i ^ ^ - ^*)} (2-137) 
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where } \ and /̂ j are the average thickness of the upper and lower fluid 
layers, respectively. Substituting Eqs.(2-136) and (2-137) into Eq.(2-134) 
and assuming v^^ « v ^ yield the pressure of each phase at the interface as 

(2-138) 

Pi2 — Pi 1(^2 ~ ^ ) feoth[kh^) - g\ 77oSin\k{x - Ct)\ 

+Pi 
(2-139) 

where p^ is the pressure at a smooth interface. The interfacial pressure 
difference between two fluid layers is due to the surface tension, and can be 
approximated by 

Pa - Pix = - < ^ dx 2 • (2-140) 

Then, the wave velocity can be obtained from Eq.(2-135) and Eqs.(2-138)-
to-(2-140) as 

_ pjvi + P2̂ 2 , |^fe + ( p , - f t ) ^ / f c ^ ^ (vi--n 

Pi+Pi V A + Pi 
P\Pi 

\2 

[P[ + Pl] 
(2-141) 

where pi = p^coth.(^k\) . Under the deep water assumption of 

}\ii2n/k], h2 \2Txjk\ > 0.25, pi can be approximated to be p^. In this 

case, Eq.(2-141) can be simplified as 

Q ^m±_Pi}h^_^ 1̂ 2 
Pl + P2 

p\pi 
^ 1 - ^ 2 

^2 

[Pi+Pi] 
(2-142) 

where 

9 Pi- Pi 
+ 

ak 

k P1+P2 Pi+ Pi 
(2-143) 
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When the root in the expression for the wave velocity C has a nonzero 
imaginary part, then the interfacial disturbance can grow exponentially. 
Hence, the flow is unstable if 

' " ' ^ - ' ' • + ^ ^ < p , p / 
k P1+P2 Pi + P2 

v,-v^ 

[P1 + P2) 
(2-144) 

There are several important points to be recognized in this stability 
criterion. First, the viscous effects of the fluids are neglected; therefore, the 
Reynolds number plays no role in this type of interfacial instability. The 
stability of the system then is governed by three effects, namely, the gravity 
force, surface-tension force, and relative motion. The relative-motion term 
is always destabilizing due to the inertia force from Bernoulli effect. The 
surface-tension force is always stabilizing, since the flat interface has the 
minimum surface area, and the surface-tension force acts to resist any 
deformation from the equilibrium configuration. The gravity term is 
stabilizing only if the upper fluid is lighter than the lower fluid (P2 > Pi )• 

The propagation velocity C^ in the absence of the flows (or the left-
hand side of the stability criterion) is a fixnction of the wave number k. 
Therefore, as the wavelength A = 27v/k changes from zero to infinite, the 
wave velocity decreases to the minimum value and then increases. This 

minimum value of C^ is given by d^ = 2^ag{p2 - />i)/(p2 - P i f f ' 

which occurs at k^ = g(^p2 ~ p^)/a . This corresponds to the critical 
wavelength of Â  = ^ir/k^. This is known as Taylor wave length that is 
one of the most important internal length scales in two-phase flow. Then the 
system is stable for small disturbances of all wavelengths if the relative 
velocity is sufficiently small to satisfy 

{v, ~ v,f < (̂̂ ^ + ^^)^ag(p,^pO> (2-145) 
P1P2 

For a relative velocity larger than this limit, the system is only 
conditionally stable for a certain range of the wavelength. When the 
wavelength is large, the value of (7^ in Eq.(2-143) is mainly determined by 
the gravity term. Conversely, if A is sufficiently small, the capillary force 
governs the wave motion. 

Furthermore, it is possible to develop a similar stability criterion based on 
the one-dimensional two-phase flow equations (Wallis, 1969; 
KocamustafaoguUari, 1971). It is noted (Miles, 1957) that the Kelvin-
Helmholtz instability theory tends to overpredict the critical relative velocity 
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for the initial generation of surface waves, except in the case of highly 
viscous fluids. However, the Kelvin-Helmholtz instability mechanism is 
important in wave-propagation phenomena, particularly for flows in a 
confined channel (Kordyban, 1977). Based on the analysis, Kelvin proposed 
the word "Ripples" to describe waves having a wavelength of less than 

\ =27rJa/5(/?2 - A ) -

For a gravity dominated flow with a relatively large wave length 
A > > A ,̂ the surface tension effect can be neglected. By considering the 
finite channel flow, Eq.(2-141) can give a criterion for instability as 

9 Pi- Pi 

k p[ + P2 
< p[pi v,-~v^ 

[p'l + pl] 
(2-146) 

By taking a Taylor expansion and retaining only the first order term for the 
hyperbolic functions, a following simplified but usefiil criterion can be 
obtained. 

(„,_„^)'>i:(ft-ft)(^-'+^a^g(ft-fl)ft.. p.,47) 
k p^P2 ft 

When this criterion is compared to experimental data for slug formation in a 
channel, the critical relative velocity is overpredicted by a factor close to two. 
This discrepancy can be explained by a theoretical analysis introducing a 
finite amplitude or wave fi'ont propagation method (Mishima and Ishii, 1980; 
Wu and Ishii, 1996). 

1.3.3 Rayleigh-Taylor instability 

The Rayleigh-Taylor instability is the interfacial instability between two 
fluids of different densities that are stratified in the gravity field or 
accelerated normal to the interface. It is commonly observed that the 
boundary between two stratified fluid layers at rest is not stable if the upper-
fluid density ft is larger than the lower-fluid density P2 • Since the 
Rayleigh-Taylor instability can lead to the destruction of the single common 
interface, it is important in the formation of bubbles or droplets. In 
particular, the critical wavelength predicted by the related stability analysis 
is one of the most significant length scales for two-phase flow. 

The Rayleigh-Taylor instability can be considered as a special case of the 
Kelvin-Helmholtz instability with zero flows and Pi > p2 - Hence, the 
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propagation velocity can be obtained from Eq.(2-142) by setting 

^2 ^ g Pi- Pi _^ ^fe 

k P2+ Pi Pi+ Pi 
(2-148) 

The system is unstable if the root of the propagation velocity has a nonzero 
imaginary part. Therefore, Eq.(2-148) shows that the gravitational force is 
destabilizing for Pi > P29 whereas the surface-tension force is stabilizing. 
There is a critical wavelength A below which C^ is always positive. This 

is given by Â  = In ja/g^p^ - f t ) . If the wavelength of a disturbance is 

larger than the critical wave length (A > A^), then C^ becomes negative 
and the interface is unstable. For fluids that are unlimited laterally, the 
wavelength of the disturbance can be as large as desired; therefore such a 
system is always unstable. However, if the fluids are confined laterally, the 
maximum wavelength is limited to twice the system dimension. This 
implies that a system is stable if the lateral characteristic dimension is less 
than half the critical wavelength Â  . For an air-water system, this 
characteristic dimension is 0.86 cm. A similar dimension can be obtained 
from fluids contained in a vertical cylinder by using polar coordinates in the 
stability analysis. 

For an unstable system, any disturbance having a wavelength greater than 
Â  can grow in time. However, the dominant waves are those having the 
maximum growth factor. Since the wave amplitude grows with 
exp {-ikCt), the predominant wavelength should be 

A^ = 27r ^^ (2-149) 
\9\P1-P2) 

These unstable waves can be observed as water droplets dripping from a 
wire in a rainy day, or condensed water droplets falling from a horizontal 
downward-facing surface. Quite regular waveforms and generation of 
bubbles due to the Rayleigh-Taylor instability can also be observed in film 
boiling. Note that this instability is not limited to the gravitational field. 
Any interface, and fluids that are accelerated normal to the interface, can 
exhibit the same instability. This can occur for example in nuclear explosion 
and inertia confinement of a fiision pellet. In such a case the acceleration 
should replace the gravity field g in the analysis. 
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VARIOUS METHODS OF AVERAGING 

1.1 Purpose of averaging 

The design of engineering systems and the abihty to predict their 
performance depend on the availability of experimental data and conceptual 
models that can be used to describe a physical process with a required degree 
of accuracy. From both a scientific and a practical point of view, it is 
essential that the various characteristics and properties of such conceptual 
models and processes are clearly formulated on rational bases and supported 
by experimental data. For this purpose, specially designed experiments are 
required which must be conducted in conjunction with and in support of 
analytical investigations. It is well established in continuum mechanics that 
the conceptual models for single-phase flow of a gas or of a liquid are 
formulated in terms of field equations describing the conservation laws of 
mass, momentum, energy, charge, etc. These field equations are then 
complemented by appropriate constitutive equations such as the constitutive 
equations of state, stress, chemical reactions, etc., which specify the 
thermodynamic, transport and chemical properties of a given constituent 
material, namely, of a specified solid, liquid or gas. 

It is to be expected, therefore, that the conceptual models describing the 
steady state and dynamic characteristics of multiphase or multi-component 
media should also be formulated in terms of the appropriate field and 
constitutive equations. However, the derivation of such equations for the 
flow of structured media is considerably more complicated than for strictly 
continuous homogeneous media for single-phase flow. In order to 
appreciate the difficulties in deriving balance equations for structured, 
namely, inhomogeneous media with interfacial discontinuities, we recall that 
in continuum mechanics the field theories are constructed on integral 
balances of mass, momentum and energy. Thus, if the variables in the 
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region of integration are continuously differentiable and the Jacobian 
transformation between material and spatial coordinates exists, then the 
Euler-type differential balance can be obtained by using the Leibnitz's rule; 
more specifically, however, the Reynolds's transport theorem allows us to 
interchange differential and integral operations. 

In multi-phase or multi-component flows, the presence of interfacial 
surfaces introduces great difficulties in the mathematical and physical 
formulation of the problem. From the mathematical point of view, a multi­
phase flow can be considered as a field that is subdivided into single-phase 
regions with moving boundaries separating the constituent phases. The 
differential balance holds for each sub-region. It cannot be applied, however, 
to the set of these sub-regions in the normal sense without violating the 
above conditions of continuity. From the point of view of physics, the 
difficulties encountered in deriving the field and constitutive equations 
appropriate to multi-phase flow systems stem fi-om the presence of the 
interface. It also stems from the fact that both the steady and dynamic 
characteristics of multi-phase flows depend upon the interfacial structure of 
the flow. For example, the steady state and the dynamic characteristics of 
dispersed two-phase flow systems depend upon the collective dynamics of 
solid particles, bubbles or droplets interacting with each other and with the 
surrounding continuous phase; whereas, in the case of separated flows, these 
characteristics depend upon the structure and wave dynamics of the interface. 
In order to determine the collective interaction of particles and the dynamics 
of the interface, it is necessary to describe first the local properties of the 
flow and then to obtain a macroscopic description by means of appropriate 
averaging procedures. For dispersed flows, for example, it is necessary to 
determine the rates of nucleation, evaporation or condensation, motion and 
disintegration of single droplets (bubbles) as well as the collisions and 
coalescence processes of several droplets (or bubbles). 

For separated flow, the structure and the dynamics of the interface greatly 
influence the rates of mass, heat and momentum transfer as well as the 
stability of the system. For example, the performance and flow stability of a 
condenser for space appUcation depend upon the dynamics of the vapor 
interface. Similarly, the rate of droplet entrainment fi:om a liquid film, and 
therefore, the effectiveness of film cooling, depend upon the stability of the 
vapor liquid interface. 

It can be concluded from this discussion that in order to derive the field 
and constitutive equations appropriate to structured multiphase flow, it is 
necessary to describe the local characteristics of the flow. From that flow, 
the macroscopic properties should be obtained by means of an appropriate 
averaging procedure. It is evident also that the design, performance and, 
very often, the safe operation of a great number of important technological 
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systems (which were enumerated in the preceding sections) depend upon the 
availability of realistic and accurate field and constitutive equations. 

The formulation based on the local instant variables of Chapter 2 shows 
that, in general, it results in a multi-boundary problem with the positions of 
the interfaces being unknown. In such a case the mathematical difficulties 
encountered in obtaining solutions are prohibitively great and in many 
practical problems they are beyond our present computational capability. In 
order to appreciate these difficulties we recall that even in single-phase 
turbulent flow without moving interfaces, it has not been possible to obtain 
exact solutions expressing local instant fluctuations. It can be said that 
overwhebning difficulties encountered in the local instant formulations stem 
fi-om: 

1. Existence of the multiple deformable moving interfaces with their 
motions being unknown; 

2. Existence of the fluctuations of variables due to turbulences and to the 
motions of the interfaces; 

3. Significant discontinuities of properties at interface. 

The first effect causes complicated coupling between the field equations of 
each phase and the interfacial conditions, whereas the second effect 
inevitably introduces a statistical characteristic originated fi-om the 
instability of the Navier-Stokes equation and of the interfacial waves. The 
third effect introduces huge local jumps in various variables in space and 
time. Since these difficulties exist in almost all two-phase flow systems, an 
application of the local instant formulation to obtain a solution is severely 
limited. For a system with a simple interfacial geometry, however, as in the 
case of a single or several bubble problem or of a separated flow, it has been 
used extensively and very usefixl information have been obtained. As most 
two-phase flow observed in practical engineering systems have extremely 
complicated interfacial geometry and motions, it is not possible to solve for 
local instant motions of the fluid particles. Such microscopic details of the 
fluid motions and of other variables are rarely needed for an engineering 
problem, but rather macroscopic aspects of the flow are much more 
important. 

By proper averaging, we can obtain the mean values of fluid motions and 
properties that effectively eliminate local instant fluctuations. The averaging 
procedure can be considered as low-pass filtering, excluding unwanted high 
frequency signals from local instant fluctuations. However, it is important to 
note that the statistical properties of these fluctuations influencing the 
macroscopic phenomena should be taken into account in a formulation based 
on averaging. 
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1.2 Classification of averaging 

The importance and the necessity of averaging procedures in order to 
derive macroscopic field and constitutive equations for structured two-phase 
media have been discussed in the Section 1.1 of Chapter 3 In this section we 
study various methods of averaging that can be applied to thermo-fluid 
dynamics in general and to two-phase flow in particular. Depending on the 
basic physical concepts used to formulate thermal-hydraulic problems, 
averaging procedures can be classified into three main groups: the Eulerian 
averaging; the Lagrangian averaging; and the Boltzmann statistical 
averaging. They can be further divided into sub-groups based on a variable 
with which a mathematical operator of averaging is defined. The summary 
of the classifications and the definitions of various averaging are given 
below. 

i) Eulerian Average - Eulerian Mean Value 

Function: F = F{t,x) (3-1) 

Time (Temporal) mean value: — / F\t^x]dt (3-2) 

Spatial mean value: - — J F{t,x\dR{x) (3-3) 

Volume: ^ J F(t,x^dV (3-4) 

Area: - ^ f F(t,x]dA (3-5) 

Line: — f F(t,x]dC (3-6) 
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1 ^ / \ 
Statistical mean value: — ^ F^ U, a; J (3-7) 

Mixed mean value: combination of above operations 

ii) Lagrangian Average - Lagrangian Mean Value 

Function: F = F{t,X)\ X = X{x,t) (3-8) 

Time (Temporal) mean value: — F[t,X]dt (3-9) 

1 ^ / \ 
Statistical mean value: — 2_j •^ny">^] (3-10) 

iii) Boltzmann Statistical Average 

Particle density function: / = / f aJ, ^, t j (3-11) 

Transport properties: mt^x\ = -—ji (3-12) 

Here we note that x and X are the spatial and the material coordinates, 
respectively, whereas ^ is the phase velocity or kinetic energy of particles. 
Furthermore, we point out that the true time or statistical averaging is 
defined by taking the limit Z\i —> oo or iV -^ oo, which is only possible 
in concept. The material coordinates can be considered as the initial 
positions of all the particles, thus if X is fixed it implies the value of a 
function following a particle. 

The most important and widely used group of averaging in continuum 
mechanics is the Eulerian averaging, because it is closely related to human 
observations and most instrumentations. The basic concept underlining this 
method is the time-space description of physical phenomena. In a so-called 
Eulerian description, the time and space coordinates are taken as 
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independent variables and various dependent variables express their changes 
with respect to these coordinates. Since the standard field equations of 
continuum mechanics developed in Chapter 2 adapt to this description, it is 
natural to consider averaging with respect to these independent variables, 
namely, the time and the space. Furthermore, these averaging processes are 
basically integral operators, therefore, they have an effect of smoothing out 
instant or local variations within a domain of integration. 

The Lagrangian mean values are directly related to the Lagrangian 
description of mechanics. As the particle coordinate X displaces the spatial 
variable x of the Eulerian description, this averaging is naturally fitted to a 
study of the dynamics of a particle. If our interest is focused on a behavior 
of an individual particle rather than on the collective mechanics of a group of 
particles, the Lagrangian average is important and useful for analyses. The 
Lagrangian time average is taken by following a certain particle and 
observing it over some time interval. A simple example is the average speed 
of a particular vehicle such as a car, a train or an airplane. Furthermore, the 
Eulerian temporal mean values can be exemplified by an average velocity of 
all cars passing at a point on a road over some time interval. 

In contrast to the mean values explained above, the Eulerian and the 
Lagrangian statistical mean values are based on a statistical assumption, 
since they involve a collection of N similar samples denoted by F^ with 
n = 1, • • • 5 iV . A fundamental question arises as we ask, "What are the 
similar samples for a system with fluctuating signals?" To visualize a group 
of similar samples, it is useful to consider a time averaging as a filtering 
process that eliminates unwanted fluctuations. The similar samples may 
then be considered as a group of samples which have time mean values of all 
the important variables within certain ranges of deviations. In this case, the 
time interval of the averaging and the ranges of deviations define the 
imwanted fluctuations, thus the statistical averaging depends on them. For a 
steady-state flow based on time averaging, random sampling over a time 
domain can constitute a proper set of samples as it is often done in 
experimental measurements. In this case, the time averaging and the 
statistical averaging are equivalent. There are many other factors to consider, 
however it is also possible to leave it as an abstract concept. The difficulties 
arise when the constitutive equations are studied in connection with 
experimental data. The true statistical averaging involving an infinite 
number of similar samples is only possible in concept, and it cannot be 
reaUzed. Thus, if it is considered alone, the ensemble averaging faces two 
difficulties, namely, choosing a group of similar samples and connecting the 
experimental data to a model. 

The Boltzmann statistical averaging with a concept of the particle 
number density is important when the collective mechanics of a large 
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number of particles are in question. As the number of particles and their 
interactions between them increase, the behavior of any single particle 
becomes so complicated and diversified, it is not practical to solve for each 
particle. In such a case, the behavior of a group of many particles 
increasingly exhibits some particular characteristics that are different from a 
single particle as the collective particle mechanics becomes a governing 
factor. It is well known that the Boltzmann statistical averaging applied to a 
large number of molecules with an appropriate mean-free path can lead to 
field equations that closely resemble that of the continuum mechanics. It can 
also be applied to subatomic particles, such as neutrons, to obtain a transport 
theory for them. This can be done by first writing the balance equation for 
the particle density ftmction, which is known as the Boltzmann transport 
equation. Then it is necessary to assume a form of the particle interaction 
term as well as stochastic characteristics of the particle density fimction. A 
simple model using two-molecular interaction was developed by Maxwell, 
thus the Boltzmann transport equation with the collision integral of Maxwell 
was called the Maxwell-Boltzmann equation. This equation became the 
foundation of the kinetic theory of gases. We recall that if the Maxwell-
Boltzmann equation is multiplied by 1, particle velocity, or the kinetic 
energy (l/2)^^ then averaged over the particle velocity field, it can be 
reduced to a form similar to the standard conservation equations of mass, 
momentum and energy in the continuum mechanics. 

1.3 Various Averaging in Connection with Two-Phase 
Flow Analysis 

In order to study two-phase flow systems, many of above averaging 
methods have been used by various researchers. The applications of 
averaging can be divided into two main categories 

1. To define properties and then to correlate experimental data. 
2. To obtain usable field and constitutive equations that can be used to 

predict macroscopic processes. 

The most elementary use is to define mean properties and motions that 
include various kinds of concentrations, density, velocity and energy of each 
phase or of a mixture. These properly defined mean values then can be used 
for various experimental purposes and for developments of empirical 
correlations. The choice of averaging and instrumentations are closely 
coupled since, in general, measured quantities represent some kinds of mean 
values themselves. 
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Both the Eulerian time and spatial averaging are frequently in use, 
because experimenters incline to consider two-phase mixtures as quasi-
continuum. Furthermore, they are usually the easiest mean values to 
measure in fluid flow systems. However, when a particular fluid particle can 
be distinguishable and traceable, as in the case of a bubbly or droplet flow, 
the Lagrangian mean values are also used. It is only natural that these mean 
values are obtained for stationary systems that can be considered to have 
steady-state characteristics in terms of mean values. Various correlations are 
then developed by further applying the statistical averaging among different 
data. This is the standard method of experimental physics to minimize errors. 

Before we proceed to the second application of averaging, we discuss 
briefly two fundamentally different formulations of the macroscopic field 
equations; namely the two-fluid model and the drift-flux (mixture) model. 
The two-fluid model is formulated by considering each phase separately. 
Consequently, it is expressed by two sets of conservation equations of mass, 
momentum and energy. Each of these six field equations has invariably an 
interaction term coupling the two phases through jump conditions. The 
mixture model is formulated by considering the mixture as a whole. Thus, 
the model is expressed in terms of three-mixture conservation equations of 
mass, momentum, and energy with one additional diffusion (continuity) 
equation which takes account of the concentration changes. A mixture 
conservation equation can be obtained by adding two corresponding 
conservation equations for each phase with an appropriate jump condition. 
However, it should be noted that a proper mixture model should be 
formulated in terms of correctly defined mixture quantities. It can be said 
that the drift-flux model is an example of a mixture model that includes 
diffusion model, slip flow model and homogeneous flow model. However, 
for most practical applications, the drift-flux model is the best mixture model 
that is highly developed for normal gravity (Ishii, 1977) as well as micro-
gravity conditions (Hibiki and Ishii, 2003b; Hibiki et al., 2004). 

Now we proceed to a discussion of the second and more important 
application of these averaging. That is to obtain the macroscopic two-phase 
flow field equations and the constitutive equations in terms of mean values. 
Here, again, the Eulerian spatial and time averaging have been used 
extensively by various authors, though the Eulerian or Boltzmann statistical 
averaging have also been applied. 

Using the Eulerian volumetric averaging, important contributions for an 
establishment of a three-dimensional model of highly dispersed flows has 
been made by Zuber (1964a), Zuber et al. (1964), Wundt (1967), Delhaye 
(1968) and Slattery (1972). These analyses were based on a volume element 
that included both phases at the same moment. Moreover, it was considered 
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to be much smaller than the total system in interest, thus main applications 
were for highly dispersed flows. 

It has long been realized that the Eulerian area averaging over a cross 
section of a duct is very useful for engineering applications, since field 
equations reduce to a one-dimensional model. By area averaging, the 
information on changes of variables in the direction normal to the main flow 
is basically lost. Therefore, the transfer of momentum and energy between 
the wall and the fluid should be expressed by empirical correlations or by 
simplified models which replace the exact interfacial conditions. We note 
that even in single-phase flow problems, the area-averaging method has been 
widely used because its simplicity is highly desirable in many practical 
engineering applications. For example, the use of the wall fi-iction factor or 
the heat transfer coefficient is closely related to the concept of the area 
averaging. We also mention here its extensive use in compressible fluid 
flow analyses. A good review of single-phase flow area averaging as well as 
macroscopic equations that correspond to the open-system equations in 
thermodynamics can be found in Bird et al. (1960), Whitaker (1968) and 
Slattery (1972). The boundary layer integral method of von Karman is also 
an ingenious application of the area averaging. Furthermore, numerous 
examples of area averaging can be found in the Hterature on lubricating films, 
open channel flow and shell theories in mechanics. 

However, in applications to two-phase flow systems, many authors used 
phenomenological approach rather than mathematically exact area averaging, 
thus the results of Martinelli and Nelson (1948), Kutateladze (1952), 
Brodkey (1967), Levy (1960) and Wallis (1969) were in disagreement with 
each other and none of them are complete (KocamustafaoguUari, 1971). The 
rational approach to obtain a one-dimensional model is to integrate single-
phase differential field equations over the cross sectional area. Meyer 
(1960) was an early user of this method to obtain mixture equations, but his 
definitions of various mixture properties as well as the lack of a diffusion 
(continuity) equation were objectionable (Zuber, 1967). 

A rigorous derivation of one-dimensional mixture field equations with an 
additional diffusion (continuity) equation, namely, the drifl;-flux model, was 
carried out by Zuber et al. (1964) and Zuber (1967). The result shows a 
significant similarity with the field equations for heterogeneous chemically 
reacting single-phase systems. The latter had been developed as the 
thermomechanical theory of diffusion based on the interacting continua 
occupjdng the same point at the same time but having two different 
velocities. Numerous authors have contributed in this theory, thus we only 
recall those of Fick (1855), Stefan (1871), von Karman (1950), Prigogine 
and Mazur (1951), Hirschfelder et al. (1954), Truesdell and Toupin (1960), 
and Truesdell (1969). A similar result obtained fi-om an entirely different 
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method of the kinetic theory of gas mixtures by Maxwell (1867) should also 
be noted here. 

In contrast to the analysis of Zuber, the analysis of Delhaye (1968) and 
Vernier and Delhaye (1968) was directed to two-fluid model based on three 
field equations for each phase with three jump conditions that couple the two 
fields. A very systematic method was employed in deriving field equations 
from three different Eulerian spatial averaging as well as the statistical and 
the temporal averaging in Vernier and Delhaye (1968). This is apparently 
the first publication which shows important similarities as well as 
differences between the various averaging methods. The effect of surface 
tension, which is important for the analysis of interfacial stability and of 
flow regimes, has been included in the study of Kocamustafaogullari (1971). 
This study highUghted that the area averaged model is particularly suited for 
studying a separated flow regime and interfacial wave instabiHties. However, 
it can be used in any type of flow regimes, provided the constitutive 
equations can be supplied (Boure and Reocreux, 1972). Furthermore, in the 
former reference a clear separation of analytical methods between the drift-
flux model and the two-fluid model has been given. Although this 
distinction had been well known for other kind of mixtures, for example in 
study of the super fluidity of helium II of Landau (1941), of the plasma 
dynamics of Pai (1962), and of the diffusion theory of Truesdell (1969), in 
two-phase flow analysis it had been vague. This shortcoming of traditional 
two-phase flow formulation was first pointed out by Zuber and Dougherty 
(1967). In subsequent analyses of Ishii (1971) using time averaging and of 
Kocamustafaogullari (1971) using area averaging a clear distinction between 
the two models has been made. This point was also discussed by Boure and 
Reocreux (1972) in connection with the problem of the two-phase sound 
wave propagation and of choking phenomena. 

The Eulerian time averaging, which has been widely appUed in analyzing 
a single-phase turbulent flow, is also used for two-phase flow. In applying 
the time averaging method to a mixture, many authors coupled it with other 
space averaging procedures. Important contributions were made by Russian 
researchers (Teletov, 1945; Frankl, 1953; Teletov, 1957; Diunin, 1963) who 
have used the Eulerian time-volume mean values and obtained three-
dimensional field equations. 

An analysis based on the Eulerian time averaging alone was apparently 
initiated by Vernier and Delhaye (1968), however, a detailed study leading 
to a mathematical formulation was not given there. Furthermore, Panton 
(1968) obtained the mixture model by first integrating in a time interval then 
in a volume element. His analysis was more explicit in integration 
procedures than the works by the Russian researchers, but both results were 
quite similar. In Ishii (1971), a two-fluid model formulation including the 
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surface source terms was obtained by using the time averaging alone, then 
the area averaging over a cross section of a duct was carried out. There, all 
the constitutive equations as well as boundary conditions, which should be 
specified in a standard one-dimensional two-phase flow model, were 
identified. We also note the extensive study by Drew (1971) who has used 
an Eulerian multiple mixed averaging procedure. In his analysis, two 
integrals over both space and time domains have been taken in order to 
smooth out higher order singularities. These multiple integral operations are 
equivalent to the continuum assumption, therefore, they are not necessary. 
The averaging should not be considered as a pure mathematical 
transformation, since the constitutive model can be only developed based on 
the continuum assumption. Here, readers should also refer to Delhaye 
(1969; 1970), where various models based on Eulerian space averaging as 
well as a comprehensive review on the subject could be found. 

It can be said that the Eulerian time averaging is particularly useful for a 
turbulent two-phase flow or for a dispersed two-phase flow (Ishii, 1975; Ishii, 
1977; Ishii and Mishima, 1984). In these flows, since the transport processes 
are highly dependent on the local fluctuations of variables about the mean, 
the constitutive equations are best obtainable for a time averaged model fi'om 
experimental data. This is supported by the standard single-phase turbulent 
flow analysis. 

An extensive study using Eulerian statistical averaging was carried out 
by Vernier and Delhaye (1968) in which they obtained an important 
conclusion. Under stationary flow condition, they concluded, the field 
equations fi*om the true time averaging, namely, the temporal averaging with 
At -^ oo , and the ones from the statistical averaging are identical. 
Furthermore, the statistical averaging was combined with the spatial 
averaging, then supplemented with various constitutive assumptions to yield 
a practical two-dimensional model. The Boltzmann statistical averaging has 
also been used by several authors (Murray, 1954; Buevich, 1969; Buyevich, 
1972; Culick, 1964; Kalinin, 1970; Pai, 1971) for a highly dispersed two-
phase flow systems. In general, the particle density functions are considered, 
then the Boltzmann transport equation for the functions is written. Kalinin 
(1970) assumed that the particle density functions represent the expected 
number of particles of a particular mass and velocity, whereas Pai (1971) 
considered the radius, velocity and temperature as the arguments of the 
functions. Then a simplified version of Maxwell's equation of transfer for 
each phase has been obtained fi*om the Maxwell-Boltzmann equation by 
integrating over the arguments of the particle density function except time 
and space variables. Since it involves assumptions on the distributions as 
well as on inter-particle and particle-gas interaction terms, the results are not 
general, but represent a special kind of continuum. 
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It is interesting, however, to note that three different methods and views 
of mechanics of mixtures in a local sense are represented: the Eulerian time 
or statistical averaging applied to two-phase mixtures; the thermomechanical 
theory of diffusion based on two continua; and the Boltzmann statistical 
averaging applied to gas mixtures or to highly dispersed flows. The first 
theory considers the mixture to be essentially a group of single-phase regions 
bounded by interfaces, whereas in the second theory the two components 
coexist at the same point and time. In contrast to the above two theories, 
which are established on the foundation of the continuum mechanics, the last 
theory is based on the statistical expectations and the probability. The 
importance, however, is that if each transfer terms of above models are 
correctly interpreted, the resulting field equations have very similar forms. 

A preliminary study using ensemble cell averaging was carried out by 
Arnold et al. (1989) where they derived turbulent stress and interfacial 
pressure forces due to pressure variations over the surface of non-distorting 
bubbles for an idealized inviscid bubbly flow. They discussed deficiencies 
inherent in spatial averaging techniques, and recommended ensemble 
averaging for the formulation of two-fluid models of two-phase flows. 
Zhang and Prosperetti (1994a) derived averaged equations governing a 
mixture of equal spherical compressible bubbles in an inviscid liquid by the 
ensemble-averaging method. They concluded that the method was 
systematic and general because of no ad hoc closure relations required, and 
suggested the possibility that the method might be applied to a variety of 
thermo-fluid and solid mechanics situations. Zhang and Prosperetti (1994b) 
extended this method to the case of spheres with a variable radius. Zhang 
(1993) summarized the other applications to heat conduction and convection, 
Stokes flow, and thermocapillary process. Here, readers should also refer to 
Prosperetti (1999), in which some considerations on the modeling of 
disperse multiphase flows by averaged equations can be found. Kolev 
(2002) presented a two-phase flow formulation mostly for development of 
safety analysis codes based on multi-field approach. 

Finally, we briefly discuss the appKcation of the Lagrangian averaging to 
two-phase flow systems. This approach is usefial for particulate flow, 
however, in general it encounters considerable difficulties and 
impracticabilities due to the diffusion and phase changes. For the particulate 
flow without phase changes, the Lagrangian equation of the mean particle 
motion can be obtained in detail for many practical cases. Thus, we note 
that the Lagrangian description of a single particle dynamics is fi-equently in 
use as a momentum equation for a particulate phase in a highly dispersed 
flow (Carrier, 1958; Zuber, 1964a). Many analyses on the bubble rise and 
terminal velocity use the Lagrangian time averaging impUcitly, particularly 
in a case when the continuum phase is in the turbulent flow regime. 
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BASIC RELATIONS IN TIME AVERAGING 

The importance of the Eulerian time averaging in studying a single-phase 
turbulent flow is well known. Since the most useful information in 
analyzing standard fluid flow systems is the time mean values rather than the 
local instant responses of the fluid, its use both in experimental and 
analytical purposes is indispensable in turbulent flow studies. For example 
mean velocity, temperature and pressure or the heat transfer coefficient and 
the firiction factor are the important mean values routinely required in 
standard problems. Furthermore, commonly used experimental methods and 
measurements are well suited for the application of the time average. Thus, 
a single-phase turbulent flow has been studied in great depth by using the 
time averaged field equations with the constitutive laws expressed by mean 
values. Although these models, which are based on time averaging, do not 
give answers to the fundamental origin, structure and transport mechanisms 
of turbulent flow, their appUcations to engineering systems are widely 
accepted as efficient means of solving problems. 

In discussing the importance of the Eulerian time averaging applied to 
two-phase mixtures, we first recall that in two-phase flow the local instant 
fluctuations of variables are caused not only by turbulence but also by 
rapidly moving and deforming interfaces. Because of these complicated 
flow and fluctuations, the solutions from the local instant formulation are 
inaccessible, therefore in order to derive appropriate field and constitutive 
equations it is necessary to apply some averaging procedure to the original 
local instant formulation. In view of the above discussion on the importance 
and usefuhiess of the time average in a single-phase turbulent flow analysis, 
it is both natural and logical that we also apply the time averaging to two-
phase flow. 

It is expected that the averaged field equations distinctly exhibit 
macroscopic phenomena of the system fi-om hopelessly complicated 
interfacial and turbulent fluctuations, since they enter the formulation only 
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statistically. There are two notable consequences from the time averaging 
when it is applied to a two-phase mixture: 

1. Smoothing out of turbulent fluctuations in same sense as in a single-
phase flow; 

2. Bringing two phases, which are alternately occupying a volume element, 
into continua simultaneously existing at same point with a properly 
defined probability for each phase. 

Furthermore, it should be recognized that the constitutive laws appearing 
in the averaged field equations should be expressed through the time mean 
values. These constitutive laws can be developed from a simple modeling of 
two-phase transport phenomena together with various experimental data that 
are commonly expressed by the mean values. 

In the following chapters, we develop a detailed theory of the thermo-
fluid dynamics of two-phase flow using the time averaging. First, we 
assume that the occupant of any particular point is alternating randomly 
between the two phases and that the time-averaged ftinctions are sufficiently 
smooth in the new coordinates. Namely, the time coordinate having a 
minimum scale of At based on the time interval of averaging below which 
a time differential operator has no physical meaning. 

1.1 Time domain and definition of functions 

First, we recall that the singular characteristic of two-phase or of two 
immiscible mixture is the presence of one or several interfaces between the 
phases or components. Furthermore, whereas single-phase flows can be 
classified according to the geometry of the flow in laminar, transitional and 
turbulent flow, the flow of two phases or of a mixture of immiscible liquids 
can be classified according to the geometry of the interface into three 
classes: separated flow; transitional or mixed flow; and dispersed flow. 
These classes of structured flow are shown in Table 1-1. 

In any flow regime, various properties suffer discontinuous changes at 
phase interfaces, if these interfaces are considered as singular surfaces with 
their thickness being zero and the properties having jump discontinuities. 
This can be illustrated more dramatically by taking a fluid density p, as 
shown in Figs.4-1 and 4-2. Since in two-phase flow systems the mass of 
each phase is clearly separated by the interfaces and do not mix at the 
molecular level, the local instant fluid density shows stepwise discontinuities 
between p^ and p2. Figure 4-1 shows the instantaneous discontinuities of 
p in space, whereas Fig.4-2 exhibits the discontinuities in time at some 
fixed point XQ . 
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Figure 4-1. Fluid density in space at t=tQ (Ishii, 1975) 

P 

P\ 

Pi 

Figure 4-2. Fluid density in time at JC=A;O (Ishii, 1975) 

For the purpose of time averaging, the observation from the time 
coordinate gives a more accurate picture of the problem. It can easily be 
seen that four distinct processes in terms of p may occur at any fixed point, 
which we can classify as follows: 
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1. p = P2i't) for all t ; always phase 2 at XQ 
2. p = Pi (t) for all t ; always phase 1 at XQ 
3. p alternates between p^ and ^2 ; phase 1 and 2 alternate at x^ 
4. p is neither p^ and ^2 5 interface at x^ for some finite time 

It is evident that, following a change of p from p^ to P2 ^^ vice versa, all 
properties may change drastically because the phase occupying the point will 
be different. For the case of (1) and (2), since the time averaging at that 
point is trivial, we eliminate such cases. Furthermore, as case (4) is a rather 
singular configuration of case (3), it will be considered separately later. 
Hence, we examine the case in which the phase alternates stepwisely 
between 1 and 2. 

Our purpose here is to average the fluid properties and field equations in 
order to treat two-phase flow as a mixture of continua. First, we take a fixed 
time interval At of the averaging and assume that it is large enough to 
smooth out the local variations of properties yet small compared to the 
macroscopic time constant of the unsteadiness of the bulk flow. This 
assumption is identical to that made in analyzing turbulent single-phase flow. 
After choosing any particular reference point and time {XQ^IQ) , we have 
definite times, ^,t2,---jip-- referring to the interfaces which pass the point 

XQ from time UQ - At/l] to UQ + At/l). By using the arbitrarily small 

interfacial thickness 6 of the Section 1.2 of Chapter 2, the time intervals 
associated with each interface can be defined as 

2. ^ A := ̂ ^±^ (4-1) 

which can vary among interfaces, thus we use £j for the7^- interface. Since 
we are going to treat the interfaces as a shell whose position is represented 
by a mathematical surface, we may take Sj as a corresponding time interval 
for both S^ and 62. Then the assumption that an interface is a singular 
surface, or the interface thickness 6-^0, corresponds to 

lim £. = 0 for all j if \v^^ ^ 0. (4-2) 

In subsequent analyses, we frequently use this relation in order to derive 
macroscopic field equations. Now we define the set of time intervals, in 
which the characteristic of the interface dominates, as 
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Figure 4-3. Various time intervals (Ishii, 1975) 

[At]^; tek~e^;t^+eA forj = l , . . ,n (4-3) 

The remaining part of the time interval is given by [zi^]^,, which can be 
separated into intervals of phase 1 and 2. Thus 

[Atl=[Atl+[Atl. 

By introducing 

[At]; t e U 
At At 
2 ^'"+2 

we have 

[At]^[Atl ^-[Atl ^[At\+±[At\. 
k=l 

(4-4) 

(4-5) 

(4-6) 

These relations are shown in Fig.4-3. 
Since in the course of analyses it becomes necessary to distinguish three 

states, namely, phase 1, phase 2 or interface, we assign state density 
functions M ,̂ M2, and Mg which are defined as: 
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M^ {x,t) = 1, Mg {x,t) = 0 (fc = 1 or 2); 

A point occupied by A;*^-phase 

Ms {x,t) = 1, M^ (a;,^) = 0 (A; == 1 and 2); 

A point occupied by interface 

(4-7) 

A general function F associated with two phases is considered to be 
continuously differentiable everywhere except in the interfacial regions of 
thickness 6. Then a general function of the A:*-phase F^ at the point of 
averaging XQ is defined as 

F,(x„t) = M,(x„t)F 
'(x„t) 

= 0 

if te[Atl 

if t^[Ati. 
(4-8) 

This function F^ represents variables of each phase in a local instant 
formulation given in Chapter 2. 

1.2 Local time fraction - Local void fraction 

The time interval occupied by each phase is defined by taking the limit 
5 —> 0 as (see Fig.4-3) 

At =:lim^ ]j = 2m-~l 

(4-9) 

Hence, from the assumption (4-2) we have 

(4-10) 

By recalling the previous assumption that the interfaces are not stationary 
and do not occupy a location x^ for finite time intervals, we can find the 
time averaged phase density function a^ as 

a,[x,,t,)^^mj-J M,[x,,t)dt. (4-11) 
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Hence, in view of Eq.(4-9), we get 

At 
a ^ for A; = 1 and 2. (4-12) 
* At 

And from Eqs.(4-10) and (4-12) we obtain the following relation 

a^-\-a^=z\ (4-13) 

which is the consequence that the averaged interface density function a^ is 
zero. We note here that a^ is defined in parallel with Eqs.(4-7) and (4-11) 
as 

The function a^ , which appears only after the integral operation, is a 
fundamental parameter in studying the time averaged field equations. 
Physically a^ represents a probability of finding the A:*-phase, thus it 
expresses the geometrical (static) importance of that phase. Hereafter we 
call a^ as a local time fraction or a local void fraction of the A:*-phase. 

1.3 Time average and weighted mean values 

In this section, we define the time average and weighted mean values of 
functions associated with two-phase flow fields. 

Time Average 
The Eulerian time average of the general function F is defined by 

Hereafter, the symbol F denotes the mathematical operation defined in the 
right-hand side of Eq.(4-15). Similarly, the mean value of the A:*-phase 
general function F^ is given by 
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Because of the special property associated with M^ it can be shown that 

a, = W,. (447) 

In view of Eqs.(4-8), (4-15) and (4-16) we have 

F = lim|— r Eix.,t]dt + — f FJx.,t]dt\, (4-18) 

Hence we obtain an important relation 

F = ¥,+¥2, (4-19) 

The functions of F^ and F2 are directly related to instant, local physical or 
flow variables of each phase; however, i^ and F2 are averaged over the 
total time interval At . Thus, they can be considered as superficially 
averaged values. From this point of view, we introduce various weighted 
mean values that preserve some of the important characteristics of original 
variables. 

We start from a general case, then proceed to special cases. Hence by 
taking a non-zero scalar weight function w, we define the general weighted 
mean value of F as 

-=w wF 
F =-^ (4-20) 

w 

where the function w also belongs to the group of a general function F 
defined in the previous section. Then it follows that the weighting function 
for each phase can also be defined through Eq.(4-8). 

Consequently a general phase weighted mean value in parallel with 
Eq.(4-20) should be 

F T ^ ^ ^ . (4-21) 
^k 

It follows that 
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2 2 

-w k=\ _ k=\ 

Wk 

F =-^^^1 = ^ (4-22) 
w E 

k=\ 

^k 

which relates the mixture and the phase mean values. Since these formulas 
are too general, we discuss in below some of the important special cases. 

Phase Average F^ 
The most natural mean value associated with each phase can be defined 

by taking the phase density function M^ as a weighting function in Eq.(4-
21), hence we have 

y^^^^k F 1 r 
k - -T^ - — = -:^ Fkdt (4-23) M^ a^ At^^[^t\ 

where we used Eqs.(4-7), (4-8) and (4-17). As it is evident from the 
definition, the phase average denoted by i^ represents the simple average in 
the time interval \At\^ of the phase. Hence, we have 

F = YA=T.<^X (4-24) 
A;=l k=\ 

Mass Weighted Mean Value ip and ^^ 
In general, the volume, momentum, energy and entropy, etc. are 

considered to be extensive variables (Callen, 1960). If the function F is 
taken as a quantity per unit volume of the extensive characteristic, then they 
can also be expressed in terms of the variable per unit mass tjj as 

F = p^ (4-25) 

where p is the local instant fluid density. Hence, the properties for each 
phase F^ are given by 

Fu=PkA k = l0T2, (4-26) 

Here p^ and ^^ denote A:*-phase local instant density and a quantity per 
unit mass, respectively. Then the appropriate mean values for ip and ^^ 
should be weighted by the densities as 
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^ = ^ (4-27) 
P 

and 

V 5 ^ = ^ = ^ . ( 4 - 2 8 ) 

The most important reason of weighting ij) by the density p is that the 
quantities represented by ij) are an additive set function of mass. 

From the definition of the mass weighted mean values, we have 

2, 
>_ 
k=i 

P^ = Y.PkA^ (4-29) 

Hence, we obtain the most important relation between the mass weighted 
mixture property and that of two phase as 

Yj^kPkA J2pkA 
fc^l . _ k=l 

2 "~ 2 ^ = ^ , = '=\ (4-30) 

We note here that the above result is analogous to the definitions used in the 
thermo-mechanical theory of diffusion (Truesdell, 1969) and in Maxwell's 
equation of transfer in the kinetic theory of gases (Maxwell, 1867). In 
particular, since the density is a property per unit volume, we have 

2 2 

'p = ^yk ^^^kVk^ (4-31) 
k=\ fc=l 

Fundamental Hypothesis on Smoothness of Mean Values 
Our purpose of the averaging is to transform two phases, alternately 

occupying a point with discontinuities at interfaces, into two simultaneous 
continua. Consequently, the assumption on the continuity of derivatives is 
required. Thus, let us introduce hereja fundamental hypothesis on the 
smoothness of the mean values F and i^ . 
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By considering a macroscopic process in terms of the mean values, it is 
assumed that they are sufficiently smooth to have higher order derivatives as 
necessary except at some isolated singularities, if the time constant of the 
process is sufficiently larger than At, In other words any changes of mean 
values within the time interval At are considered to be infinitesimal. This 
can be visualized by considering the time differential operator in the average 
field as a finite difference operator with the time increment 6t —^ At and 
not 6t —> 0. If we apply averaging to a mean value we get 

However, since F is continuous, we obtain from the integral mean value 
theorem 

(F) = F{X„T,) (4-33) 

where 

t o - — ^ To < t,+—. 

Thus, in analogy with the fundamental hypothesis, it is assumed that in the 
macroscopic fields we have 

(F) = F[x,,t,). (4-34) 

It states that the averaging does not alter the mean values. Then it is 
straightforward that we obtain 

(4-35) 
rwfc 

And for a constant C we have 

C = C,^C-:^C-r=^ = C. (4-36) 
" i 
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Fluctuating Component 
As in the analyses of turbulent flows, it is a prime importance to 

introduce fluctuating components of variables in order to take into account 
these effects statistically. In general, they are defined as a difference 
between a local instant variable and its weighted mean value, thus we have 

Fl^F,~¥:\ (4-37) 

Since once a variable F^ is specified then the form of the weighted average 
will be given, the fluctuating component can be defined uniquely. From 
Eqs.(4-35) and (4-37) we immediately obtain 

Jr = 0. (4-38) 

Furthermore, the mean value of the fluctuating component can be related 
to other parameters as 

F, = a,F, = a.l^F,'"'+ F:J (4-39) 

and 

^ ' = ^ - ^ ' " ' = « . ^ ' - ( l - " . ) ^ ' " ^ (4-40) 

These relations will be used in analyzing the two-phase turbulent fluxes in 
the averaged field equations. 

1.4 Time average of derivatives 

In this section, the relation between the average of the derivative and the 
derivative of the average is obtained. By the time derivative of the average, 
we mean 

dF(x,,t,] Q ( I . / \ 1 
—^ ^ = — — lim / F[x,,t]dt\. (4-41) 

Since the domain of the integration is discontinuous, we subdivide it and 
apply the Leibnitz rule to Eq.(4-41). Thus we have 
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dF 1 
•lim 

dt^ At *-o 

dF[x,A 
\ ^ '-dt 
'[^*t dt 

+Y\F[x,,t,+e)^-F[x,,t,-e)\ 

In view of Eq.(4-2) we define 

lim t ± s, = t 
£,-^0 3 J J 

and correspondingly 

limF(a;o,^,. ± £,) = F[x„tf) = F^[x„t,). 

Hence, from Eq.(4-42) we get 

OF 9Fixo,t^ 

dt dt^ V ^* 

The average of the space derivative at aj = CCQ can be written as 

- f VF = lim— r \/F(x.,t]dt. 

Therefore, by applying the Leibnitz rule we obtain 

VF = lim v l — f Fix.,t\dt 

-m-•Vfe-£,)F(a:o,^,-s,) 

+\/{t,+e))F[x,,t,+e;)]\ 
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(4-42) 

(4-43) 

(4-44) 

E^{^'h'*^)-^"h'^^)}- (4-45) 

(4-46) 

(4-47) 
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The physical significance of the last term of the right-hand side of the 
above equation is not clear and should be examined in more detail. For this 
purpose we introduce the equation of a surface given by 

f{x,y,z,t)^(i (4-48) 

which passes the point x^&Xt = tj. Then 

df = {Vf)-dx,+^dt^=0 (4-49) 
ot 

Thus, in view of Eq.(4-43), we have 

Vf 
Vtj = —^. (4-50) 

'di 

However, the normal vector and the displacement velocity (Truesdell and 
Toupin, 1960) are given by 

Vf 
n = - ^ (4-51) 

|V/| 

and 

ai 

"'•" = ""' = ' i l l -
Hence, by eliminating the surface function in Eq.(4-50) we obtain 

^^.=z^-

(4-52) 

(4-53) 
V, n 

Then Eq.(4-47) becomes 
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1 1 r / \ / \i (4-54) 

3 ni 

The unit normal vector of the interface is defined such that 

nv,=v^,>Q, (4-55) 

Then 

n"^!; . > 0 ; n v̂  < 0 (4-56) 

where n"^ and n correspond to the limit outward normal vector of the 
fluid at each side of the interface. 

Using the simplified notations, Eqs.(4-45) and (4-54) become 

| ^ < ^ , ^ _^_ (4-57) 

We note here that the fimction F can be a scalar, a vector or a tensor, and 
V operator can be a divergence or a gradient operator with proper tensorial 
operation between n^ and F^, These above two transformations and the 
definitions of various mean values are the basic tools to be used to obtain the 
macroscopic field equations in terms of mean values. In contrast to the case 
without discontinuities in the function F, the above transformations show 
the important contributions made by the moving interfaces in relating the 
average of the derivatives to the derivatives of the average. 

As corollaries of Eqs.(4-57) and (4-58) we have 

dF, OF, 1 Y - 1 / ^ X , , ^^, 
t = ^-^.22 — iPkn,'V,) (4-59) dt dt^ At V ^̂  
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V ^ - V̂ Fl + ^ X] — [n,F,). (4-60) 

The special case of the above equations is for the time fraction a^. In this 
case, directly from the original definition Eq.(4-ll), we obtain 

= -^T.—{'^k''^i) 
dt At Y v^, 

(4-61) 

These equations clearly demonstrate the existence of microscopic 
singularities explained in connection with the fundamental hypothesis of 
smoothness in the Section 1.3 of Chapter 4. 

1.5 Concentrations and mixture properties 

The local time fraction a^ has been defined in the Section 1.2 of Chapter 
4. The parameter a^ signifies the physical events and the structures of the 
two-phase flow at any particular point. Therefore, it is anticipated that the 
local time fraction a^ appears in all field equations. Furthermore, as the 
two-phase constitutive laws should also depend on the physical structures of 
the flow, its importance in deriving these laws is expected. 

Apart from the local time fraction a^, another concentration based on 
mass can be defined. In analogy with the theory of diffusion, the mass 
fraction q is given by 

c,=^= 3 ^ ' = = ^ ^ . (4-63) 
p a^p^+a2P2 Pm 

It is the measure of the relative significance of the A:*-phase mass with 
respect to the mixture mass. Since the momentum and energy are an 
additive set function of mass, it is expected that the mixture properties of 
these variables can be expressed by those of each phase with the mass 
fraction ĉ  as a weighting ftmction. From Eq.(4-63) we have 
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Y.c, = \ (4-64) 

and 

- = E ^ - (4-65) 
Pm k=l Pk 

The above two parameters, namely, a^ and q , are static concentrations, 
because they represent the events, structures or masses in a two-phase flow. 
Furthermore, kinematic concentrations are defined through various mean 
velocity fields, thus they represent the relative importance of the amount of 
flows or fluxes. Because of this basic characteristic of the kinematic 
variables, they cannot generally be defined in a 3-dimensional formulation, 
since the flows and fluxes are vector and not scalar quantities. However, 
they can easily be defined for a one-dimensional model. For example, the 
quality x has been fi-equently used in the literature. In what follows, we 
define important mixture properties. 

1) The mixture density 

2 

Pn Y^^kPk (4-66) 
k=\ 

where 

Pk=—^ (4-67) 
a. 

2) The mixture center of mass velocity 

2 

^O^kVk^c 

V^ 

'^k 2 
k=l 

Pm k=l 

where 

E ^ * ^ (4-68) 
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^ ^ ^ ^ M ; . (4.69) 
Pk Pk 

3) The mixture energy 

^ 1 
^^kPk'^ 

= T.^k% (4-70) 
'•% 2 

m k=l 

where 

^ Pk^^k Pk^k 
y^^ — r^ = LLJL^ (4-71) 

Pk Pk 

4) The mixture pressure 

2 

Pm = Y^^kP~k (4-72) 
A ; = l 

where 

P. = — • (4-73) 
f̂c 

5) The mixture enthalpy 

2 ^ 

^^kKi 

Pm k=l 

where 

= T.^kh (4-74) 

Then it can be shown that 

(4-75) 
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i = ^ . + — (4-76) 

and 

h=u,+=' (4-77) 
Pk 

6) The mixture entropy 

2 

^^kP~k 

Sm = 

2 

^k 2 
k=l Y.^kh (4-78) 

k=\ 

where 

r^ = P^=P^, (4-79) 
Pk Pk 

7) The general mixture flux / 
We recall here the general balance equation, Eq.(2-6), the generalized 

flux and the volume source defined in the Section 1.1 of Chapter 2. From 
the form of the balance equation, it is natural to define the mixture molecular 
diffusion flux / as 

k=\ 

where 

'k ~ a 
^. (4-81) 

8) The mixture general source term 0^ 
Since the source term 0 is defined as the variable per unit mass, it 

should be weighed by the density. Hence, we have 
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2 

^ockyk^k 2 

<t>,n=— = E^*S (4-82) 

where 

0 ; = ^ = ^ . (4-83) 
Pk Pk 

It can be seen that the variables based on unit mass are weighted by the mass 
concentrations, whereas the ones based on unit volume or surface are 
weighted by the time fractions. 

1.6 Velocity field 

In general, two-phase flow systems with transport of mass, momentum 
and energy are characterized by the existence of two different densities and 
velocities. Thus it is necessary to introduce two properly defined mean 
velocity fields in the formulation in order to take into account the effects of 
the relative motion between the phases, namely, the diffusion of mass, 
momentum, and energy. However, there are several velocity fields that are 
usefiil in analyzing various aspects of a two-phase flow problem. A 
selection of velocity fields for a particular problem depends upon 
characteristics and nature of the flow as well as on the forms of available 
constitutive laws. In what follows, we present these velocity fields that are 
important in studying various aspects of two-phase flow systems. 

As it has been explained in the previous section, the definition of the 
center of mass velocities is based on the fimdamental characteristic of linear 
momentum. First, we recall that it is an additive set fimction of mass. In 
other words, as it is well known as a fundamental theoreî n on the center of 
mass, the total momentum of a body is given by the momentum of the center 
of mass with the same mass as the body. It is the direct extension of the 
above idea into the averaging procedure that we obtain the mass-weighted 
mixture and phase velocities as proper mean velocities. 

The concept of the center of mass in the time averaging is trivial and it 
has the form 
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lim / ox At 

o ^ ^ ^ ' Y ' (4-84) 
lim I pdt 

However x^ is kept constant during the integration, thus the center of mass 
is XQ . Then the definition of the mixture density, Eq.(4-66), naturally 
follows. The fundamental theorem on the center of mass can be extended as 

lim / pv^dt = \ivci \ pvdt, (4-85) 

Hence in view of the definitions of weighted mean values, it is 
straightforward to show that the center of mass velocities of the mixture and 
of each phase have been given correctly by Eqs.(4-68) and (4-69), 
respectively. 

We define the relative velocity by 

v^=V2-~Vy (4-86) 

And the volumetric flux of each phase are given by 

h^^k^k (4-87) 

which can be considered as the velocity when one of the phases superficially 
occupies the entire interval At with the total amount of the flow fixed, and 
therefore it is also called the superficial velocity. Accordingly the mixture 
volumetric flux, namely, the velocity of the center of volume, is defined by 

i = E i*=E"*^ - (4-88) 
k=\ k=\ 

If the relative velocity between the phases exists, the velocities v^ and 
j are not equal because of the differences of the densities of the two phases. 
The diffusion velocity of each phase, namely, the relative velocity with 
respect to the mass center of the mixture, is defined by 

V^=v,-v^ (4-89) 

which are frequently used in the analyses of heterogeneous chemically 
reacting single-phase systems. The diffusion velocities can also be 



88 Chapter 4 

expressed by the relative velocity, though the symmetry between phases 
cannot be kept because of the definition, Eq.(4-86). Thus we have 

Pm 
and (4-90) 

Pm 

In a two-phase flow system, the drift velocity of each phase, namely the 
relative velocity with respect to the center of volume, is important because 
the constitutive equations for these velocities in the mixture formulation is 
relatively simple and well developed (Zuber et al, 1964; Ishii, 1977). By 
definition, the drift velocity is given by 

n = ^ - J- (4-91) 

In terms of the relative velocity, it becomes 

and (4-92) 

Vij = "i-yr-

Several important relations between the above velocities can be obtained 
directly from the definitions. For example, from Eqs.(4-88), (4-89) and (4-
90) we get 

(4-93) 

i = V 
J m 

or 

= V -
m 

+ 

- «! 

CX-i KjCfy 

(A. 

[Pl-Pl) 

Pm 

Pm 

From Eqs.(4-90) and (4-92) we have 
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E^^^w=0 (4-94) 
A ; = l 

and 

E « . n = 0 . (4-95) 
k=\ 

Finally, we note that if the relative velocity is zero, then 

V;„ = F,„ = V,, = V,, = v, = 0 (4-96) 

and thus 

^i='^i='^m= 3 (4-97) 

which characterizes the homogenous velocity field. 
Generally speaking, the velocities based on the center of mass are 

important for dynamic analyses because of the fundamental theorem of 
center of mass. However, the velocities based on the center of volume, 
namely, volumetric fluxes, are useful for kinematic analyses. This is 
particularly true if each phase has constant properties such as the constant 
densities, internal energies or enthalpies, etc. 

1.7 Fundamental identity 

In developing a drift-flux model based on the mixture properties, it is 
necessary to express an average convective flux by various mean values. In 
this section, we derive this relation directly ifrom the definitions. From 
Eq.(4-29), the convective flux of the mixture becomes 

2 2 ,,,^,,,,, ,3^^ 

p^jjv = J ] pj^i/j^Vj^ =^^k PkA'^k' (4-98) 
A ; = l A ; = l 

Our purpose here is to split the right-hand side of the equation into the terms 
expressed by the mean values and the ones representing the statistical effects 
of the fluctuating components. Since the mean values of ^p and v are 
weighted by mass, the fluctuating components are given by Eq.(4-37) as 
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Pk=K + pL A = A+^i « * = ^ + v I (4-99) 

with 

p'k=% Pk^'k=0, p,vl=0. (4-100) 

By substituting Eqs.(4-99) and (4-100) into Eq.(4-98) we obtain 

2 2 = = 

p^v = Y, otkTAvk + YJ "^kPk^'A- (4-101) 
k=\ k=l 

By using the definition of the mixture properties and that of the diffusion 
velocities, the above equation reduces to 

P^'^ = Pm^m'^m + Y. "^kPkAVkm + Y. '^kPk^'k'^k^ (4-102) 
k=\ k=\ 

It shows that the average convective flux can be split into three parts 
according to the different transport mechanisms: the jnixture transport based 
on the mixture properties; the diffusion transport of ijj^ due to the difference 
of the phase velocities; and the transport due to the two-phase and turbulent 
fluctuations. In order to distinguish these last two transport mechanisms we 
introduce special fluxes associated with them. Hence, we define the 
diffusion flux / ^ as 

J' ^ iZ^kVkAV^ = ^^E^kAV^ (4-103) 
k=\ Pm k=l 

whereas the covariance or the turbulent flux /^ is defined as 

J! = Pk«- (4-104) 

Thus, the mixture turbulent flux should be 

^^ = E %-^f = E % P ^ - (4-105) 
k=\ k=l 
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By substituting Eqs.(4-103) and (4-105) into Eq.(4-101) we obtain a 
fundamental identity 

P^'" = PJ^A +J''+J^ = Y^a,p,^,v, + X]a,/f. (4-106) 
fc=i k=l 

Hence, from the definitions of the mean values we have 

9p^ , V7 (^:JZ:\ _ dpm'^n, 

and for each phase we get 

dt 
+ V-(p„^„v„) 

(4-107) 

9pkA 
dt 

+V-(a,/f). 

dockPkip, 
+ V • (PAV,) = ̂ ^ ^ ^ + V • (a,m^k) 

dt (4-108) 

We note that Eq.(4-108) shows a simple analogy with a single-phase 
turbulent flow averaging, therefore, the last term is called the Reynolds flux. 

In view of Eq.(4-107), it can be seen that the left-hand side of the 
equation is not expressed by the averages of the derivatives, but by the 
derivatives of the averages. However, when we apply the Eulerian temporal 
averaging to the local formulation of two-phase flows, we first encounter 
with the averages of the derivatives. Now we recall that the important 
transformations between these two operations have been derived in the 
Section 1.4 of Chapter 4. Thus, by substituting Eqs.(4-57) and (4-58) into 
Eq.(4-107) we obtain 

dp^p] 

dt ) + V - ( P H = ^ ^ + V.(P„V'A) 
dt 

+v-{/^+/^)+^E|-EK-ftK-^O^J 
At \ i k=i 

(4-109) 

A similar relation for an individual phase follows, thus we have 
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dpki^i k'rk 

{ dt 
+ ^-{pkA'Vk) = dt + ̂ •(o^kPkA^k) 

(4-110) 

These above two equations show important contributions made by the 
interfacial transfer in addition to the statistical effects of fluctuations. 
Furthermore, in the mixture average, Eq.(4-107), the diffusion term / ^ 
appears due to the differences in phase velocities. 

Furthermore, from the definitions of mean values and of the diffusion 
flux we have 

(4-111) 

This relation enables us to transform the field equations for the two-fluid 
model to the ones for the drift-flux model. 
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TIME AVERAGED BALANCE EQUATION 

U General balance equation 

In the preceding chapter, the important definitions and basic relations 
between them have been given. We now apply them to the time averaging 
of the balance laws in the two-phase flow media. As it has been explained in 
the Section 1.1 of Chapter 4, it was necessary to introduce several sets of 
time intervals because of the discontinuous changes in the nature of fluid 
surrounding the point of average. Thus the domain of averaging has been 
divided into [^t]^ and [At]^ . During [At]^ , the standard balance 
equation (2-6) holds, since the fluid occupying the point XQ can be 
considered as a continuum. However, in [At]^ the interfacial balance 
equation, namely, the jump condition of the Section 1.2 of Chapter 2, is valid 
because the characteristics of the interface dominates in this time interval. 

Our purpose here is to average the balance laws in time by properly 
assigning appropriate balance equations of the bulk fluid and of an interface. 
Now let us first proceed with an analysis in [At]^ when the point of 
averaging is occupied by one of the phases and not by an interface. For time 
t G [^i]y = [^iji + [^^]2> we consider the balance of a quantity -0 in the 
following form 

B^ = ^ + V • {P^IJV) + \/'J-p(t) = 0. (5-1) 
CJJ/ 

Here / and (j) represent the generalized tensor efflux and the source of ip, 
respectively. Since it is multipUed by the density p, the quantity ip is 
expressed as the quantity per unit mass. Thus the above equation itself is a 
mathematical statement of the balance of the quantity in a unit volume. This 
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is an important point to be remembered when we compare it to the surface 
balance equation in the course of the time averaging. In order to keep the 
volumetric origin of Eq.(5-1), the balance is denoted by By. Furthermore, 
we recall here that when Eq.(5-1) is appKed for each phase, the subscripts 
that differentiate two fluids should appear with variables. For time 
t G \^t\g, a different kind of balance equation should be used due to the 
special characteristics of an interface. Since the detailed derivation of the 
interfacial balance equation has been given in the Section 1.2 of Chapter 2, 
we simply recall those results. Thus, from Eq.(2-67), the balance of matter 
ijj at the interface becomes 

- E W'^k • {'"k - «J V'* + n, • / , ] (5-2) 

+M"'(c/:-),,-^a}=o. 

In order to obtain Eq.(5-2), we have divided Eq.(2-67) by the interfacial 
thickness 6. Consequently, the above equation is the balance of ip in an 
unit volume of the region. 

The averaged balance per volume can be obtained by integrating the 
proper balance equations in the time domain. Now let us express the balance 
equation in general by 

5 = 0 (5-3) 

where 

B = By=0 for i G [At]^ (5-4) 

B = Bs=0 for t G [At\ . (5-5) 

By taking a time average of B we have 

— r Bdt=- 0. (5-6) 
AtJ[^t\ 
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Following the assumption previously made, we approximate the interfacial 
region with a singular surface by taking the limit ^ ^- 0. Thus Eq.(5-6) 
becomes 

— lim r Bydt + —l im f B. dt = 0. 
At ^^^ J Mr At^^oJlMs 

(5-7) 

The first part can be expressed in terms of the mean values defined in the 
Section 1.3 of Chapter 4, hence from Eq.(5-1) with Eqs.(4-25), (4-57) and 
(4-58) we obtain 

1 ,. 
At «-o [̂-4tt 

lim r Bydt = - ^ + V • pVy + V • / - p0 
s^oJiAtL ^ at 

^^ j [\i k=l J 

or in terms of the mixture properties 

— lim r Bydt = ^P^ + V • ip^^jvj) 

+ V - ( 7 - h / " + / ^ ) - y 9 „ 0 „ 

(5-8) 

(5-9) 

J f J 2 
= 0 

where the fundamental identity of the Section 1.7 of Chapter 4 has been used. 
From Eq.(4-2) with Eq.(4-1) the second part originating from interfaces 
becomes 

— lim r Bgdt^ —y — {—{A) + V'aV, • V, - 0„ 

+9^^"' (ty':),, -E^* • h (̂ * - '^^H+J,.] 
k=i 

(5-10) 

- 0 . 

It is evident that the above equation is a time-averaged interfacial balance 
equation. In order to distinguish it from the local jump condition, we call it 
the interfacial transfer condition or the macroscopic jump condition. 
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In view of Eqs.(5-7), (5-9) and (5-10), we obtain a macroscopic balance 
equation for the mixture 

dt 
+ V-(P„V^A) + V - ( / + / ^ + / " ) - P „ 

^^T.i-\^.M^A'^s-V,-<t>a 
At^v^,[dt 

(5-11) 

The terms given by / , / ^ and / ^ represent the effluxes due to the 
average molecular diffusion, the macroscopic phase diffusions with respect 
to the mixture center of mass, and the statistical effects of the two-phase and 
turbulent fluctuations, whereas p^cj)^ is the mixture volumetric source. 
From the form of the balance equation, it is also possible to consider the 
interfacial terms as an additional source or sink. 

It is generally accepted that the mass and momentum of the interface can 
be neglected. The surface energy, however, may not be insignificant 
because of the energy associated with the thermodynamic tension, namely, 
the surface tension. Thus, the first part of the interfacial term is important 
only in the energy balance equation. The surface line flux appears in the 
momentum and the energy balances, though the molecular diffusion 
transfers along an interface (namely the surface viscous stress and the 
surface heat flux) are neglected. This means that these line fluxes account 
for the effects of the surface tension only. When Eq.(5-11) is applied for the 
balance of mass, momentum and energy, appropriate forms corresponding to 
the simplified jump conditions of Eqs.(2-69), (2-72) and (2-73) should be 
used. 

The averaged balance equations for each phase can be obtained by 
considering the function associated only with a particular phase, Eq.(4-8). 
Thus, in analogy with Eq.(5-9), we have 

do^kPkA 
-^kPk^k 

At^W. 

(5-12) 

= 0 

where we have used the transformation (4-110) and the local instant general 
balance equation for the A:*-phase, Eq.(2-6). For simplicity, let us define 
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^k - --rrZl — "* • W K - '"i)^k + -̂ l̂ 
z\r 

(5-13) 

z\t 
.̂V'a 

dt 
+ V'aV, • Vi - 0a 

+5ln^"''fe/i'),4-

(5-14) 

And the mixture total flux is given by 

= / + /^ + /̂ . (5-15) 

Here I^. and / „ represent the interfacial source for the A:*-phase and for the 
mixture, respectively. With these definitions the mixture general balance 
equation (5-11) reduces to 

dt 
+ V • [p^^jy,,) = - V • /„ + p„0„ + /„ (5-16) 

whereas the balance equation for the kf'-phase becomes 

dt 

+(^kP~k(f>k + h-

+ ^-[(^kPkA'»k) - V <^k\Jl+Jl (5-17) 

Furthermore, the interfacial transfer condition (5-10) can be rewritten as 

E 4 - 4 = o. (5-18) 
k=\ 

Each of these three macroscopic equations expresses the balance of matter 
ip for the mixture, for the A:̂ -phase, and at the interfaces, respectively. The 
mixture balance equation will be the foundation of the formulation of the 
drift-flux model. Furthermore, the phase balance equations and the 
interfacial transfer conditions are required for the two-fluid model 
formulation. 
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In view of Eqs.(5-16), (5-17) and (5-18), our fundamental purpose of 
averaging has been accomplished. Thus, the original two phases which are 
alternately occupying a point have been transformed into two co-existing 
continua. Moreover the hopelessly compKcated two-phase and turbulent 
fluctuations have been smoothed out and their statistical macroscopic effects 
have been taken into account by the covariance (or turbulent flux) terms. In 
the next two sections we present balance equations of mass, momentum and 
energy for the diffusion model and for the two-fluid model separately. 

1.2 Two-fluid model field equations 

In this section, the macroscopic balance equation (5-17) and the 
interfacial transfer condition (5-18), which have been derived from the time 
averaging, are applied to the conservation laws of mass, momentum and 
energy. The choice of variables in these equations follows that of the local 
instant formulation of Chapter 2. 

Mass Balance 
In order to obtain mass balance equations, we set 

V, = 1, A =0, 0, = 0 . (2-7) 

And in view of Eq.(2-69) we define 

r,-h- ^^E —n,-p,{v,-v,)\ (5-19) 

4 = 0 . (5-20) 

Then by substituting Eq.(2-7) into Eqs.(5-17) and (5-18) we get 

^ ^ + V - ( a , ^ i 5 ; ) = r , A; = l a n d 2 (5-21) 

and 

En = 0. (5-22) 
i k = l 
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Equation (5-21) is the continuity equation for each phase with the interfacial 
mass source F^ appearing on the right-hand side due to phase changes, 
whereas the second equation, Eq.(5-22), expresses the conservation of mass 
at the interfaces. 

Momentum Balance 
The macroscopic momentum balance can be obtained from Eqs.(5-13), 

(5-14) and (5-17) by setting 

A='^k^ Jk=~~T,=vJ--^,^ (t)k=9k (2-9) 

and by defining the following terms in view of Eqs. (2-72) and (4-104) 

M,^h At ^ V. 
(5-23) 

M „ 
" At^\ 

-[KA^'o] 
w 

(5-24) 

f̂ -pk^'A. (5-25) 

With these definitions we obtain from Eqs.(5-17) and (5-18) 

do^kK^k 
dt 

+ V-(afcp,v,'U,) = -V(a^p , ) 

".K+C + Oi^Pk9k+^k 

(5-26) 

and 

J]M,-M^=0. 
k=\ 

(5-27) 

Here the terms tS^ and M^ denote the turbulent flux and the A:*-phase 
momentum source form the interfacial transfer, respectively, whereas the 
term M^ is the mixture momentum source due to the surface tension effect. 
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Energy Balance 
The energy balances for the macroscopic fields can be obtained from 

Eq.(5-17) by first setting 

A = ^k+-W^ h=<l,-T,-v,, cj)^=g^.v,+^ (2-12) Qk_ 

Pk 

and by defining following terms in view of Eqs.(5-13), (5-14) and (2-73) 

Ek^h 

At E n. Pk{Vk-Vi) 
..2\ 

u,+- ^k-'^k+Qk 
(5-28) 

- " At^\vJ 1 
da 

[dT) + m^-'\ (5-29) 

9 J = Jl -T,-vi=p, 
2\ 

<-^-<+Pk-< (5-30) 

Uk + 
Hf (5-31) 

Thus, we have fi-om Eqs.(5-17) and (5-18) 

-2M 
d_ 
dt 

O^kPk e,+-
Vu 

+ V' O^kPk 

- 2 ^ 

e,+ v. 

(5-32) 
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and 
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Y.E,-K=^ (5-33) 
S;=l 

where we have assumed 

9k ^9k (5-34) 

We also note that the apparent internal energy e^ consists of the standard 
thermal energy and the turbulent kinetic energy, see Eq.(5-31). The term 
Ej^ represents the interfacial supply of energy to the A:*-phase, while E^ is 
the energy source for the mixture. This means that the energy can be stored 
at or released from interfaces. As it can be seen from the definition, the 
turbulent heat flux g^ takes account for the turbulent energy convection as 
well as for the turbulent work. For most two-phase flow problems, the 
internal heating ĝ  can be neglected. 

The two-fluid model is based on the above six field equations, namely, 
two continuity, two momentum and two energy equations. The interfacial 
transfer conditions for mass, momentum and energy couple the transport 
processes of each phase. Since these nine equations basically express the 
conservation laws, they should be supplemented by various constitutive 
equations that specify molecular diffusions, turbulent transports, and 
interfacial transfer mechanisms as well as a relation between the 
thermodynamic state variables. 

In solving problems, it is often useful to separate the mechanical and 
thermal effects in the total energy equation. Thus from the standard method 
of dotting the momentum equation by the velocity, we have the mechanical 
energy equation 

d 
= Vu 

-2\ 

^kPk 

dt 

+t4-V-

+ V- = -'^k''^(^kPk) (5-35) 

.̂K + C + ^kPk9k ''^k+Mk-'^k- ^ A -

Then by subtracting Eq.(5-35) from Eq.(5-32) the internal energy equation 
can be obtained, thus 
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(5-36) 

Here we recall that the virtual internal energy ê  includes the turbulent 
kinetic energy in addition to the standard internal energy. 

For two-phase flow analyses, the enthalpy energy equation is important 
and it is frequently used to solve various engineering problems. Thus, in 
parallel with Eq.(5-31), we introduce a virtual enthalpy h^ defined by 

K^L + «r _ 5 + & 
pk 

(5-37) 

By substituting Eq.(5-37) into Eq. (5-36) we obtain 

d(^kPkK 
dt 

Dt 
(5-38) 

+«J^ + Chvt5; + 
f^2 

^ r,~M,'V,+E, 

where the substantial derivative Dj^/Dt is taken by following the center of 
mass of A:*-phase or moving with velocity v^ , thus Dj^/Dt 
= d/dt + v^ • V . These thermal energy equations are extremely 
complicated due to the interactions between the mechanical terms from the 
turbulent fluctuations and the thermal terms. However, in many practical 
two-phase flow problems, the heat transfer and the phase change terms 
dominate the energy equations. In such a case, the above equations can be 
reduced to simple forms. 

As it can be seen from Eq.(5-38), the interfacial transfer in the thermal 
energy equation has a special form which is expressed by a combination of 
the mass, momentum and energy transfer terms. Thus we define 
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A^^^-M,'V,+E,, (5-39) 

1.3 Diffusion (mixture) model field equations 

The basic concept of the diffusion (mixture) model is to consider the 
mixture as a whole, therefore the field equations should be written for the 
balance of mixture mass, momentum and energy in terms of the mixture 
properties. These three macroscopic mixture conservation equations are 
then supplemented by a diffusion equation that takes account for the 
concentration changes. 

Mixture Continuity and Diffusion Equations 
From the mixture general balance equation, Eq.(5-16), with the 

definitions of p^ and v^, we obtain the mixture continuity equation 

% + V - ( P A ) = 0 . (5-40) 
at 

The above equation has exactly the same form as that for a continuum 
without internal discontinuities. 

The diffusion equation, which expresses the changed in concentration a^, 
can be derived from Eqs.(5-21) and (4-89) 

dt 
+ V • (a,p,v^) = r, - V . (a,^,^), (5-41) 

It has a mass source term F^ that appears only after the continuity equation 
being averaged over the time interval because it accounts for the mass 
transfer at the interface. In addition, Eq.(5-41) has a diffusion term on the 
right-hand side, since the convective flux has been expressed by the mixture 
center of mass velocity v^. 

Mixture Momentum Equation 
By applying the general balance equation (5-16) to the conservation of 

momentum we obtain 

oi • ' \rm mm/ ' Jrm ' ' \ ' ' / (5-42) 

+PmQm + M„ ' rmi^m ' rr, 

+ v-(pAi;„) = -vp„ + v-(r + r^+r^) 
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where we have 

Chapter 5 

Pm =Y.^kPk 
k=\ 

k=i 

k=\ 

k=l 

2 

(5-43) 

Furthermore the interfacial momentum source M^ is given by Eq.(5-24). 

Three tensor fluxes W, ^ ^ and ^ ^ represent the average viscous stress, 
the turbulent stress and the diffusion stress, respectively. It is evident that if 
the surface tension term is neglected, then there are not direct interfacial 
terms in the mixture momentum equation. 

Mixture Total Energy Equation 
The mixture energy equation can be obtained from Eq.(5-16) applied to 

the balance of the total energy, thus 

dt e..+ 
{ 2\ 

+ v- ê  + 
iy \ 

v„ 

2 

(5-44) 

k=l 

where we have 

Q = ^(^k% (5-45) 
A ; = l 
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Q^ =Yl'^kQl = £ a. 
k=\ k=l 

Pk 

. .2^ 

u,+^ Vr. - Tk-< (5-46) 

q = J 

2 

k=\ 

Yk 
( ^ 2 ^ 

i 2j ^k ' ^km 

And, by definition, we have following mixture properties 

k=l 

.12 

Uk + 
Vr. 

Prr 

(5-47) 

(5-48) 

f 2\ J2^kPk 
= Vu 

k=l 2 V. 

Prr 

2 _V^ 

T.'^kPk-f-
m I fc=l 

Prr 
(5-49) 

The interfacial energy source E^ is given by Eq.(5-29). The important 
special case is when the body force field is constant 

i/fc ijk ym y* 

Then the diffusion body work term becomes zero, thus 

(5-50) 

^^kPkQk'Vkrr. = 0 (5-51) 
k=i 

where we used the identity, Eq.(4-94). 
Hence, under the standard condition of the constant body force field, the 

total mixture energy equation reduces to 
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d_ 
dt e„ + 

( '2-\ 
' V 

+ V- e + 
{ 2\ 

v„ 

+ P Q ' V + E . 

(5-52) 

It can be seen that the form of Eq.(5-52) is quite similar to the single-
phase flow energy equation. The differences appear as additional heat fluxes, 
namely, the turbulent flux q^ and the diffusion flux q^, and the interfacial 
body source E^. However the most interesting characteristic of the mixture 
can be found in the kinetic energy term, Eq.(5-49). We see fi-om the 
equation that the total mixture kinetic energy consists of the kinetic energy 
of the center of mass plus the diffusion kinetic energies of both phases. It 
also should be remembered that the turbulent kinetic energy has been 
included in the virtual internal energy due to the great difficulties in 
separating it fi-om the thermal effects. We also point out that if the surface 
tension effects are neglected, then the interfacial term does not appear in the 
mixture total energy equation (as in the case with the mixture momentum 
equation). 

Mixture Thermal Energy Equation 
In a single-phase flow, the separation of the mechanical and thermal 

energy can be carried out quite easily by subtracting the mechanical energy 
equation from the total energy balance. Exactly the same method could be 
used in the two-fluid model formulation, if we would include the turbulent 
kinetic energy in the virtual thermal energy as we have done in Eqs.(5-36) 
and (5-37). In the diffusion model formulation, however, it is further 
complicated by the existence of the diffusion kinetic energy transport. 
Consequently, there is no clear-cut method to obtain a corresponding thermal 
energy equation for the mixtures. In the following, we demonstrate two 
distinct methods which give quite different results. 

The first method is to subtract the sum of the kinetic energy equations of 
both phases from the total energy equation (5-44). In this way, the diffusion 
kinetic energy can be eliminated. Thus, from Eqs.(5-35) and (5-44), we 
obtain 

^ + V - ( P „ / . A ) = - V - ( 9 + 9") 

( 2 

k k=l ) -^^ 

(5-53) 

k=l 
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+E4 + EK-v(«.P^)-^-v-(a,C)}-
k=\ k=l 

Here from the definition, the mixture enthalpy h^ is given by 

v^ = ^ Y- =1 

h^ = — A = l *;=! 
h + 

Vu 

(5-54) 

The same equation (5-53) can also be obtained by adding the enthalpy 
equation of each phase, Eq.(5-38). The form of the equation is reasonably 
simple except the last term, but we should realize that the interfacial term 

2 

V" Aj^ involves complicated exchanges between the total and the mechanical 

energies. 

It is noted that by using the mixture kinetic energy equation in terms of 
the center of mass velocity v^, this difficulty in the interfacial term can be 
avoided. The resulting thermal energy equation, however, has additional 
terms from the diffusion kinetic energy. By subtracting the mixture 
mechanical energy equation, namely, the momentum equation (5-42) dotted 
by v^, from Eq.(5-52), we obtain 

9pmK 
dt 

( 2 

-V- Yl^kPkKVk 
yk=\ 

km + Dt 

D_ 
Dt 

E 
= T/2 ^ 2 T/2 

I, k=\ Pn 
+ V-^a,ft^y, km 

k=l 

(5-55) 

+ ( r + r^):VT;^+(E^-M^.t;J-t;^.(V.r^) 

+V- ^^k^'Vkm 
\k=\ 

In view of these two thermal energy equations, namely, Eqs.(5-53) and (5-
55), it can be concluded that the mixture energy transfer is highly 
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complicated due to the diffusion of each phase with respect to the mass 
center. The form of the right-hand side of each equation suggests that if the 
effects of the mechanical terms originated from the diffusion are important, 
then the constitutive laws for the diffusion (or mixture) model cannot be 
simple. Thus, in such a case, the two-fluid model may be more suitable. 
However, in most two-phase problems with large heat additions, these 
mechanical effects from the diffusions are insignificant. The only important 
effect to be taken into account is the diffusion transport of thermal energy 
because of the large difference on the phase enthalpies, namely, the latent 
heat. 

1,4 Singular case of Vni=0 (quasi-stationary interface) 

In the preceding analyses it has been assumed that the interfacial 
displacement velocity v^^ is non-zero, however in reality it can be zero at 
isolated singularities. For example, it happens when an interface is 
stationary or the motion of the interface is purely tangential to it. Since 
v^^ = 0 is an important singularity associated with all the interfacial terms 
in the balance equations such as I^ and / ^ , we study it in some detail. 

In connection with this singularity, we first introduce a surface area 
concentration per volume. By considering only one interface it can be given 
as 

1 1 .. le^ 1 
o,., = — = — lim — - = — 
'' Lj At»^^ 6 At 

^l' 

^m 

(5-56) 

whereas the total area concentration is given by 

a, = — = — lim / —dt = — Y^ 
L. At «-o JlAt] /) A t ^ 

^1' 
Lg At ^^^'Jl^ti 8 At-J X^ni (5-57) 

The reciprocals of the area concentrations have the dimension of length and 
they are denoted by L. and Lg for a single interface and for combined 
interfaces, respectively, â^ is the surface area concentration for the j ^ -
interface. We note here that the total interfacial length scale Lg has an 
important physical significance comparative to those of the molecular mean 
free path and the mixing length. Consequently all the interfacial terms 
appearing in the field equations, ly. and I^, are expressed as an addition of 
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contributions from each interface with â^ as a weighting factor. This fact is 
clearly demonstrated in Eqs.(5-13) and (5-14). Furthermore, the derivatives 
of the time fraction a^ are closely related to the area concentrations, as it 
can be seen from Eqs.(4-61) and (4-62). The importance of the interfacial 
area concentration a^ or the length scale Lg should be noted, a^ has the 
physical significance of the interfacial area per unit volume and it is the most 
important geometrical factor affecting the interfacial transfer. The inverse of 
a^ given by Lg is the internal length scale of the two-phase flow. This 
variable is discussed in detail in Chapter 10. 

Now we return to the singular case of t;̂ ^ = 0. In view of Eqs.(5-56) 
and (5-57), it can be said that the transport length Lg becomes also singular 
in such a case and, thus it loses its physical significance. As a consequence 
all the interfacial terms in the balance equations, I^ and I^ , are also 
singular and the time fraction a^ or its derivative may suffer discontinuities. 
In order to cope with this difficulty, we first recall that a^ is the time 
fraction of the interfaces. We note here that from Eq.(4-14), the case of 
v^^ ̂  0 corresponds to a^ = 0 . Furthermore, if the normal velocity of an 
interface v^^ is zero, then it may stay at x^ for some finite time. Thus we 
have 

Ms 
At 

as = —^ > 0 (5-58) 

where Ats is the total time occupied by interfaces in the interval of At. 
And therefore 

2 

>: 
k=\ 

At = Ats+Y,At, (5-59) 

or in terms of the time fractions 

1 = a^ + Qj + 0̂ 2- (5-60) 

Now it is clear that we have two distinct cases of singularities, namely 

1. v^. = 0 and a^ = 0; 
2. v^^ = 0 and a^ > 0. 

As the definition of a^ shows. Case 1 does not bring discontinuities in a^, 
but only in its derivatives in the microscopic sense. However, it has been 
explained in the Section 1.3 of Chapter 4 in connection to the fundamental 
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hypothesis on smoothness of mean values, these microscopic singularities 
should be neglected when macroscopic problems are concerned. Thus, 
unless an interface stays at a point for a finite time interval, the field is 
considered to be occupied by two continua with continuous interfacial 
transfer and source term I^ and I^ . Hence the singular surface of the 
interfacial origin appears in the macroscopic formulation only when a^ > 0. 

The above discussion also clearly indicates that the interfacial terms /^ 
and /^ given by Eq.(5-13) and Eq.(5-14) are not the constitutive relations to 
be used in the macroscopic formulation. These equations still retain all the 
details of the local instant variables which should not appear in the averaged 
formulation. Consequently, it is necessary to transform these equations in 
terms of the macroscopic variables. 

We note that the macroscopic interface represented by Case 2 is most 
easily exemplified by the stationary interface such as a solid wall. Since for 
a^ > 0 it is not possible to consider the average of the volumetric balance 
equation, the correct form of the macroscopic balance is simply the time 
average of the jump condition in the time interval of At. Thus we have 

— lim r (5c(5W = 0. (5-61) 

Case 2 in normal two-phase flow corresponds to the discontinuity in a^, and 
therefore, it can be treated as a concentration shock, see Eqs.(4-61) and (4-
62). Formost of the flow field it is assumed to be continuous. As the time-
averaged macroscopic formulation is intended to be applied for such two-
phase flows, these interfacial singularities can be neglected in most 
applications. 

1.5 Macroscopic jump conditions 

We have discussed the singularity related to a quasi-stationary interface 
in the preceding section. Now we study important singularities related to 
macroscopic shock discontinuities in the time averaged field. The essential 
part of the analysis can be developed in parallel with the Section 1.2 of 
Chapter 2 where the standard jump conditions at an interface have been 
derived. 

In single-phase flows as well as in two-phase flows, the existence of 
regions where various properties suffer extremely large changes is well 
known. It can be exemplified by shock waves due to compressibility effects 
or by concentration shocks in mixtures. The unusually high gradients in 
these regions require special considerations on the constitutive laws in order 
to treat them as a part of continuum mechanics. However, as it has been 
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> u 

^ms 

Figure 5-1. Macroscopic discontinuity (Ishii, 1975) 

mentioned in the Section 1.2 of Chapter 2, for most practical flow problems 
replacements of these regions by surfaces of discontinuity with the jump 
conditions yield sufficiently accurate models. Hence in this section we 
derive macroscopic jump conditions which stand as balance equations at a 
surface of discontinuities in the averaged field. By considering the time-
averaged macroscopic field as a continuum, the analysis of the Section of 
Chapter 2 can be directly applied here. The velocity of the surface U is 
defined in analogy with v. of Eqs.(2-49) and (2-50), thus its normal 
component is the surface displacement velocity, whereas its tangential 
component is the mean mixture tangential velocity in the region with the 
thickness 8. By denoting each side of the region by + and -, we have from 
Eq.(2-64) 

= E [Pm^mn iv^-U) + n-jJi (5-62) 

where the summation stands for both sides of the region, the subscript a and 
s represent the mean values in the region as defined by Eqs.(2-45) to (2-54) 
and the surface derivatives have the standard significances. Equation (5-62) 
is a balance of ip^ at the region of a shock. The left-hand side of the 
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equation accounts for the change of the matter V̂ ^ in the region, and each 
term on the right-hand side represents: the flux from the bulk fluid; the flux 
from the periphery with the thickness 6; the body source; and the interfacial 
source term. 

It is evident that the balance equations similar to Eq.(5-62) can be 
obtained also for each of the two phases, thus 

1 
dt 

= El'^kKAn •{v,-U) + n-\^a,(j; + /j)]} (5-63) 

From the definition of the mean values at the region it is easy to show that if 
each term in Eq.(5-63) is summed up for both phases, the resulting term 
becomes that of the mixture appearing in Eq.(5-62). 

Since Eqs.(5-62) and (5-63) introduce new variables associated with the 
discontinuities, namely, the surface properties and the line fluxes, it is 
necessary to make some specific assumptions on these terms or to give 
sufficient constitutive laws. A simple result of practical importance can be 
obtained by considering the limit of 5 —> 0 and, fijrthermore, by neglecting 
the surface energy of shocks and the associated thermodynamic tension. 
Under these conditions, we have for the mixture 

E {Pm^mn •{v^-U) + n-J^} + I^^=0. (5-64) 

+,-

And for each phase with k=\ and 2 

E { « * ^ S ^ •{^k-U) + n-a,[T,+ /j)} + I^ = 0. (5-65) 

Here, we note the importance of the terms I^^ and /̂ ^ that permit the 
exchange of mass, momentum and energy within the shock layers. It is 
incorrect to neglect these terms simply because they appear as volumetric 
sources. Depending on the constitutive laws expressing them, it is possible 
that they take a form of fluxes. Furthermore, from the physical points of 
view it is natural to have these interfacial transfer terms /^^ in the 
macroscopic jump conditions because of the highly non-equilibrium state of 
two-phase shock layers. 
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1.6 Summary of macroscopic field equations and jump 
conditions 

The field equations for the mixture and for each phase were given by Eqs. 
(5-16) and (5-17) 

dt 
+ V • [Pr^^A) = - V • /„ + pj^ + 4 (5-16) 

and 

+ V • («,P,vi^) = -V • \a, (/, + /f) 
dt 

+(^kP'Ak + h-

The mixture total flux has been defined by 

(5-17) 

= / + /^ + /"̂  (5-15) 

with 

= J2^kJk 
k=i 

(4-24) 

J^ = ^(^kPk AVhn 
k=l 

(4-103) 

k=\ k=l 

And the interfacial transfer condition was 

2 

^m — / jh* 
k=l 

(4-105) 

(5-18) 
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The macroscopic jump conditions at shock waves in their simplified forms 
were 

EKV'™n-(t;„-t/) + n - /4 + /„,=0 (5-64) 
+,-

and 

T.{^kPki^kn •{v,~U)^n-a,(j,+ / j ) } + /, , = 0 (5-65) 

where n (with + and -) is the outward unit normal vector at each side of the 
surface, and U denotes shock surface velocity. 

1.7 Alternative form of turbulent heat flux 

The energy equations in the Sections 1.2 and 1.3 of Chapter 5 are derived 
based on the definition of turbulent heat flux of Eq.(5-30). Here, an 
alternative definition of the turbulent heat flux of Eq.(5-30)' may be possible 
as 

(ll = Pk ul + 
. .2^ 

Vu ^ ' < (5-30)' 

Then, we can recast the stagnation internal energy equation, Eq.(5-32), the 
internal energy equation, Eq.(5-36), and the stagnation enthalpy equation, 
Eq.(5-38) as given by Eqs.(5-32)', (5-36)', and (5-38)', respectively. 

dt 

+V-

"fcpifc 

( ^1\ 

L ( ^ ) 

-v-l «* [% + ̂  

+ v-

'̂ ll - \ 

(^kpk 

( ^1\ 

Vfc 
\ } 

7-K Vk-^k) (5-32)' 

a. (%+%'')•% + (^kPk9k-'»k+E, 
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dt 
+ V • (a^Pk^k^) = - V • (a,q,) - V • (a,ql) 

(^kPi:^-%+^k{%+%^]-'^v, 

+ 
?:' rkK + f + w^ + {M,-r,v;,)-{v;,-vi) 

-PH 
dau 

dt 
+ ^ • Va, 
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(5-36)' 

+ V • [ockPkK%) = - V • (a^Qk) - V • (%g[) 
dt 

+ 

Dt 

V, 
" r,-M,-v,+E, 

(5-38)' 

We can also recast the total mixture energy equation, Eq.(5-44), and the 
mixture stagnation enthalpy equation, Eq.(5-53) as given by Eqs.(5-44)' and 
(5-53)', respectively. 

d_ 

dt 
e™ + 

^v'' 
+ V- 6™ + 

17). ' 

( 2\ 

v„ 

2 

+^Oik'Pk9k-Vkm + 

(5-44)' 

where we have 
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2 2 

k=\ k=\ 
Pk\ 

{..2\ 

ul + Vu 
% • < 

(5-46)' 

<l'=j'~T.^kT,-V^ 
k=\ 

= E CXu 

k=\ 
Pk 

-2\ 

e,+- V^-[T, + ^'\V^ 
(5-47)' 

^ + V-(p„/.A) = -V.(g-fO 
( 2 

- V 
k=\ 

D 
Y^»kPAvJ+—p^+J2M^ + ^l-'^'^^ (5-53)' 

A ; = l 

Correspondingly, Eqs.(5-52) and (5-55) can be recast as given by Eqs.(5-
52)' and (5-55)', respectively. 

dt 
e™. + 

^ ^ 2 ^ 

+ v. Pn e„.+ 
( 2\ 

V /m 

V„ 

(5-52)' 

^ + V-(p„/̂ .«J = -V.(^-t-90 
( 2 

-V' E"*/^*^*^fc™ + 
, *=! Dt 

(5-55)' 
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^"^ Dt E 
= T/2 "l 

[ k=l Pn 

+ v-x:a,;5^^v-̂  

E 
A ; = l 

A ; = l 

ce. + rn.v; fcm 

With the alternative definition of the turbulent heat flux such as Eq.(5-
30)', the energy equations become sjnnmetrical about the stress tensor term. 
The energy equations with the definition of Eq.(5-30)' are identical with 
those with the definition of Eq.(5-30). However, the energy equations with 
the definition of Eq.(5-30)' may be controversial and misleading on the 
following grounds. For example, the apparent energy dissipation term due to 
the turbulent stress such as OL^^ : V i^ appears in the internal energy 
equation of Eq.(5-36)'. Since this term is due to convection or turbulence, it 
may take a negative or positive value. Thus, the term due to turbulent work 
may not be regarded as the energy dissipation, which should invariably be 
positive. In order for the term due to turbulent work to be invariably positive, 
some additional constraints may be applied to the entropy inequality. Thus, 
the energy equations with the definition of Eq.(5-30)' are questionable to 
explain irreversible thermodynamics. 
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CONNECTION TO OTHER STATISTICAL 
AVERAGES 

1.1 Eulerian statistical average (ensemble average) 

The basic concept of the Eulerian statistical averaging has been explained 
in Chapter 3. By considering a set of N similar samples or systems, a 
statistical mean value is defined by a simple arithmetic mean among them, 
Eq.(3-7). Thus, the mathematical operation of integration for the time 
averaging should be replaced by that of summation in the statistical 
averaging. It is evident that the entire derivation of the field theory based on 
the statistical averaging can be carried out in parallel with Chapters 4 and 5 
by simply substituting the finite statistical mean operator, Eq.(3-7), in the 
place of the time averaging, Eq.(3-2). 

The most important parameters are Nj^ and N^ which represent the 
number of occurrences of the A:*-phase and the interfaces if the interfacial 
thickness is 8. Then the void fraction can be defined as a ratio of iV̂  to N 
and taking the limit 5 - ^ 0 . The general function (F)^ and (F^) can be 
defined in space-time domain in analogy with Eq.(4-8). 

Since the derivation of the statistically averaged equations follows 
exactly the same steps as in the case of the time averaging, we only list the 
most important and characteristic relations between them. In Table 6-1 we 
see four basic parameters of averaging, namely: the void fi-action ce ;̂ the 
average of the two-phase general function F; the average of the A:̂ -phase 
general function Fj^; and the interfacial area concentration in a unit volume. 

It is evident that the general balance equations of the form of Eqs.(5-16) 
and (5-17) can be obtained fi-om the statistical averaging applied to a set of 
N similar samples. We note here that important differences between the 
time and statistical averaging exist not in the resulting form of the balance 
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Table 6-1. Relations between time and statistical averages (Ishii, 1975) 

Variable 

«fe 

F 

F" 

a. 

Time Average 

At 

lim — r Fdt 
-5-0 AtJ[^t]T 

lim — { F,dt 

lim — / — dt 

Statistical Average 

l im—-
6^0 N 

lim — y ( F ) „ 

lim—y(F,) 

1 ^s 

l i m — V 
5^0 TV ^ ^ 

1 

equations but in the interpretation of the variables with respect to an actual 
flow, as it has been discussed in detail in the Section 1.3 of Chapter 3. 

1.2 Boltzmann statistical average 

Because of its unique characteristic among various averaging procedures, 
we discuss in detail the Boltzmann statistical averaging applied to two-phase 
flow systems. First we recall that / (a;, i, ̂ ) is the particle density function 
where X, t and ^ represents the position, time and velocity of a particle, 
respectively. In the standard analysis of the kinetic theory of gases, the 
particle mass of each component is considered to be constant because it 
represents the molecular mass. However, in applications to two-phase 
highly dispersed flows, it may be necessary to assume that the particle mass 
varies. Thus, by taking into account the existence of variable particle mass, 
we define 

/fcn "" Jhi (^J h s ) (6-1) 

where / ^ is the particle density function of A:̂ -phase particles having Vfi^ 
mass. It can be said that m^ is a multiple of the single molecular mass. 
The total number of A:̂ -phase particles in the phase space element dxd$^ at 
X and ^ is given by 

^L(^^'^^i]^^^t (6-2) 
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The Boltzmaim equation for the m^ particles can be obtained by 
introducing g^. , the external force field, and taking the balance on the 
number of particles, thus 

~ ^ + - ^ ' [^fhi) + - ^ ' [dknfhn ) = ^kn ~ ^ka (6-3) 

where C^ and C^ represent the source and sink terms, namely, the gain 
and loss of the m^ particles caused by the changes in the particle mass and 
by the collisions that throw the particles in and out of the phase element d^. 
If Qj^ is independent of the velocity, then we have 

dfkn . 9/fcn df^ kn 

dt ^^ ~dx "̂  ^^ * ~W ^ ^^^ ~ ^^ * ^̂ "̂^ 

The above Boltzmann transport equation with the collision terms expressed 
by the simple model of Maxwell's binary collision integral is called the 
Maxwell-Boltzmann equation. It is the foundation of the kinetic theory of 
gases. A similar approach can be used for neutron transport. 

The partial density of the m^ particles is given by 

Pka = J^knfknd^^ (6"5) 

Thus, the expectations based upon the probability / ^ can be defined as 

^kaM^"^—r:zr-- (̂ .6) 

Since the total mass is the sum of the mass of each particle, the partial 
density of the A:*-phase is given by 

'Pi^ = j2pkn=^j ^knfknd^' (6-7) 
n n 

It follows that the mass weighted mean value is defined by 
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A k t) = -^i=^j = -^^-^ . (6-8) 

Denoting the mean velocity by v^, the peculiar velocity of each particle is 
given by 

K « = ^ f a - ^ - (6-9) 

If we multiply the Maxwell-Boltzmann transport equation, i.e. Eq.(6-4), by 
'^kn^kn -> iiitegrate it over the phase velocity ^ and then sum it up for all 
kinds of particles of the A:*-phase, we obtain Maxwell's equation of transfer 
in terms of mean values. Hence, 

d 
ka 

+ 

J2j^kn'^kn9kn--^d^ 

^kn + ^-VVfc„k 

(6-10) 

dt 

We note here that each term in the right-hand side of Eq.(6-10) represents 
the transfer due to inter-particle diffusions, the source due to the body force 
field, the multi-molecular particle effect which arises when the transport 
property ijjj^ is a function of the phase velocity ^ , and the source due to 
phase changes and/or colUsions. 

Conservation of Mass 
The mass field equation can be obtained by setting ^ ^ = 1 in Eq.(6-10), 

thus we have 

g^ +V-(fti5;) = n (6-11) 

where 
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A = E / [ ^ ^ ' - ^ ^ l"^^^e (6-12) 
n 

The assumptions of over all conservation of mass gives 

E A = 0 . (6-13) 
A ; = l 

From Eqs.(6-11) and (6-13) we have the mixture continuity equation 

dprr 

dt 

where 

+ V - ( P A ) = 0 (6-14) 

2 2 

P^ = ̂ V, and V^=J:^^- (6-15) 
k=l k=l Pm 

Recalling that p^ is a partial density of the A:*-phase, we find complete 
similarity between the results of the time averaging, Eqs.(5-21), (5-22) and 
(5-40), and those of the Boltzmann statistical averaging, Eqs.(6-ll), (6-13) 
and (6-14). 

Conservation of Momentum 
The linear momentum equation can be obtained from Eq.(6-10) by 

setting V̂fcn = ^ , thus 

9'p^^k / V — 
- ^ + '^'{K^k^k) = ^'^'^k+P'k9k+M, (6-16) 

where the partial pressure tensor /^ is defined by 

n 

and the momentum supply Mj^ by 

^k ^ EjK^ - C^'h^^d^- (6-18) 
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We note here that if the negative of the partial pressure tensor, —P^, is 
interpreted as the combined stresses acting on the A:*-phase, the momentum 
equation (6-16) has exactly the same form as that obtained from the time 
averaging, namely, Eq.(5-26). However, the physical meaning of the flux 
term and the momentum source M^ in this equation can be significantly 
different from those of the time-averaged equation. 

As an example, let us consider a dispersed two-phase flow system with 
phase 1 as a dispersed phase. If the particle sizes are considerably small and 
the continuous phase is a dilute gas, then the formulation essentially reduces 
to that of reacting gas mixtures. In this case, the effects of the collisions of 
particles with the molecules and/or particles that lie outside of a particular 
volume element in real space can be neglected. Thus, the total collision term 

2 

V ] M ^ can be taken as zero. Hence, as we can see from Eq.(6-18), the 

collision term of each phase consists of the momentum source due to mass 
transfer and the drag forces resulting from the momentum exchange during 
collisions. 

Furthermore, if the particles have definite volumes in contrast to the 
previous point mass assumption, the multi-collisions of particles with 
molecules and with other particles whose centers lie outside of the volume 
element become important. In this case, the collision term for the dispersed 
phase can be split to three different parts: the internal momentum transfer 
due to coUisions; the effects of the changes of phases; and the external 
collision effect. Consequently, the introduction of the void fraction a^ in 
the formulation is necessary, where a^ is the ratio of the volume occupied 
by the particles to the total volume element and thus a^^X — a^ . 
Nevertheless, in order to integrate the momentum collision term, it is 
necessary to introduce models of molecule-particle and particle-particle 
coUision processes. Because of the multi-collisions between a particle and a 
cloud of molecules and of the effects of the phase changes, these models will 
be extremely complicated. Thus we do not go into the detail of the collision 
integrals here. If the standard fluid mechanic viewpoint is introduced, it is 
possible to interpret the momentum source M^ into relevant physical terms. 
From the above discussion, we expand the total collision term of each phase 
in the following form 

M,=Mi+M',+Ml. (6-19) 

Each term on the right-hand side represents the internal collision force 
interaction, the momentum source due to phase changes and the external 
collision force interaction because of the finite particle size, respectively. 
The first term can be considered as the standard drag force and the pressure 
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effect due to the void fraction gradient, whereas the last term gives extra flux 
from the particles having their centers outside of a volume element. 

2 

For the mixture, the total collision term S^ M^ is not zero due to the 

external effects Ml. Thus, we can write approximately 

J2M,=M^-\V^^YA (6-20) 

where M^ can be considered as the inter-particle collision effect. The 
second term is the effect of the continuous phase on particles which lie on 
the boundary of a volume element. The real pressure tensor for the 
continuous phase 2 should be 

^ . (6-21) 
a . 

Then the mixture momentum equation becomes 

dt (6-22) 
( 2 

p. + Pi + T.'pivj^i^ km 
k=\ 

+ Pm9m + ^ r . 

Thus, the mixture total stress consists of the partial stress of the dispersed 
phase, the real stress of the continuous phase and the diffusion stress due to 
the relative motion between two phases. Here, the definition of the average 
diffusion velocity V^ takes the form of Eq.(4-89). It is evident that 
significant differences exist between the physical meaning of the stress 
tensor term of the present mixture momentum equation based on the 
Boltzmann transport equation and that of the one obtained from the time 
averaging, namely, Eq.(5-42). This basic difference arises because, in the 
former approach, the stresses are defined from the motions of the particles. 
Thus, the stress inside the particles has no place in the analysis. In the latter 
approach, however, the stresses are defined everywhere in the system. We 
may add here that the Boltzmann statistical average can be easily extended 
to include the turbulent fluctuations in the continuous phase by considering 
the eddy transports as the particle transports. 
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Conservation of Energy 
In contrast to the simple kinetic theory, the energy transfer by multi-

molecular particles is considerably complicated due to the internal freedom 
of the energy state of the particles. It is obvious that the kinetic theory 
translational temperature based on the diffusion kinetic energy is not useful 
if each particle consists of a large number of molecules. 

Now let us suppose that ip^ is the total energy carried by the A:*-phase 
particles having mass m ^ , thus 

V^kn ~~ ^^kn "^ '^kn (6-23) 

where the first term is the translational kinetic energy and Uj^ the internal 
energy contained by molecules in the particles. Since the term Uj^ is not a 
function of ^ ^ , the transport equation (6-10) is not a velocity moment of the 
Boltzmann transport equation. 

We introduce the average energy and the flux of the A:*-phase as 

7 J Pknlj^kn'^'^kn 
(6-24) 

and 

^k — Z_^ Pkn L^ Nfcn + '^kn kn (6-25) 

where the definitions of the right-hand side averages follow Eq.(6-8). 
Substituting Eqs.(6-23), (6-24) and (6-25) into Eq.(6-10), we obtain the total 
energy equation for the A*-phase 

d_ 
dt Pk + V-Pk ek+^% V. 

(6-26) 

d$ + E,. 
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The average internal energy ê  is the sum of the random thermal 
translational energy and the true internal energy of the particles. This 
definition is in complete analogy with Eq.(5-31) of the time averaging. The 
most important characteristic appears in the last two terms of Eq.(6-26). It is 
evident that the change of the individual particle internal energy given by the 
second term from the last is coupled with the collision term E^ since, in the 
absence of the long range energy exchanges, the particle internal energy 
changes only by the interactions with the surrounding molecules and 
particles. Thus, in analogy with the momentum exchange given by Eq.(6-
20), the total energy interaction can be given as 

E Ek+Y.J^knfkn 
(d% 'kn 

dt 
+ ^ • V«; 'fol di 

-V- ^(9^ + ̂ 2-^)1 + ™̂-
^ 2 J 

(6-27) 

Here the first term of the right-hand side of Eq.(6-27) takes into account the 
particle-molecular collisions for finite volume particles. The term denoted 
by E^ represents such effects as the inter-particle collision transport of 
energy. By adding two energy equations for each phase, the mixture 
equation can be obtained 

dt 

-V 

e„.+ 
^v'' 

V 2 , 
V / m 

+ v. e™ + 
' V ' 

Qi+Q2+J2Pk 
k=l 

~2\ 

e,+- km 

V^ 

+ P Q ' V 
m^m m 

V,+P^^V^ + I]ft5fc'^^+^m-

(6-28) 

Here, we again note that phase 1 is the dispersed phase. The physical 
significance of each term of the total energy equation parallels that of the 
momentum equatioiL_The p^ ia l fluxes ^^ and P^ for the dispersed phase, 
and the real fluxes q^ and P^ for the continuous phase appear because of 
the finite volume occupied by the particles of phase 1. 

As in the case of the mixture momentum equation, significant differences 
between the Boltzmann statistical model and the time-averaged model 
appear in the total flux terms of heat and work. Since the heat transfer and 
work inside the particles are not considered in the former model, the partial 
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heat flux and the partial pressure tensor for the dispersed phase represent the 
transfer due to inter-particle diffusions. The molecules of the continuous 
phase 2 are treated as the point mass, thus the fluxes of each phase do not 
appear symmetrically. 

The interest of the Boltzmann statistical average applied to two-phase 
flow systems lies mainly on the study of constitutive equations from a 
simple model for the collision terms together with stochastic assumptions. It 
is highly improbable that this can be a general model for a dispersed two-
phase flow system, since the inclusion of the effects of particle shapes and 
deformations in the Boltzmann transport equation brings considerable 
difficulties in the analysis. Even without these effects, it is anticipated that 
the collision terms for each phase are very complicated due to three effects: 
1) the inter-particle collisions, coalescences and disintegrations; 2) the multi-
collisions between a particle and a large number of molecules; 3) the 
existence of phase changes. Furthermore as it can be seen from Eq.(6-27), 
the dispersed phase energy transfer term requires a special constitutive law 
for the heat transfer between particles and fluid. 

In summarizing the section, it can be said that the Boltzmann statistical 
averaging is useful for a highly dispersed flow where each particle is 
considered as a lumped entity rather than as a distributed system itself. For 
example, the mixture stress tensor for a particle flow has a more natural form 
in the present model than the one from the time averaging. This is because 
in such two-phase flow it is not practical to introduce stresses inside the 
particles. However, the number of particles in a volume element should be 
significantly large for a statistical treatment of the number density to be 
realistic. Furthermore, if the deformations of the interfaces and the changes 
of properties within the particles are important, the Boltzmann statistical 
method cannot be used. In contrast to the case of dilute gases, the collision 
integral terms for a dispersed two-phase system with finite particle sizes are 
extremely complicated, thus to obtain constitutive laws from the statistical 
mechanics is very difficult. In many cases these collision terms should be 
supplied from the continuum mechanics considerations. It is, therefore, also 
possible to construct a model on a combination of the continuum theory and 
the Boltzmann statistical method. For example, we take the statistical 
average only for the dispersed phase with the drag forces included in the 
body force. Then we use the standard volume averaged field equations for 
the other phase with the corresponding interaction terms. Such a 
formulation is useful to dispersed two-phase systems as well as to fluidized 
beds. Furthermore, the Boltzmann statistical method can be very useful for 
obtaining some constitutive laws as demonstrated in Chapter 10. 
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KINEMATICS OF AVERAGED FIELDS 

1.1 Convective coordinates and convective derivatives 

The time-mean values are consistently expressed by the spatial 
description as shown by the definitions (4-15) and (4-16), and the idea of the 
particle coordinates for the averaged two-phase flow fields is not clear nor 
trivial due to the phase changes and the diffusions. The phase change 
corresponds to the production or disappearance of fluid particles for each 
phase throughout the field. The difficulty arises because each phase itself 
does not apparently obey the corollary of the axiom of continuity, namely, 
the permanence of matter. However, the diffiasion of each phase permits the 
penetration of mixture particles by other fluid particles. It is clear that the 
material coordinates, which is the base of the standard continuum mechanics, 
is not inherent to a general two-phase flow field obtained from the time 
averaging. However, it is possible to introduce mathematically special 
convective coordinates which are usefixl in studying the kinematics of each 
phase and of the mixture. 

The path line of each phase is defined by the integral curve of the system 

dx = ^.{x, t)dt (7-1) 

with the initial condition 

x = X^ dXt = tQ (7-2) 

where we define X^ as the convective coordinates of the A:*-phase. Hence, 
upon integration of Eq.(7-1), we obtain 
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x = x{X,,t) (7-3) 

This equation gives the path line of the fixed point on the convective 
coordinates X^, which are moving with the particle velocity v^ . 

With the standard assumption of smoothness, or the existence of the 
Jacobian, we can transform Eq.(7-3) to 

X,=X,{x,t) (7-4) 

This equation expresses the position of the imaginary particle that moves 
with the local mean velocity of the A:*-phase v^ . The formulation of 
problems in which x and t are taken as independent variables is called the 
spatial description, whereas if X^ and t are taken as the independent 
variables, it is called the convective description. In general, the contents of 
the particles occupying the neighborhood of a; = xi^X^^t) can be different 
from the initial particles due to phase changes. Thus, it is not possible to 
consider the change with fixed particles. However, it is simple to observe a 
process with fixed X^. The velocity of the A:*-phase, for example, can be 
given in analogy with a single-phase flow as 

^ f c = 

dx] 

dt] 
A; = 1 and 2. (7-5) 

The above analysis can also be applied to the mixture center of mass, 
thus we define the mixture path line by 

dx = v^{x,t)dt (7-6) 

with X = X^ at t = Q̂. By integrating Eq.(7-6) we obtain the path line 

x = x{X^,t) (7-7) 

and with the inverse transformation we get 

X^=Xjx,t). (7-8) 

Hence, if the mixture convective coordinates are fixed in Eq.(7-7), the 
observer moves with the local mixture velocity v^. However, due to the 
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diffusion of each phase with respect to the mass center, the particles at fixed 
X^ are continually changing along the path line. 

Furthermore, it is interesting to note that if the flow field is homogeneous, 
or ^ = ' ^ = ^ r̂ri' ^^^ ^^ mixture convective coordinates become the 
material coordinates regardless of the phase changes. From Eqs.(7-6) and 
(7-7) the mixture velocity can be given symbolically as 

v^ = ~dt] 
(7-9) 

It is easily seen from Eqs.(7-1) and (7-6) that the path line for each phase 
and for the mixture can intersect each other. 

Since the Eulerian time mean values are in spatial description, the time 
rate of change at fixed point is denoted by 

d_ 
dt 

—1 
dt] 

(7-10) 

However, the rate of change seen fi-om the observer moving with the fluid 
velocity is called the convective or substantial derivative. It is given by 

A d\ K 

Dt ~ dt, X. 

9 ^ ^ 
= — + v̂ t • V 

dt '' 
(7-11) 

and 

D_ —1 
dt] 

— L -y 

dt " 
(7-12) 

The convective derivatives of Eq.(7-ll) and Eq.(7-12) are taken by 
following the center of mass of the A*-phase and that of the mixture, 
respectively. 

If the phase convective derivative is applied to express the left-hand side 
of the field equation (5-17), we obtain 

dr~ 
= D,A 

+ V • (a,PkA%) = (^kPk -jzr + ^A 
Dt 

(7-13) 
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where we have used the continuity equation (5-21). Similarly for the 
mixture, we get from Eqs.(7-12) and (5-40) the following result 

^ + V - ( P „ ^ A ) = P „ ^ . (7-14) 

We note here that the contribution of the mass source term appears in Eq.(7-
13), since the amount of mass within a volume having the surface velocity of 
v^ is not constant. By combining the corollary of the fundamental identity, 
Eq.(4-lll), and above two relations, we have an important transformation 
between the mixture and phase convective derivatives, thus 

^̂ '".+v-/̂  = X; %^^+nvi (7-15) 

1.2 Streamline 

The stagnation point is defined as a point where all velocities vanish, thus 

^ = ^ = v„» = 0. (7-16) 

And the point where v^ is zero for one of the phases is called the A:*-phase 
stagnation point. If the mixture velocity v^ is zero at a point, we call it as a 
pseudo-stagnation point. At such a point the motions of two phases are pure 
diffusions. The flow is completely steady if each of the phase velocities is 
independent of time as 

v^^=Vj^{x) for both k = 1 and 2. (7-17) 

The mixture motion is steady if v^ = v^ (x) , however it does not 
correspond to the complete steady motion because the diffusion velocities 
can be a function of time. 

The vector line of a vector field is a curve that is everywhere tangent to 
that vector. In particular, the vector line of the velocity field Vj^ is called the 
streamline of the A:̂ -phase. Thus it can be given by an integral curve of the 
simultaneous equations 

dx = v^dl at i = 0̂ (7-18) 

where / is a parameter along the streamline. In general, the streamline is a 
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Figure 7-1. Streamlines (Ishii, 1975) 

function of time and does not coincide with the path Une. The two 
streamlines for each phase are also different because two velocity fields are 
not parallel The streamline of the mixture can be defined similarly as 

dx — v^dl ai t = t^. (7-19) 

The relations between various streamlines are illustrated in Figure 7-1. We 
also note here that the coincidence of the streamlines of each phase does not 
signify the homogenous flow field. 

1.3 Conservation of mass 

Formulation Based on Center of Mass Velocities 
The continuity equations for each phase have been derived in the Section 

1.2 of Chapter 5, thus we have 

dt 
+ ^'[^kPk'^k) = r, A ; - l a n d 2 (7-20) 

and the interfacial mass transfer condition is given by 

En = o. 
fc=i 

(7-21) 

Equation (7-20) simply states that the local time rate of change of the partial 
density Oij^'p^ per unit volume equals the net mass influx of the A:*-phase 
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—V • \a^'plv]\ plus the mass source due to the phase changes. As it has 
been snown in the Section 1.2 of Chapter 5, by adding these three equations 
we obtain 

dp 
- ^ + V - ( P A ) - 0 (7-22) 

which is the equation of continuity for the mixture. 
In order to specify the conservation of mass in two-phase mixtures, it is 

necessary to employ two continuity equations. We have expressed these 
relations through the center of mass velocity of each phase in Eq.(7-20), 
however, it is interesting now to consider alternative forms of the continuity 
equations by introducing different views of observations. If the observer 
moves with the mixture center of mass, the diffusion terms explicitly appear 
in the phase continuity equations, thus we have 

- ^ + V • [a,p,vj) = n - V. [a,-^Ji. (7-23) 

Formulation Based on Mass Fractions 
Instead of using the time fraction a^, we may also express the above 

equation in terms of the mass fraction ĉ  defined by Eq.(4-63) as 

^ + ^ . • Vc , = ^ - ^ V . {c,pjr^) (7-24) 
di Pm Pm 

in which we have used the mixture continuity equation. Furthermore, the 
diffusion coefficient Dj^ may be used to express the diffusion flux in 
analogy with a heterogeneous single-phase mixture, hence we set 

(^kPmVkm = -PmDkVCj^. (7-25) 

We note here that Eq.(7-25) is correct only when the diffusion is due to the 
concentration gradient and it can be expressed by a linear constitutive law. 
However, it is expected that Pick's Law of Diffusion may not hold for a 
general two-phase flow system because the interfacial geometry, the body 
force field and the interfacial momentum transfer term are the significant 
factors affecting the diffusion of phases. The linear constitutive law given 
by Eq.(7-25) is in complete analogy with Newton's Law of Viscosity and 
with Fourier's Law of Heat Conduction. These linear constitutive laws are 
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applicable for the molecular transport phenomena. However, it has to be 
remembered that the latter two constitutive equations express the 
microscopic molecular diffusions of momentum and energy, whereas the 
diffusion of phases in two-phase flow is macroscopic. 

By considering a very simplified form of Eq.(7-24), it is possible to show 
that the diffusion equation with the Hnear constitutive law of Eq.(7-25) 
exhibits the diffusive characteristic of the concentration q due to the second 
order derivative of c^ in the equation. This is in direct contrast with the 
formulation based on the kinematic wave velocity in the later part of this 
section, which exhibits the characteristic of propagations. 

Formulation Based on Volumetric Flux 
The continuity relations also can be expressed through the volumetric 

flux j and the drift velocities V^. Thus, from Eqs.(7-20) and (4-91) we 
have 

dt 
+ V • {a,pj) = n - V . (a,^,.), (7-26) 

The last term on the right-hand side of the above equation represents the drift 
of A:*-phase mass with respect to the mixture volume center. By 
differentiating by part of the left-hand side of Eq.(7-20), we get 

^ 7 + V • {a,v,) = ^ - ^ - ^ (7-27) 
dt Pk Pk Dt 

where the substantial derivative is defined by Eq.(7-11). The above equation 
can be considered as the continuity equation in terms of the time fraction or 
the void fraction, therefore it represents the volumetric transport. Thus, from 
the point of view of ce^, the continuity equation has a source term due to the 
mass transfer and a sink term due to the true compressibility of the phase. 
Furthermore, if we use Eq.(4-87), we obtain 

^ + V - i , = 4 - S ^ (7-28) 
dt pfc pk Dt 

By adding these two equations for each phase, we get 
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I\ Oik DkPk v i = E 
k=:\ Pk Pk Dt 

(7-29) 

which describes the divergence of the center of volume velocity. The first 
term of the right-hand side is the volume source due to the phase changes 
and the second term is the volume sink due to the compressibility. 

The formulation based on the volumetric fluxes is important if each 
phase undergoes the incompressible or isochoric process defined by 

^ ^ ^ z= 0 A; = 1 and 2. (7-30) 
Dt 

In this case Eq.(7-29) reduces to 

2 p 
V • j = ^ = (isochoric) (7-31) 

k=i Pk 

which simply states that the divergence of the volumetric flux is proportional 
to the amount of phase changes and to the difference between the specific 
volumes of each phase. We recall that for an incompressible single-phase 
flow, the divergence of the velocity is zero. Thus, the two-phase flow 
equivalence is expressed by the velocity of a center of volume instead of that 
of mass and, furthermore, it has a source due to phase changes. It is seen 
that in the absence of the mass transfer, the above equation reduces to 
V • J = 0 . Since in many practical two-phase flow problems the 
incompressible fluid assumption is valid and the rate of phase change T^ 
can be expressed as a known function of position and time, Eq.(7-31) can 
play an important role in solving these problems. 

Kinematic Wave Velocity and Void Propagation Equation 
As in the thermomechanical theory of diffusion for single-phase mixtures, 

it is one of the basic assumptions of drift-flux (or mixture) model 
formulation that the relative motions between two phases can be expressed 
by a constitutive law rather than by two momentum equations. In this 
connection we aheady discussed Pick's Law of Diffusion which effectively 
eUminates one of the two momentum equations. It is quite clear fi-om Eq.(7-
25) that the constitutive law gives special kinematic relation between v^^ 
and v^, thus the A:̂ -phase momentum equation becomes redundant in the 
presence of the mixture momentum equation. 



7. Kinematics of Averaged Fields 137 

However, we have noted there that in general, the use of Pick's Law for 
two-phase mixtures is not correct and thus a different type of constitutive 
laws for diffusion should be used as in the drift-flux (or mixture) model 
formulation. One of the more useful constitutive laws for the relative 
motions between phases is to express it in terms of the drift velocity V^ 
(Zuber et al, 1964, Ishii, 1977, Kataoka and Ishii, 1987, Hibiki and Ishii, 
2003a, 2003b; Hibiki et al, 2003, Goda et al., 2003; Hibiki et al., 2004). 

In particular if the drift velocity is a function only of the time 
concentration a^, one of the very important theories in fluid mechanics, 
namely, the theory of kinematic waves (Kynch, 1952; Lighthill and 
Whitham, 1955; Hayes, 1970), can be appUed to the two-phase flow systems. 
It was shown by Zuber (1964b) that such was the case for many flow 
regimes of practical interest and it was particularly useful for a dispersed 
flow regime. 

Under the incompressible fluid assumption, Eq.(7-27) can be expressed 
by j and V^ in the following form 

da. 
. + i • Va, + V. [a,V^) - A . (7-32) 
dt A Pi 

And if the drift velocity can be approximated as a function of a, only, then 

V^^V^{a,). (7-33) 

Substituting Eq.(7-33) into Eq.(7-32) we obtain the void propagation 
equation 

_ ^ + C^ . Va, = ^ ^ (7-34) 
dt Pi P2 

where the kinematic wave velocity C^ is defined by 

CK^3 + -^(^kV^)- (7-35) 

Hence, denoting the special convective derivative following the kinematic 
wave by 
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D d 
^ = — + C^ • V (7-36) 
Dt dt "" 

the void propagation equation reduces to 

- ^ K ) = ^ ^ . (7-37) 
Dt p^ P2 

Thus if we observe the time rate of change of o;̂  by moving with the 
kinematic wave velocity, it is proportional to the source term due to phase 
changes. In the absence of mass transfer between the phases, the disturbance 
of a^ propagates withjhe kinematic wave velocity. Furthermore, under the 
condition of constant p^ and p^, we can express Eq.(7-34) in terms of the 
mixture density as follows 

Qp. 
+ ̂ i.-Vp^ = J ^ X ] r , ^ 

or (7-38) 

+ C^-V{\np^) = J^Y.r,p, 
Ot Pi P2 k=\ 

which is called the density propagation equation. 

Kinematic Shock Wave 
It has been shown that if the drift velocity is a function only of a^, the 

void fraction equation can be transformed into the void propagation equation. 
In contrast, if the diffusion of phases can be expressed by the constitutive 
equation having the form of Pick's Law of Diffusion, the field exhibits the 
characteristic of diffusive media and the clear-cut void propagation cannot 
be observed due to the second-order derivative in space. 

The former phenomenon of the void propagation is known for several 
types of mixtures. For example, they are important in open channel, bubbly 
two-phase and highway traffic flows. In such systems, it is observed that 
under certain conditions these kinematic wave propagations lead to a 
formation of a concentration shock. Because of its origin and a necessity to 
differentiate it from a shock wave due to compressibility effects, we refer it 
as a kinematic shock wave. As it has been shown by Lighthill and Whitham 
(1955) and Kynch (1952), this phenomenon can be analyzed by a kinematic 
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consideration with a simple constitutive law for the flux of matter which 
depends on the concentration. However, without going into a detailed 
discussion, it is possible to write conditions that should be satisfied at the 
kinematic shock wave. This can be done by utilizing the macroscopic jump 
conditions of the Section 1.5 of Chapter 5. Thus we apply Eqs.(5-64) and 
(5-65) to the balance of mass at the shock front, then 

Y,Pmn-{v^-U) = Q (7-39) 

and 

E " ^ ^ ^ •{^k-U) + r^ = 0. (7-40) 

It is evident that Eq.(7-39) expresses the conservation of total mass, whereas 
Eq.(7-40) gives the balance of A:*-phase mass across the shock. Here î ^̂  
denotes the amount of phase changes within the shock layer. Thus Eq.(7-40) 
states that the A*-phase mass fluxes from each side of the shock wave 
balance with the mass production due to phase changes in the shock. 

By solving Eq.(7-40) for the displacement velocity of the shock, we 
obtain 

n^'U = ^ 7 — = ^ ^TT (7-41) 
(^kPk -^kPk ) 

where + and - denote each side of the shock layer. It should be remembered 
that the condition given by Eq.(7-41) is applicable not only to a kinematic 
shock wave but also to a dynamic shock wave due to compressibility effects. 

By limiting our case to a strictly kinematic phenomenon, we assume here 
that the phase densities are continuous across the shock and there is no 
change of phase in the layer. Thus we have 

%" = K' (7-42) 

and 

r,a = 0. (7-43) 

Hence Eq.(7-40) reduces to 



140 Chapter 7 

Y,oc,n\v,-U) = Q. (7-44) 

It follows that the kinematic shock wave velocity U should satisfy 

n^U = L-^-^ ^ - ^ . (7-45) 

[o^k ~ ^k) 

If we use the definition of the volumetric flux j ^ defined by Eq.(4-87), we 
have 

n^^U=''y[^'~^p. (7-46) 

From Eq.(7-46) it can be shown 

n^ ' 3^ + n • j = 0. (7-47) 

This means that across the simple kinematic shock, namely, the phase 
densities being continuous and no phase changes in the shock, the total 
volumetric flux J is conserved. In view of Eq.(7-47), we can transform 
Eq.(7-46) into the following form 

n^U = n^'j + y - ^ r ^ - ^ . (7-48) 
(% " ^k) 

Here we see the close connection between the kinematic wave velocity given 
by Eq.(7-35) and the displacement velocity of the shock given by Eq.(7-48). 

1.4 Dilatation 

The Jacobian of the convective and spatial coordinates of the Section 1.1 
of Chapter 7 is given by 
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Since X^ denotes the initial position, the Jacobian J^ gives the relation 
between the initial and the present volumes if the surface of the volume 
element moves with the center of mass velocity Vj^ . Hence we have 

dV,^J,dV,, (7-50) 

where V̂  and V^^ denotes the present volume and its initial volume, 
respectively. In view of Eq.(7-5) we have 

l A < ^ A _ y . ^ (7-51) 
J, Dt 

which gives an important physical interpretation of the divergence of the 
phase velocity. Recalling the continuity equation for the A:*-phase, it also 
can be expressed as 

V-i5; = 
1 

^kPk ' Dt 
(7-52) 

These two equations show that the divergence of v^ is directly related to the 
dilatation of a volume element rather than the density changes within the 
volume. Furthermore, we see that the dilatation is cause by three effects, 
namely, the phase change I^^, the phase redistribution D^a^lDt and the 

real compressibility of the fluid D^'p^JDt. 
For a mixture as a whole, the characteristic of the dilatation and of 

V • v^ basically reduces to that of a single-phase flow. Thus we have 

S/-v^= = (7-53) 
- J „ Dt p^ Dt 

where J „ is the Jacobian between x and X^ given by 

d(x) 
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INTERFACIAL TRANSPORT 

The exact forms of the interfacial transport terms /^ and I^ for mass, 
momentum and energy interchanges have been given in the Section 1.2 of 
Chapter 5. However, they are expressed by the local instant variables, thus it 
is not possible to use them as the constitutive laws in the averaged field 
equations. It is evident that we need to understand the physical meaning of 
these terms in detail before constructing any particular constitutive equations 
for two-phase flow systems. With this in mind we clarify different physical 
mechanisms controlling these terms as well as to identify important 
parameters on which they depend. Furthermore, it is important to accept that 
not all the characteristics inherent to the local instant two-phase flow can be 
brought into the time-averaged model. We consider that the averaged field 
equations express general physical principles governing the macroscopic 
two-phase flows while the constitutive equations approximate the material 
responses of a particular group of systems with simple mathematical models. 
In this connection, we make a number of assumptions in the interfacial 
transfer terms in order to both distinguish the dominant transfer mechanisms 
and also eliminate some of the complicated terms that have insignificant 
effects in the macroscopic field. 

1 • 1 Interfacial mass transfer 

The interfacial mass transfer term Fj^ has been given by Eq.(5-19), thus 
in view of Eqs.(2-70) and (5-57) we have 

where m^ is the rate of mass loss per interfacial area in unit time fi-om k^-
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phase, and a^j f = l/Lj j is the surface area concentration for they^-interface. 

We define the surface mean value as 

Fm L, = ^ . (8-2) 

Hereafter, we use the subscript (/) only for the variables that may be 
confused with the bulk fluid properties, and we omit it for the variables that 
appear only at the interface, for example a and H21, etc. The mean value 
defined by Eq.(8-2) corresponds to the phase average of Eq.(4-23), thus we 
use the same symbol with the subscript L 

Similarly it is also possible to define a surface mean value in analogy 
with the phase mass weighted mean value of Eq.(4-28). However, at the 
interfaces these variables of the extensive characteristic appear always in the 
flux terms, thus it is more convenient to define a mean value weighted by the 
mass transfer rate rfî  rather than by the density. Hence we have 

1 • / 

Atv. > ci,,m.^p. 
v îti — _ _ 1 1 ~ V ^ • * ^ ^ ^ 

3 

By using the definition of Eq.(8-2), the mean mass transfer per unit surface 
area becomes 

.m, 
rh,= ^ (8-4) 

From Eqs.(8-1) and (8-4), the interfacial mass transfer condition can be 
rewritten as 

Y^r, = 0 with n = - a > , (8-5) 
k=\ 
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1.1 Interfacial momentum transfer 

We recall that the macroscopic interfacial momentum transfer term M^ 
has been obtained in the Section 1.2 of Chapter 5. Thus, in view of Eqs.(2-
9), (2-70), (5-23) and (5-57), we have 

^k = -Yl^ij i^k'^k + Pk'^k ~rik'^) (8-6) 

where the term inside the bracket is the rate of the interfacial momentum loss 
per area from the A:*-phase. Since M^ represents the net interfacial 
momentum gain, it is weighted by the surface area concentration a^^ . 
Similarly, the mixture momentum source from the interfaces is given by 

in which the two terms on the right-hand side of the above equation 
represent the effects of the mean curvature and of the surface-tension 
gradient. 

Before we study the vectorial form of the interfacial momentum transfer 
equation, let us examine the normal component of the momentum jump 
condition, Eq.(2-91). This is because the original jump condition, Eq.(2-72), 
contains two distinct pieces of information; one in normal direction and the 
other in the tangential direction. We should pay special attention in order to 
preserve this characteristic in the interfacial transfer equation. By dotting 
the normal jump condition, Eq.(2-91), by a unit normal vector n^ and taking 
the time average we obtain 

Es 
{ ' 2 - 2 
'77^1 1712 

+ ("'-"=' (8-8) A Pi ) 

-(-r„„i-T„„2) + 2i?,^a} = 0. 

Now we express this equation with the surface mean values defined by 
Eq.(8-2). In order to simplify the result, we assume 

rh^^rhk] a ^a; Pk^~p^ at t G [At\. (8-9) 

Thus the mass transfer rate m^, the surface tension a and the density at the 
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interfaces remain approximately constant during the time interval of 
averaging At. Then by neglecting the normal stress terms, we obtain 

r. 
a, 

2 { ^ 1 ^ 

2 
i__JL + (pu~P2i) + ^H,,a = 0. (8-10) 

We note here that under similar assumptions v̂ e should be able to recover 
Eq.(8-10) from the vectorial interfacial transfer equation. By using the 
surface mean values, the ̂ ^-phase interfacial momentum gain Mj^ becomes 

M, = M[ + M ; + ^ a , +M^ - Va, - C (8-11) 

where 

M^=^a,(^-p,)n, (8-12) 

j 

It is noted here that the shear at the interface can be decomposed into the 
normal and tangential components, thus Tij^' ̂  = ^^k + '^tk • However, 
the normal stress is negligibly small, therefore it can be assumed that 
n^ • ̂  = T^. The first three terms on the right-hand side of Eq.(8-ll) are 
originally the normal components, whereas the last two terms are essentially 
tangential components. Here the concentration gradient appears because of 
Eq.(4-62). 

The mixture momentum source M^ becomes 

^ (8-13) 

The second term takes into account the effect of the changes of the mean 
curvature. However, the gradient of a in the microscopic scale is 
considered to be small and its vectorial direction is quite random, thus the 
last term may be neglected. Hence we approximate 
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(8-14) 

where M^ is the effect of the change of the mean curvature on the mixture 
momentum source. 

It is easy to show in view of Eq.(8-ll) and Eq.(8-14) that the normal 
component of the interfacial momentum transfer condition, Eq.(5-27), can be 
given by 

E 
jt=i 

Va,+Mr \-2H,,^a,-M^=0. (8-15) 

Hence, by comparing the scalar form of the normal component Eq.(8-10) to 
the vectorial form Eq.(8-15), we obtain 

J2M: = MI (8-16) 
k=l 

Here iUf̂  represents the form drag and lift force arising from the pressure 
imbalance at the interface. Ml represents the skin drag due to the 
imbalance of shear forces. The shear components, thus, should satisfy 

^Ml = o with % = w:^^^w,. (8-17) 
fc=l 

Equation (8-17) shows that there exists an action-reaction relation between 
the skin drag forces of each phase as well as between the interfacial shear 
forces. 

For simplicity, we combine these two drag forces and define the total 
generalized drag forces M^^^ by 

where 

2 

(8-18) 
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Hence, 

^M,, =Mf . 
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(8-19) 
k=l 

Furthermore, from the straightforward analysis on the mass transfer rate m^ 
with the relations given by Eqs.(4-61) and (4-62), we can show 

Vu ^i + r, 
Pn^i 

Vv«. (8-20) 

which enables us to replace {̂  and v^ by a single parameter v^. 
As a summary of the interfacial momentum transfer condition, we have 

the following relations 

M, = Mf +p^a,+M,,~Va,-%, (8-21) 

where M^ includes the effects of form drag, lift force and skin drag. 

M^=2H;,^a,+M^ (8-22) 

E^. = ̂ . 
k=l 

with 

Ml = i^n % + r, 'Va, 
PuO'i 

r. 

(8-23) 

(8-24) 

T.M. = M^. 
k=\ 

(8-25) 

If we assume that Pki, cr, M f , a ,̂ T^, and pj^ are known, then three 

constitutive laws should be specified for H21, v^ and M-j identifying the 
interfacial geometry, motion and generalized drag forces. Furthermore, we 
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note that the total generalized drag force consists of the form drag, the skin 
drag as well as the lift force. 

1.3 Interfacial energy transfer 

The macroscopic interfacial total energy transfer for the A:*-phase is 
denoted by E^ which appears only after the phase energy equation has been 
averaged, whereas the mixture interfacial energy source term is E^. These 
three terms should satisfy the interfacial energy transfer condition that is a 
balance equation at the interfaces. Since the relations for E^ and E^ given 
by Eqs.(5-28) and (5-29) are expressed by the local instant variables, they 
cannot be used in the macroscopic formulation in their original forms. Now 
we transform these relations in terms of the macroscopic variables as a first 
step to establish the constitutive laws at the interfaces. 

Because of its practical importance, we start from the analysis on the 
interfacial thermal energy transfer term \ , then we proceed to the study of 
Ej^. From the definition of Eq.(5-39) and Eqs.(5-19), (5-23) and (5-28), we 
have 

A = ^ n - M , - t 4 + i ? , 

-ruu 

.2\ 

u, + V, •v,+ (8-26) 

+'n'k-^k-{%-%)-nk-Qk}-

We define the virtual internal energy at the interfaces in analogy with Eq.(5-
31), thus 

E 
eu 

<^ij^k u, + 
Vk-Vk\ 

|2^ 

T^^ij^ m. 
(8-27) 

And the heat input per unit interfacial area is defined by 

/ 

-iT.^'ij'^k-Qk Q: 
\ 3 

(8-28) 
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Then Eq.(8"26) can be rewritten as 

A = [r,%^ + «.?:') + E[^ii^k • T, • [v, - v,)}. (8-29) 

In order to examine the second group on the right-hand side of the above 
equation, we introduce fluctuating components defined by 

PH ~ Pk Pu'i '^Jd ~ '^k ^H* 

Then we have 

J 3 

Since we have 

j ^'' PH 

the first term on the right-hand side of Eq.(8-31) becomes 

E %• {'Phi {'"k-'"k)-'^k} = Pki 
' n D,a,' 

[PH Dt j 

(8-30) 

(8-31) 

(8-32) 

(8-33) 

The second term can be rearranged to the following form 

j 

-M,,-{v;,-v,)-Va,-%,-{r^~v,) (8-34) 
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where [M^^) and (r.) are defined by 

(M,,)'=(Mr)'+(M*)' 

(̂ 0 =n,-t^-^-

151 

(8-35) 

a. 

Thus, it represents the fluctuating component of the total drag force. 
Consequently, we define the turbulent flux of work due to drag force Wj as 

t^J^5:aJ(M,)'+(rj' < • (8-36) 

Substituting Eqs.(8-33) and (8-34) with Eq.(8-36) into Eq.(8-31), we obtain 

= = i r . DUOLA k^k J2^iPk-^k-{Vk-%)^PH,— n, I 
(8-37) 

In view of Eqs.(8-29) and (8-37), the macroscopic interfacial thermal energy 
transfer A^. becomes 

A =Kfce^ + 0i9« +?'*i n D,a, 
[PH Dt j (8-38) 

Now we introduce the virtual enthalpy of the A*-phase at interfaces in 
analogy with Eq.(8-27) and Eq.(5-37), thus 

K ^ , P l d _ 

Pu 
(8-39) 
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Then we have 
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DMU 
\-\rkK+o,,qU-Pki-^ + M,,-{v^-v,) 

Dt (8-40) 

-^<^r^H-{%i-%) + W^. 

It is straightforward to obtain Ej^ from the relations for Aj^, M^ and P^, 
therefore we have from Eqs.(8-21) and (8-40) the following result 

E, = r, 
-2\ 

K+'^-'^k-^ + aiQu-PH- dt (8-41) 

+M^-v^-Va,.%,.v;,+W^. 

The expressions for Aj^ and Ej^ give the A:̂ -phase interfacial fluxes of 
thermal energy and the total energy in terms of the mean values at the 
interfaces. 

Now we proceed to the analysis of the mixture energy source term E^. 
By assuming that 

da 

~dT 
constant (8-42) 

Eq.(5-29) can be approximated by 

K-E^,[T\^]^.-v,+{t^A^'a),,.v)^ (8-43) 

We recall here that the surface divergence of the interfacial velocity is the 
surface area dilatation (Aris, 1962). Therefore, we have 

1 d. 

H dt 
{dA) = W,-v,. (8-44) 

Hence, together with the assumption that the surface tension gradient is 
small, we may approximate Eq.(8-43) by 
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K = T, 
ida\n 

\dT) 

da. 

DV '' '' dt 
(8-45) 

where the convective derivative DjDt is defined by 

Di d ^ ^ 
^ = — + u - V. 
Dt dt ' 

(8-46) 

We note that the first term on the right-hand side of Eq.(8-45) takes into 
account the effects of the surface energy change associated with the changes 
in area, whereas the second and the last terms stand for the average work 
done by the surface tension. The last term represents the effect of the 
changes of the mean curvature on the mixture energy source. By combining 
Eqs.(8-21) and (8-26) we have 

E4 = En 
(^1 

k=i k=i 
'^H'^k T.^ik-'^k 

k=i (8-47) 

+ E K - ^ - ^ « ^ •̂ «̂ +̂ ™-
k=l 

As a summary on interfacial energy transfer we have the following relations. 

Total energy transfer condition 

E, = r, 
2] = ^da. 

dt 

+M,,-v;,~Va,-%,-v;,+W^ with 

2 

Dt^'' ' ' dt 

(8-48) 

Thermal energy transfer condition 

- V a , - 5 - ( t 5 ^ - i 5 ; ) + t ^ J with 

(8-49) 
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t^-^'{^] 
D _ da, 

DV '' ' ' dt 

+^f+Ek-^-?'«^ -v 
k=\ 

+E 
k=\ 

( ^1 

r. "^U ' "^k 

'Oil. 

M,k'V, 

Since these relations are now expressed by the mean values of the bulk fluid 
and of the interfaces, they can be considered as having the macroscopic 
forms. The constitutive equations can be obtained by relating the interfacial 
variables to the bulk fluid mean values and other characteristics parameters 
such as a^. 

In view of Eqs.(8-5), (8-21) and (8-48) we recognize considerable 
differences between the necessary interfacial constitutive laws for the two-
fluid model and those for the drift-flux (mixture) model. For the former 
model it is necessary to specify F^, M j , E^, M^ and E^ by constitutive 
equations, whereas for the latter model it is sufficient to supply only F^, 

2 

M^ and E^ (or V^ Aj^). Indeed this makes the drift-flux model quite 
A ; = l 

simpler than the two-fluid model. In the diffixsion or drift-flux model we 
supply the relation between the velocities of each phase, thus only one 
momentum equation is required. However, in the two-fluid model we 
specify the momentum exchange term M^ and then solve two momentum 
equations simultaneously. We also note that the sum of Aj^ for two phases 
does not reduce to a simple form as E^ without making assumptions, thus it 
is expected that special attention should be paid in using the thermal energy 
equation in the drift-flux model. 
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TWO-FLUID MODEL 

The two-fluid model (Ishii, 1975, Ishii and Mishima, 1984) is formulated 
by considering each phase separately. Thus, the model is expressed in terms 
of two sets of conservation equations governing the balance of mass, 
momentum and energy in each phase. However, since the averaged fields of 
one phase are not independent of the other phase, we have interaction terms 
appearing in these balance equations. The terms denoted by Fj^, Mj^ and 
Ej^ are the mass, momentum and energy transfers to the A:*-phase firom the 
interfaces. As these quantities also should obey the balance laws at the 
interfaces, we have derived the interfacial transfer conditions fi-om the local 
jump conditions. Consequently six differential field equations with three 
interfacial transfer conditions govern the macroscopic two-phase flow 
systems. 

In the two-fluid model formulation, the transfer processes of each phase 
are expressed by their own balance equations, thus it is anticipated that the 
model can predict more detailed changes and phase interactions than the 
drift-flux (or mixture) model. However, this means that the two-fluid model 
is far more complicated not only in terms of the number of field equations 
involved but also in terms of the necessary constitutive equations. It is 
evident that these constitutive equations should be accurate to display the 
usefulness of the model. This is particularly true with the interaction terms 
Fj^, Mj^ and Ej^ since, without these interfacial exchanges in the field 
equations, the two phases are essentially independent. These interaction 
terms decide the degree of coupling between the phases, thus the transfer 
processes in each phase are greatly influenced by these terms. 

The real importance of the two-fluid model is that it can take into account 
the dynamic and non-equilibrium interactions between phases. This is 
accomplished by using the momentum equations for each phase and two 
independent velocity fields as well as the two energy equations in the 
formulation. Thus, it is expected that two-fluid model can be useful to the 
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analyses of transient phenomena, wave propagations and of the flow regime 
changes. Particularly if the two phases are weakly coupled such that the 
inertia of each phase changes rapidly, the two-fluid model should be used to 
study these phenomena. 

However, if the two phases are coupled strongly (in which the responses 
of phases are simultaneous such that two phases are close to mechanical and 
thermal equilibrium or the wave propagations are firmly interlocked), the 
two-fluid model brings into the system unnecessary complications for 
practical applications. Furthermore, it can be said that the two-fluid model is 
well suited to the studies of the local wave propagations and related stability 
problems. However, if one is concerned with the total response of the two-
phase mixture in a system rather than the local behaviors of each phase, the 
drift-flux model is simpler and in most cases effective for solving problems. 
For general three-dimensional flow, the two-fluid model is better than the 
mixture model because the relative velocity correlation is extremely difficult 
to develop in a general three-dimensional form. 

In what follows, we study a general formulation of the two-fluid model 
as well as various constitutive equations that are necessary to close the 
system of equations. It should be noted, however, that closing the system of 
differential equations by making the number of unknowns and equations the 
same does not imply the existence of a solution nor guarantee its uniqueness. 
However, it is a necessary condition for a properly set mathematical model 
that represents the physical systems to be analyzed. 

It should also be remembered that mathematical models of two-phase 
flow systems are in no sense firmly established and some additional research 
is required to complete the three-dimensional model for a general two-phase 
flow. In order to appreciate the difficulties confi-onting us, we recall that 
even in a single-phase turbulent flow, the general constitutive equations for 
turbulent fluxes are not developed yet. In view of the present state of the art 
on the three dimensional two-fluid model formulation, the necessary form of 
the model is discussed in general terms first. This chapter, therefore, should 
be considered as a framework and guidance to formulate the constitutive 
equations fi*om them. The following diagram summarizes the establishment 
of the two-fluid model formulation. 

1.1 Two-fluid model field equations 

Two-Fluid Model Continuity Equations 
The two-fluid model is characterized by two independent velocity fields 

which specify the motions of each phase. The most natural choice of 
velocity fields is obviously the mass-weighted mean phase velocities v^ . 
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LOCAL INSTANT FORMULATION 
Phase 1 
Field Equations 
Constitutive Laws 

Interface 
Jimip Conditions 
Interfacial B. C. 

Phase 2 
Field Equations 
Constitutive Laws 

TIME AVERAGING 

INTRODUCTION OF MACROSCOPIC VARIABLES 

AXIOM OF 
CONTINUITY 

TWO-FLUID MODEL FORMULATION 

1 r 

Phase 1 
Field Equations 

i ^ 

Macroscopic 
Constitutive Laws 
for Phase I 

^ r 

Interfacial 
Transfer Conditions 

i k 

Constitutive Laws 
for Interactions 

Y 

Phase 2 
Field Equations 

A 

Macroscopic 
Constitutive Laws 
for Phase 2 

Thus the suitable form of the continuity equations to be used in the model 
should be Eq.(5-21) 

dt 
+ v-(«iPfcVfc) = r , (9-1) 

with the interfacial mass transfer condition from Eq.(5-22) 

2 

E 
k=l 

En = o. (9-2) 

Thus, the term denoted by Fj^ represents the rate of production of A:̂ -phase 
mass from the phase changes at the interfaces per unit volume. It appears 
because the local continuity equation has been integrated in time to obtain a 
macroscopic field equation. Furthermore, it can be said that Eqs.(9-1) and 
(9-2) are the general statements of the conservation of mass in the 
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macroscopic field, as a result they hold regardless of the mechanism of phase 
changes. 

In terms of the convective derivative of Eq.(7-ll) the continuity equation 
becomes 

| ^ K ^ ) + «.PrV-i5; = n. (9-3) 

And thus we have 

«. ̂ + 7 , ^ + « . ^ • ̂  = n. (9-4) 

For a steady state flow, the time derivative of Eq.(9-1) drops, hence we have 

V- (« ,^ t5^ ) = n . (9-5) 

If each phase is originally incompressible, then the mean density p^. is 
constant. Thus we have 

- ^ + V- a.iJ; = = • (9-6) 

And furthermore, if there is no change of phases, the continuity equation 
reduces to 

~dt' 
+ V - ( « , i ^ ) = 0 (9-7) 

which can be used in a low speed two-phase flow without phase changes. 
Under these conditions the kinematics of the two-phase system is completely 
governed by the phase redistribution, namely, by the convection and 
diffusion. The form of the above equation is analogous to that of a single-
phase compressible flow. 

The general form of the phase continuity equation has been given in the 
vector notation by Eq.(9-1). In view of a practical importance, we express 
the equation in rectangular and cylindrical coordinate systems. Thus, in 
rectangular coordinates (x^ y, z) we have 
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If the flow is restricted to two dimensions, then it represents a plane flow. In 
this case, the partial derivative with respect to x can be dropped from Eq.(9-
8). We also note here that, for a steady plane flow with no phase changes, it 
is possible to introduce a stream function. 

The continuity equation in cylindrical coordinates becomes 

Flow is said to be axisymmetric, if there is no dependences on Q -direction, 
thus for such flows we have 

^(^^^bPT) + -^-[^^kTk'^^ + ^(^«ifc^^) = ^A- (9-10) 

A stream function can also be introduced for a steady axisymmetric flow 
with no phase changes, making it is possible to eliminate the continuity 
equation from the formulation. 

Two-Fluid Model Momentum Equations 
In the two-fluid model formulation, the conservation of momentum is 

expressed by two momentum equations with the interfacial momentum 
transfer condition. As it was mentioned before, the appropriate field 
equations should be expressed by the center of mass or the barycentric 
velocity of each phase v^ , thus from Eq.(5-26) we have two momentum 
equations given by 

— - — + V- a,p,t ; , i ; , ) 
dt (9.11) 

-v(a,p,) + v .k(r .+c) ̂ ^kPk9k-^^k^ 
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The interfacial transfer condition (8-23) has the form 

2 

y. Y.^, = M^ (9-12) 

with 

M^=2H,,^a,+Ml (9-13) 

We note here that the momentum equation for each phase has an interfacial 
source term M^. that couples the motions of two phases through Eq.(9-12). 

Here, H^i and a are the average mean curvature of interfaces and the 
surface tension, whereas the term given by M^ takes account for the effect 
of the changes in the mean curvature. 

In view of the Section 1.2 of Chapter 8, Eq.(9-11) can be rewritten as 

n 

dt 

+ V Oti. ^+c) + (^kPk9k (9-14) 

+ h^n+P^«*+M,, -Va, -^ . 

Hence, by using the convective derivative of Eq.(7-ll) the Ar̂ -phase 
equation of motion becomes 

O^kPk — - - « * V p ^ + V ' 
Dt a. ^+C) + (^kPk9k 

+(pH-Pk)'^^k+{vu-'ih)r,+M,,-Va,-w:;, 
(9-15) 

or by substituting Eq.(8-20) into Eq.(9-15) we have 

- ^ * ^ * = - a , V p ^ + V. 

PuO-i 

+ otkPk9k 

r, + M^ (9-16) 
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In general the equation of motion is a vectorial equation, thus we have three 
components or three corresponding scalar equations. In what follows, we 
express them in two coordinate systems of practical importances. 

The equation of motion in rectangular coordinates (x, y, z) can be given 
as follows 

X -component 

^kPk 
dt 

'.k ^.dv2 ^9v2 ^9v2) 
+ '^xk — + .̂fc — + V 

dx ^^ dy ^zk dz 

9Pk 
= —a. dx 

+^kPk97k + t ^^ (^^^ + ^ ^ 0 + ~^^k (Vfc + ^ i ) 

d ( \1 / = = \ ^^k 

(da. 

y -component 

(dv 

da. da. 

ox oy dz 

^kPk 
dt 

'yk , —̂  ^ V , — "̂  ""yk , 9^yk I 
+ '^xk-;7-+'^yk-ir-+^zk 

dv2 _ dVy^ 

dx ^ dy dz = -a. 
9Pk 

dy 

+^ i , . -
da. da. 

da^ 
r 

da. 

dx 
r 4 - - ^ r 4 - - -r xyki dy yyU dz 

(9-17) 

(9-18) 

z -component 

O'kPk + d̂fe — + V, 
9v2) 

dt dx 
''yk 

dy dz 
—ex. 

dPk 

dz 
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+<^kPk£k+\ 
U I q- \ U / J. \ 

d / = \1 / = = \ ^^k 
+-^^k(^zzk + ^L)\ +(Pki-Pk)-^ + {^-^k)rk 

(da. 
+M,, -izk 

dx 
T 4-xzki ' 

da. 

dy ^^^ ^ dz r.. 

(9-19) 

We note here that for a plane flow, the x -component of the equation of 
motion drops. Furthermore, all the partial derivatives with respect to x 
should be eliminated from the y and z -components of the equation of 
motion, namely, Eqs.(9-18) and (9-19). 

The equation of motion in cylindrical coordinates (r, 9, z) becomes 

r -component 

^kK 
^9%k _ 9v^k v2 dv^k 

dt ^ dr r 89 

^ 2 Bir\ 
"̂  ^Zk o 

r oz 

-au 
9Pk 

dr + ^kPk9^k + \~~^^^k {^rrk + ^^k) 

"'" i^n ^k \^rek + '^rekj ^k yeek "I" ^eek) 
r o9 ^ / ^ \ / 
d / = T\\ / = =\9^k (^ _ . 

+ ^ % Vrzk + ^rzk)\ + \VU ~~Pk)~^ + K ^ ~ ^rkj^i 

+K 
(da. 

irk ' '^'rrhi. I ' 

1 da. 
' ^RrU ~r 

da. 
-T^ 

d rrki "̂  o/i ^^^ o ^^ 

r r o9 oz 

(9-20) 

9 -component 

(^kYk at or r o9 r oz 

+ ^kPkdek + iZiTTj ^k [Trek + -^rek) 
r 09 r dr 
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•+" o/i ^k yeek + ^eek j "^ o ^k yezk + ^ozk) f 

/ = = \ 1 ^ ^ f c 
iOk 

dr 
-T, rOki + 

1 da^ 
'T, eoki + dz 

zdki 

(9-21) 

z -component 

(dv. 
^kPk 

zk dv. zk 

dt ^'''' dr + 
""ek 

dv. zk 9%,) 

r 06 dz 

dPk = _ f l a r / = T^ 

= - ^ f c - ^ + ^kPk9zk + \~~^V^k Vrzk + ^rzk) 

+ ~ ' ^ ^ A ; yOzk + ^ezk) + " n ~ ^ ^ yzzk + ^zzk)) da 
+(p;^ - P O ^ ~ " + ( ^ ~ ^^k)^k+^uik 

9a , 

dz 

1 9 a 
.7- . J '^flr^j ~ r 

[ dr r dO 
9o^k 
dz 

zzki 

(9-22) 

For an axisymmetric flow, the terms with partial derivative with respect to 
6 drop from the equations. Furthermore, if the flow is free from the 
circulatory motion around the z -axis, then the velocity in 9 -direction is 
also zero, thus the entire 9 -components of the equation can be eliminated. 
For many practical problems of two-phase pipe flows, this is a sufficiently 
accurate model to be used. 

Two-Fluid Model Energy Equations 
The most ftmdamental form of the conservation of energy is expressed by 

considering the balance of the total energy. For the two-fluid model 
formulation, we have two total energy equations with the interfacial energy 
transfer condition. Thus from Eq.(5-32) we have 
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d_ 

dt O^kPk 

~2\ 

e.+- + v. <^kpk 

-2\ 

€ + v. 

+(^kK9k •%+Ek-

( « . ^ . - ^ ) + V-{a,T-v, (9-23) 

Here we have assumed that g^. is constant, namely, ^j. = ^ . The 
interfacial transfer condition (8-48) couples the energy transport processes of 
two phases, thus we have 

_2 

EEk=K (9-24) 

where 

E^ = T. 
da) 

[dTJ Dt " dt 
(9-25) 

These relations show that the sum of the interfacial energy transfer terms 
E^ for each phase balances with the time rate of change of surface energy 
and the work done by the surface tension. We note here that the term given 
by E^ takes account for the effect of the changes in the mean curvature. If 
we use the detailed expression for E,^ in terms of the interfacial variables 
given by Eq.(8-48), the total energy equation can be rewritten as 

d_ 

dt O^kPk 

~2\ 

e,+ + W-O^kPk 

- 2 ^ 

e,+ Vr. 

= -v-[«,(g,+gf)l + v-(a,r,-i5;) 

+ afcPfc «*•»* + n 
-2\ 

K+'^-'^k-^ 
(9-26) 

-PH- dt 
+ M , , - v ; - V a , - ^ -t^+W^^^ 

By using the transformation on the convective derivative, Eq.(7-13), we can 
write 
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(^kPk Dt 

~2\ 

e: + = - V - a , ( 9 , + g r ) + V-(a,7; .^ 

+«fe Pk'"k-gk+r,{{e;^-e,) + {v;,-v,)-v^] + a,q'^ (9-27) 

-^tt 
5"i r 

^^ p« 
+ M,,-t5;:- V a , . ^ -v^ + PT̂ ^ 

Equation (9-23) describes the transfer of energy seen from the observer at a 
fixed point, and Eq.(9-27) expresses the energy transfer by following the 
fluid with the barycentric velocity v^ . 

In many practical heat transfer problems, it is convenient to use the 
thermal energy equation instead of the total energy equation. This is 
particularly true for low-speed, two-phase flows with heat additions where 
the mechanical terms are insignificant in comparison with the high heat 
transfer rates. Thus, by recalling Eq.(5-38) and Eq.(5-39), the thermal 
energy equation is given by 

(9-28) 

Substituting the expression for yl̂  of Eq.(8-40) into the above equation, we 
get 

+|j(«.^) - ^ • V • («,C) + ̂ kW •• vi^ 

+ Ykhu + (^iQuj - Pki - ^ + Mik • ( ^ - « J 

(9-29) 

This equation can also be transformed in terms of the convective derivatives 
as 
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O^kPk ^^^^ -̂-V-aJC + ̂ n-^-V-KO 
Dt 

Dt 
« * ^ : V i 5 ; + r , ( ^ - ; j ) 

(9-30) 

which is the equation describing the exchanges of thermal energy as seen 
from the observer moving with the mass center of the ̂ -phase. 

For simplicity we denote the turbulent energy source by #J and the 
viscous dissipation term by <?JC , thus 

^l^-v,.V.[a,W,^) + Wi (9-31) 

Then Eq.(9-30) reduces to 

(9-32) 

^kPk - ^ = - V • a, (q^ + ql) + «. 
Dt ^ ' Dt 

k ^ + ^ l + ^'k 

1= = N A ^ 

Dt 

+Mik \%i- '»k)-^^k-%a\vH- V^)-

(9-33) 

Now we expand the above thermal energy equation in two coordinate 
systems of practical importance. Thus, in the rectangular coordinates 
{x, y, z), Eq.(9-33) becomes 

"it PA 

dK dh dk 

dt 
+ '"xk^r- + '"yk^ + V± 

dh 

dx dy dz 

d_ 

dx «4^«fe+^^) 
d_ 

dy^ a, fe*+?S) 



p. Two-fluid Model 167 

-^[^k(u + (ll)\ +<^k 
dz dt dx '"'' dy 

+v. 
dPk 

zk +<+^r+n(^-^) 
dz 

+ € — + C 
da^ 

a?/ (72: 

I ^Qr . 

^ dx 

[dar. 

T 4-
aa;A» 

da. 

dau 
-r^, yxki "̂  r j ' -zrc/ra 

da. = 

dx ^"^"^ "̂  dv ^''"^ ̂  dz '̂'"^ 

[da. 
T.yJcn. ' 

a?/ 

Scti. 
_, T- -I 

aa; ay a-z 

{vZ-%k) 

(9-34) 

For a plane flow, the partial derivative with respect to x drops and the x -
component of the velocity is zero. 

In the cylindrical coordinates {r,9,z), the thermal energy equation 
becomes 

(^kPk 
dh dh . vTdK 

dt ^ dr r 36 
+ • + v. 

dk. 
zk dz 

1 d 

r dr 

I d i / = 
rak (Qrk + Qrk)\ - - ^ [ % (<iek + <Sk) 

[«* [u + QV) + ««: 

rdO 

â  5r r 5^ 

+v. 
dPk 

zk dz 
+^k+^i:+n(hu-K) 

+ai<lH + (Pk - PH) 

(9-35) 

(daj^ da^ ^ da^^ da^^ 
+ € — + —-:Tr + C 

dt 
""rk 

dr r dO 
""zk dz 
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+^tr^ ( ^ - ^ ) + M^^ ( % ; - % ) + M,^^ ( ^ - v;^) 

(da. 
-n- . -I 

rrhi ' 

1 da. 
^RrU I 

^reu + 

( 5 r 
rziW. ' 

1 (9Q:̂  

1 dau 

^eeu + 

r 9^ 
'^ftyu ~ r • 

da^ 

dz 

da^ 

dz 

-r. zrH 

-T z9ki 

'T zzki 

For an axisyimnetric flow, the partial derivative with respect to 9 drops 
from the equation. Moreover, if the flow is free from the circulatory motion 
around the z -axis, the 6 -component of velocity is zero. This is a good 
approximation for many two-phase flows in pipes, particularly for vertical 
pipe flows. 

It can be seen that both the total energy equation and the thermal energy 
equation are quite complicated in their full forms, and thus several 
simplifications are important for solving practical problems. We study 
several special cases below. If the heat transfer and phase changes dominate 
the energy exchanges, then we may neglect the terms arisen from the 
mechanical effects. Under this condition, Eq.(9-30) can be reduced to 

« * ^ ^ = - V • a, (C + ql) + r,(fi-K) + ad- (9-36) 

The above equation suffices for many two-phase flow analyses except the 
problems of compressible wave propagations and/or at high speed flow 
conditions. 

In the rectangular coordinates (x, y, z) Eq.(9-36) becomes 

"ifePfc 

dh dK dK dK 

dt dx " oy oz rk(hki-hk) 

+«i«fa' - i —"fc (^crk + ?JA) + — a* (qyk + Qyk) 
dx 

(9-37) 

+ ^CXk(<l.k+<ll)]-

If we use the cylindrical coordinates (r, 9, z) we have 
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«*Pfc dt ^""'' dr + 
"ek 

dh 

r 89 "zk dz 
= rk(K-K) 

+«i?« - | - ^ ^ « A (irk + Qrk) + - ^ « * (<lok + Qok) (9-38) 
r dr rdO 

+~oc,{q,,+ql)\,. 

Furthermore, if the flow is axisymmetric with negligible heat transfers in the 
axial direction it reduces to the following form 

^kPk at or oz = r,[K-K) + (^i€ 

1 d 
-^H(g.,+gr,)}. 
r dr 

(9-39) 

It is a much simplified form of Eq.(9-35), yet the important heat transfer 
mechanisms are preserved in the above equation. 

1.2 Two-fluid model constitutive laws 

1.2.1 Entropy inequality 

The general scheme of constructing the two-fluid model has been 
discussed at the beginning of this chapter. It is evident that the macroscopic 
field equations (9-1), (9-11) and (9-23) and the interfacial transfer conditions 
(9-2), (9-12) and (9-24) are insufficient to describe any particular system, 
since the number of the variables exceeds that of the available equations. 
Additional information which specifies the material and response 
characteristics of a particular group of materials is necessary. These are 
commonly called as constitutive equations, as explained in detail in Chapter 
2. 

The purpose of this section is to examine the necessary constitutive 
equations to close the system of equations. It is always possible to introduce 
more detailed mechanisms and variable to differentiate various effects of 
material and transfer mechanisms and then to complicate the set of equations. 
Consequently, we will discuss the most important aspect of the constitutive 
laws, namely the principle of the determinism, with the simplest and the 
reasonably general set of the equations. For this purpose we consider two 
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sets of the macroscopic conservation equations of mass, momentum and 
energy given by Eqs.(9-1), (9-11) and (9-23) and the interfacial transfer 
conditions of mass, momentum and energy, Eqs.(9-2), (9-12) and (9-24). 

In analogy v îth Chapter 2, we proceed to study entropy inequality in the 
macroscopic field. Thus, by applying the averaging procedures of Eqs.(5-8) 
and (5-10) to the inequality (2-23) and (2-85), we obtain 

dt ^kPkh+^ '(^kPkh'^k) + ^ ' a. 
Qk 

T. k) 
+ ^kPk4'^l 

i^kSk + n, 
yT, 

A>o 

(9-40) 

and 

= A >0 

dt 
Sa + â V, -Vi-Y^ 

2_ 

A ; = l 
^kh + Wfc 

9, 
T (9-41) 

where we have taken the internal body heating q^ to be zero. 
We recall that in Chapter 2 the interfacial entropy generation A^ has 

been assumed to be zero in order to obtain simple boundary conditions at the 
interfaces. We follow exactly the same approach here, thus we have 

A=0. (9-42) 

Consequently, we obtain 

T,.. = T. 2i 

v„ Vti = '^a 

m. E-.E^ 
k=l T% 

9k + 
hk-vS r, nnk 

Pk 

(9-43) 

However, the last condition can be approximated for most practical problems 
by 
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Pu - P (^ ) = 2H,,a Pu 

[pTi-

\p^i-

\ 

'Ki) 

or 
(9-44) 

which is the macroscopic form of Eq.(2-107). 
The first and second conditions of Eq.(9-43) can be used to replace the 

fluid temperatures and the fluid tangential velocities by two parameters T. 
and v^- , whereas the last condition remains very important in the 
macroscopic formulation to set the energy level of the interfaces. Since at 
the lower reduced pressure, the density ratio is large and at the higher 
reduced pressure, surface tension effect is small, Eq.(9-44) may be 
approximated by 

p;-f'''[T) = o. (9-45) 

Thus, the vapor is almost always very close to the saturation condition at the 
interfaces. Equation (9-45) is simple enough and it is widely used even in 
the local instant formulation of two-phase flow problems. From the above 
discussion, it is seen that the result of Eq.(9-42) can be represented by a 
single equation (9-45) because the other conditions of Eq.(9-43) are satisfied 
by simply replacing the interfacial fluid temperatures and the tangential 
velocities by those of the interfaces, namely, T. and v^^. 

Now we study the entropy inequahty of each phase given by Eq.(9-40). 
If the fluctuations of the interfacial temperature are not important, then we 
have in analogy with Eq.(8-9) the following approximation 

T,. (9-46) 

Then Eq.(9-40) can be expressed with the interfacial macroscopic variables 
of the Section 1.1 of Chapter 8 as 

PI 

A5fc< + «i?H = A>o. 

a. 
Qk 

\^k) 
+ (^kPk^Wk 

(9-47) 
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Although the above equation can be satisfied by the local instant 
formulation with the positive viscosity and the thermal conductivity, it still 
imposes some restrictions on the macroscopic constitutive equations. In 
other words, the exact form of A^ which is obtainable from the local instant 
formulation satisfies Eq.(9-47), however it does not ensure that the left-hand 
side of the equation with various constitutive equations is always positive. It 
can be said that the formulation is consistent only if a set of constitutive 
equations with constraints imposed by the continuity, momentum and energy 
equations satisfy the inequality (9-47) trivially. Before we apply the above 
inequality, we will discuss one of the most important characteristics of the 
macroscopic model which appears only after the averaging. 

1.2.2 Equation of state 

It can be said that even if the original local instant formulation has simple 
Unear constitutive laws with a standard equation of state as given in Chapter 
2, the macroscopic model obtained by averaging may not have such simple 
constitutive equations. This is because the statistical effects of local instant 
fluctuations appear in the formulation. In general, these statistical effects 
depend not only on the present state in terms of the macroscopic variables, 
but also on the processes in which the present state has been reached. For 
example^uid particles having the same values for the energy ^ and the 
density ~p^ can have entirely different values for the average temperature or 
the pressure. All these suggest that the macroscopic field has the 
characteristics of the materials with memory (Truesdell 1969). Thus the 
constitutive equations in general are given by the functionals of the past 
processes. This makes the analysis on the macroscopic constitutive 
equations extremely complicated and difficult. It is evident that the 
formulation will result in a set of coupled integro-differential equations. In 
order to avoid these difficulties, we have to make several assumptions at the 
expense of the accuracy of the model. We know that all materials show the 
characteristic of fading memory (Coleman and Noll, 1960). Thus, the 
importance of the effects of memory in a formulation depends on the ratio of 
the time span of the effective memory to the time constant of macroscopic 
processes. 

Let us now examine the averaged equation of state corresponding to 
Eq.(2-24). We have 

- ^ + ^iPAV,) (9-48) 
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= T. 
dt 

+ V - ( p A ^ , ) PfcV-v,. 
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By averaging the above equation we obtain 

Duu: 

T,\a,p, ^ + V • [(^,PM ] + r,{f,- s;,) 

^OikT'kPk 

ids. 

dt 
+ v. • V s . 

Pk Dt \ I \Pk Pu) 

-^kPk 
, 1 {^P^ 

Pk dt 
+ % • ^Pk 

(9-49) 

Here we have used the identities 

and 

OB, 

V J 

4 V 5 , = A V a , 5 , + 4 5 ] a , . n , 5 , + a , 4 V 5 , 

with 

(9-50) 

A — A A- (9-51) 

Equation (9-49) shows that, in general, we do not have simple equation of 
state in terms of averaged variables. The relation between the internal 
energy v^ , the entropy 5̂  and the density p^ is influenced by both the 
interfacial transfers and the statistical effects of the fluctuations of the 
variables. 
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A simple static relation between these mean values follows if the 
fluctuating components are sufficiently smaller than the macroscopic 
changes of these variables in question and thus the linear expansion of the 
equation of state is a good approximation. In this case we have 

K = '^k[h^Pk) = ^k[h^Pk] (9-52) 

with 

du, 
Tk[h^ Pk) = ^[h^ Pk)~ T^ (9-53) 

and 

Pk fe) Pk] = ~ ^1 '' s f e Pk) = Pk-
9(ypk) 

(9-54) 

These relations hold for a two-phase flow with each phase itself being in 
near equilibrium state in the time interval of At. Hereafter we assume that 
each phase obeys the static equation of state, Eq.(9-52) in the macroscopic 
field. It is a rather significant and practical assumption that enables us to 
construct the two-fluid model and its constitutive equations in parallel with 
the standard single-phase flow formulation. Under the above conditions, we 
have following relations in analogy with Eqs.(2-24), (2-25) and (2-26) 

'^k = ^k (^iPk) 

= 9u. 
T - -

OSr. 

duu 
Pk 

9(l/ft) 

Pk 

Pk 
and 

(9-55) 

du, = T.ds; ~ p^d P̂ 
[Pk) 
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The fundamental equation of state can also be represented by the 
combination of the caloric and the thermal equations of state, hence 

u. = '^k(Tk^Pk] (9-56) 

Pk = Pk(Tk,Pk) 

or if we take the enthalpy as a variable, it becomes 

(9-57) 

(9-58) 

Pk = Pk(Tk^Pk)- (9-59) 

In view of their great practical importance, we now study several 
thermodynamic second derivatives. The specific heats at constant pressure 
Cpj^ and at constant density ĉ ^ are defined by 

dL 
^pk — 

dTu 

dsl 

dT. 
Pk 

(9-60) 

Vk 

and 

^vk — 
_ du^ 

dT, 

= dsu 
= T 

OT, 
Pk 

(9-61) 

'Pk 

Similarly, the thermal expansivity /3^ and the isothermal compressibility 
Kj,}^ are defined by 

P k ^ - l ^ 
Pk dT, 

(9-62) 

'Pk 
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1 9%^ 
'^Tk — 

Pk dPk Pk{(^Tkf 
(9-63) 

where aj,^ is the isothermal sound velocity. Among these four derivatives 
we have the following identity 

S , ~ c , , - - ^ A ^ . (9-64) 

It is known that if Eq.(9-55) holds, then only three of the thermodynamic 
second derivatives are independent and others can be obtained from these 
three. Let us introduce the ratio of the specific heat 

(9-65) ^pk 
l k = ~ 

^vk 

and the isentropic compressibility re,j. 

1 9% 

Pk dPk 

1 

^ ft(%)' 
(9-66) 

where â ,̂ is the isentropic sound velocity. Then we have 

{aj=i^. (9-67) 

It shows that the isentropic sound velocity is always larger than the 
isothermal sound velocity, since from the stability of the system KJ,J^ > 0 , 
thus 7^ > 1. The importance of the thermodynamic second derivatives or 
the thermal and the caloric equations of state are related to the possibilities 
of measurements. For example, the fluid pressure and temperature are 
relatively easy to measure, thus the equations of state in the form of Eqs.(9-
58) and (9-59) can be constructed experimentally. 

Saturation Condition 
The classical saturation condition is given by 
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(9-68) 
¥^=¥2= f'' 

T =T 

then 

Thus we have the relation 

which is assumed to be identical to Eq.(2-99). 

1.2.3 Determinism 

In the present analysis, we have assumed the existence of the static 
equation of state, Eq.(9-55). From the principle of determinism, we should 
be able to predict the present state from the past history. The necessary 
condition is that the system of equations is closed, or the number of 
unknown being same as that of equations. We see that this condition is not 
satisfied by the field equations (9-1), (9-11) and (9-23), the interfacial 
conditions (9-2), (9-12) and (9-24) and the equations of state (9-55). 
Consequently, it is necessary to add several constitutive equations that 
express the transfer mechanisms of average molecular diffusion, turbulent 
transfer and interfacial exchanges. 

By taking the thermal and caloric equations of state, Eqs.(9-56) and (9-
57), the variables appearing in the two-fluid model formulation are: 

1. Conservation of Mass a^, ^ , i5 ,̂ T^; 

2. Conservation of Momentum pĵ , ^ , ^ ^ , ^ , M^, M ^ ; 

3. Conservation of Energy ^ , ^ , g j , S^, E^] 

4. Equations of State u^^^T^^T., 

where k= \ and 2. Hence, the total number of the variables is thirty three. 
For a properly set model we should have also the same number of equations. 
These can be classified into the following groups. 
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Equations 
1) Field equations 

mass Eq.(9-1) 
momentum Eq.(9-11) 
energy Eq.(9-23) 

2) Interfacial transfer conditions 
mass Eq.(9-2) 
momentum Eq.(9-12) 
energy Eq.(9-24) 

3) Axiom of continuity 

a. \~ a^ 

4) Average molecular diffusion fluxes 
viscous stress ^ 
conduction heat transfer q^ 

5) Turbulent fluxes 
turbulent stress ^ ^ 
turbulent energy transfer q^ 

6) Body force fields ^ 

7) Interfacial transfers 
mass r^ 
momentum M^ 
energy E^ 

8) Interfacial sources 
momentum M^ 
energy E^ 

9) Equations of State 
thermal equation of state 
caloric equation of state 

Chapter 9 

Number of Equations 

1 
2 
2 

2 
2 

2 
2 

2 
2 

10) Turbulent kinetic energy 

11) Phase change_condition specifying the interfacial 
temperature T. 
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12) Mechanical condition_at interface specifying 
the relation between p^ and p^ 
(Average normal momentum jump condition) 1 

This shows that we also have thirty three equations, thus the formulation 
is consistent. However, it should be noted that the constitutive equations 
shown above are expressed in the most primitive forms, thus it is quite 
possible that these equations are coupled with each other through some 
additional parameters with the same number of supplemental constitutive 
equations. Furthermore, if one is to use the entropy inequality then Eq.(9-
55) should be introduced in the formulation. 

1.2.4 Average molecular diffusion fluxes 

Viscous Stress Tensor ^^ 
The constitutive equations for ^ and g^ can be studied by using the 

identity (9-50). For simplicity, we assume that the fluid is Newtonian and 

Pk ^ Pk 
_ mte [At]^. (9-71) 

f^k - l ^ k 

Then we obtain from Eqs.(2-38) and (9-50) 

f = Tkll'^^k + i^^kT] + —T.% {"^kVl + vlnA (9-72) 
l ^ k j J 

where v^ is the fluctuating component of the A:*-phase velocity with respect 
to i5̂  . It is easy to see that the second part of the stress tensor becomes 
important when the difference between the interfacial fluid velocity and the 
mean velocity is large. Thus it takes account for the effects of the interfacial 
motions and the mass transfers on the average deformation. Let us define 
the interfacial extra deformation tensor by 

^H = :r-I]«ii K K - ^J + iyk - ^0^4 
^^k j 

. . (9-73) 

2a, I J 
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The bulk deformation tensor is given by 

1 
^fc6 vt^+(vt5;r. (9-74) 

Consequently, we have 

w:, = l^i,{D,, + D^). (9-75) 

If the effect of the extra deformation tensor is included in the formulation, 
then a constitutive equation specifying D^ for each phase should be given. 
In general, it is considered to be quite complex due to various mechanisms 
affecting D^, however, under special conditions it can be reduced to a 
simple form. For example, if phase c is a continuous phase in a dispersed 
flow and the motions of interfaces are quite regular with little effects from 
the phase changes, then Eq.(9-73) with Eq.(4-62) can be approximated by 

2a^ 

and 

. = 0. 

For a more general case, we may approximate Eq.(9-73) by 

(9-76) 

O^ = - ^ { ( V « e ) K - ^ ) + (^ - ^)(V«c)} (9-77) 
2 a 

where a* represents the mobility of phase c. 

Conduction Heat Transfer 
The average heat flux g^ for a fluid obeying Fourier's Law of Heat 

Conduction, Eq.(2-41), can be given by 

(Ik = -Kk 
a, •k j 

(9-78) 

in which we have used the identity (9-50) and assumed 
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K,^T, inte[At]^. (9-79) 

Furthermore, if we assume the thermal equilibrium at the interface, 

T,^¥, at i e [Atl (9-80) 

then Eq.(9-78) reduces to 

Qk = -K, 
a. 

-(T,-T,) (9-81) 

where we have used Eq.(4-62). It is interesting to note here that the second 
term represents the heat flux due to the concentration gradient and somehow 
it resembles the Dufour effect in the single-phase mixtures (Hirschfelder et 
al, 1954). 

1.2.5 'Rirbulent fluxes 

Turbulent Stress Tensor - Mixing Length Model 
The difficulties encountered in writing the constitutive equations for 

turbulent fluxes, even in a single-phase flow, are quite considerable. The 
essential problem in turbulent flow analyses is to formulate a closure scheme 
for the averaged field equations. There are two different methods that have 
been used extensively in studying the transport mechanisms of turbulent 
flows. The first approach is based on the phenomenological construction of 
the constitutive equations for the turbulent fluxes. It is best represented by 
the mixing-length hypothesis of Prandtl who proposed a turbulent model by 
analogy with the kinematic theory of gases. 

The second method is to use more accurate dynamical equations 
describing the turbulent transports. This can be done by taking the higher 
moments of the momentum equation. In this way, the number of dynamical 
equations can be increased as desired. This set is not closed, however, 
because a turbulent correlation term that arises as an additional flux in the 
moment equation is always one order higher than the other terms. Thus, 
these equations can never be closed mathematically. Consequently, it is 
necessary to make some approximations and use only Umited number of the 
dynamical equations. In contrast to the statistical theories based on higher 
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moment equations, the phenomenological approach is simple because it 
supplies directly the turbulent stress. 

For many engineering problems, the mixing length model still remains as 
the primary means to obtain a solution particularly for the wall-induced 
turbulence. Inclusion of coupled higher-order moment equations almost 
always requires extensive computer calculations, whereas in many cases 
even the integral method suffices for engineering requirements. 

Even in a single-phase flow, the statistical theories for turbulent flows are 
not firmly established and the method very often involves a system of quite 
compUcated equations. Consequently, we do not discuss their applications 
to two-phase flow systems except for dispersed two-phase flow in the 
Section 1.4 of Chapter 12. Because of its simplicity, we now study the 
phenomenological approach for the turbulent fluxes in the two-fluid model 
formulation. 

Following the standard analysis on the stress tensor (Truesdell and 
Toupin, 1960; Aris, 1962; Slattery, 1972), we assume that the local turbulent 
stress W^ can be decided if we know the phase velocity at the point and the 
deformation of the phase around it. The above assumption satisfies the 
constitutive/7rmc/pfe of local action. Furthermore, if we use ihQ principle of 
material frame indifference^ we arrive to the conclusion that the stress tensor 
depends only on the deformation tensor 

^fc6 + -»« (9-82) 

where the bulk deformation tensor i?^^ and the interfacial extra deformation 
tensor are given by Eqs.(9-74) and (9-73), respectively. The turbulent stress 
which is caused by the bulk deformation can be called as the shear-induced 
turbulence, whereas the one that is caused by the interfacial extra 
deformation may be called as the bubble-induced turbulence. 

In reality, these two constitutive principles may not be fijlfiUed in a strict 
sense even in single-phase turbulent flows as it has been discussed by 
Lumley (1970). Since there are very few experimental facts to depend on, 
we consider the simple case when above assumptions is valid. Consequently, 
the most general form permitted under the conditions is 

tE,^ = a,,I + a,,D, + a,,D, • D, (9-83) 

where the coefficients %o, a^^, and â 2 ^ ^ functions of the three invariants 
of the deformation tensor D^ given by t r D^ , D^\ D^ and det D^ . 
These are, namely, the trace, double dot product on itself and determinant of 
D^, respectively. Hence, we have 
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^A. = « ; ^ ( p r . ^ . ^ i b . ^ . ^ i . ^ . t r l ? , , l ? , : ! ? , , de t i ? , ) . (9-84) 

In addition tojhe three invariants, the arguments of the coefficients are: the 
fluid density p^ ; viscosity 'Ji^; void fraction a^; the distance from the wall 
£; the interfacial area concentration a^; and the mean curvature H^i - The 
expression for the turbulent stress tensor given by Eq.(9-83) with Eq.(9-84) 
is still very compHcated. However, if we use the mixing length hypothesis 
similar to the one made in a single-phase flow, the result reduces to a simple 
form. 

First, we assume that the stress tensor of Eq.(9-83) depends only on the 
second term, which is the Newtonian assumption. Then we have 

%^ = « H A . = 2/xJl?,, (9-85) 

where / i j is the turbulent viscosity. Furthermore, here the coefficient %i is 
taken to be 

%i = «H (Tk^ % ^k^^^(^i^ ^215 Aft • Afe)• (9-86) 

It is noted here that the bulk deformation tensor i?^^ is used in the place of 
the total deformation D^^, since the mixing length model is for the shear-
induced turbulence. Because of its significance, it is discussed in more 
detail in Chapter 12. Consequently, from the dimensional analysis, we 
define 

2/i[* = _ , , , " " (9-87) 

Then the non-dimensional fimction /i^ should depend on four groups as 

/ in* rpif. pfJlD^ : D^ ^^ H, ' 
(9-88) 

The final expression then becomes 

C = 2(/xr) WJ2D~D;,D,,. (9-89) 
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This is the corresponding mixing length model for the two-fluid model 
formulation. The turbulent stress given by Eq.(9-89) with Eq.(9-88) is 
sufficiently simple to be a realistic model. 

In order to visuaUze the model, let us consider a very simple two-phase 
pipe flow. By taking a fully developed flow with no phase changes, we have 

d%c 1 d^. 

dvl, 

X 
dr a^ dr 

Kd-^zc) 

dv. zd 

dr 

dv. zd 

dr 

1 da^ 

dr OL^ dr 
(€ - €) 

(9-90) 

where the coefficient //^ is given by 

P,{R-rf 
dv. zd 

dr 

f^d 

,a.{R-r),-^,a^ 

a. 

PciR-rf 
dv^^ 1 da 

zc, -['^zd ~'^zc 

dr adr 
-iv , —V 

\ zd Zi 

l^c 
(9-91) 

If we exclude the region very near to the wall, the first non-dimensional 
group, which is a local Reynolds number, may be dropped from the 
arguments of the function /xj*. Thus in this case, the constitutive equation 
for the turbulent flux, Eq.(9-88), depends only on the static parameters that 
express the mean geometrical configurations at a point in a flow. 



p. Two-fluid Model 185 

Turbulent Heat Transfer - Mixing Length Model 
The turbulent energy flux has been defined by Eq.(5-46). As we can see 

fi^om the equation, it consists of three parts, namely the turbulent transfers of 
internal energy, of kinetic energy and the work done by the turbulences. For 
many practical two-phase flow systems, the latter two effects have less 
significant roles than the first effect as in the case of a single-phase flow. 
Thus, we construct a turbulent heat flux model by considering mainly the 
effect of the thermal energy transport, namely, the first and the last terms of 
Eq.(5-46) which give enthalpy transport. In analogy with Eq.(9-81) we 
assume 

€ = -K, VT,-
Va, 1= = 

Of. 
[T,-TU] 

-Pki4\^\--^[iu-\)\ 
(9-92) 

where the turbulent energy transport coefficient is expressed by 

Kl = Kl te % a„ ĉ „ £, a,, %, ^1D^:D^]. (9-93) 

From the dimensional analysis, we introduce 

KT^ Kl 
P,cj'^. kb ' "^kb 

(9-94) 

Here ĉ ^ and £ are the specific heat and the distance from the wall or the 
mixing length, respectively. Then the non-dimensional parameter K^* is a 
function of four similarity groups as 

KV = KT 
Kcj"^. 

K, 
(9-95) 

Thus, the turbulent heat flux can be given by 

Qk = -KrVkCj^^lD,, : A, 
= Va, /= = 

VT, 
au 

(T,~T,) . (9-96) 
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It can be seen from Eqs.(9-73) and (9-82) that if a two-phase system 
undergoes a changing of phases, then the second invariant of the 
deformation tensor can be quite complicated. This effect, due to the extra 
interfacial deformation tensor, promotes the heat transfers in two-phase flow 
systems. 

1.2.6 Interfacial transfer constitutive laws 

From the entropy inequality (9-47), thermal energy equation (9-28) and 
the equation of state (9-55), it can be shown that the entropy productions 
associated with the interfacial transfer of mass F^, generaHzed drag force 

M^^ and heat transfer a^q'l become 

n '^ki 

( 
1 

%' 
/ 

+0.^H 
1 x 

, ^ 
1 

« > 

— 
i -^ 

9k 

Wl 
\ 

1 

« ) 

>o. 

v\ 
_ ^ 

Y.\\ (9-97) 

Here we have based our analysis on the assumption that these effects satisfy 
the entropy inequality independently. The standard theory on irreversible 
thermodynamics (De Groot and Mazur, 1962) gives a simple method to 
obtain linear constitutive equations. For this purpose, first we should 
arrange the terms in the entropy inequality into suitable combinations of 
fluxes and potentials (the fluxes are expanded linearly in terms of the 
potentials). We should pay special attention here because we have two 
inequalities from Eq.(9-97) for each phase; The mass transfer term F^ and 
the generalized drag force M^^ should satisfy the jump condition (8-5) and 
(8-19). Since in many practical problems the order of magnitude of M^ 
and Ml are much smaller than the drag force itself, we may approximate 

2 

y^M^^ p:̂  0 in Eq.(8-19). By taking into account these effects, we have the 
ifc=i 

following inequality 

r,\ 
\rp 
± 1 ki 

( 
1 

T 

1 

1 } 

9x 

[T. 

Y 
(9-98) 
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^ 2 

+M 

€ 1 

i i - { ( ^ -

1 

- ^ ) +( 

f ^ Y 
92 92i 

^ 2 ^ / 

^ - % ) } -
T ^ 

1-4^ 
T. 1 

>0. 

Furthermore, if we neglect the thrust forces due to mass transfer and the 
normal stresses at interfaces, then from Eqs.(2-104) and (9-44) we have 

^-r(r.) = £-r(T,) = -' 2H,, a ' 

Pu - Pii 
(9-99) 

And the total momentum flux at the interfaces given by Eq.(8-ll) can be 
simplified to 

Thus the pressures at the interfaces should be related by 

(9-100) 

Vu - Pii = -2^21 a (9-101) 

which is automatically satisfied by Eq.(9-100) with Eqs.(8-22), (8-23) and 
(8-25) as the normal component of the interfacial momentum transfer 
condition. 

In what follows, we assume that the effects of the differences between 
the phase mean values in the bulk fluid and at the interfaces are negligible 
for the densities and pressures, but not for the temperatures. Thus we take 

PH = Pk (9-102) 

PH — Pk (f̂ ^ most cases). (9-103) 

Under these assumptions, simple linear constitutive equations for interfacial 
transfer terms may be put into the following forms 
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r , = 6f ( ^ - ^ ) - 6f ( ^ - ^ ) (9-104) 

M^,=h^{v^~v,) (9-105) 

" i S = ^! ( ^ - ^ ) (fc = 1 or 2) (9-106) 

in which the transport coefficients 6f, h^ and 6f are considered to be 
positive scalars. 

Interfacial Mass Transfer Term 
We assume that the transfer coefficient &f in Eq.(9-104) is, a function of 

following parameters 

K = K (7v % h - %. f̂c + Kl, \, ~ ̂ ,̂ if2i, a,, Q̂ fc). (9-107) 

In order to simplify the above equation, we first introduce a non-dimensional 
parameter 

\ 
\i hi 

K,+Kl]al 
(9-108) 

And the Jakob numbers are defined by 

P2[hi-hi) 

Piih. ~hi] 

P\ [\i - hi) 

Consequently, the interfacial mass transfer term can be rewritten as 
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r, = anhi 
.,(^1+^0 

hi hi 
[T^-T) 

-hi 
hi-hi 

(9-111) 

where the non-dimensional function b^ can be expressed by four similarity 
groups as 

A H. 

P2 (^i 

(9-112) 

The Jakob number, defined by Eq.(9-109), is the scale of the available 
energy. It is known to be an important parameter in the analyses of bubble 
growth. 

Now let us examine some special cases in which the constitutive equation 
for Pj can be reduced to a simple form. In many practical engineering 
problems, we may assume that the vapor phase is in saturation condition, 
thus we may take 

¥,^¥,[T) and T^=T,. 

Under this condition Eq.(9-111) reduces to 

(9-113) 

r„ = -r, = 
[Si-h] 

(9-114) 

For example, the analyses on the bubble growth in a laminar flow suggest 
Lr* 

that for such flow h^ can be approximated by 

N - ^ 
a. 

C 1 + 
2N,AH. 'Jf 

TV 

'21 

a. 
(9-115) 
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Here, C is a parameter that takes into account the thickness of the boundary 
layer. It varies approximately from 1 to 0.6 as the size of bubble increases. 
The form of the function 6f for more general case should be obtained from 
the analyses on a single bubble dynamics as well as from experimental data. 

Interfacial Drag Force 
The general expression for M^ has been postulated by Eq.(9-105). 

Now we fiirther assume that the coefficient h^ depends on the following 
parameters. 

6 i ^ = 6 i ^ ( a , , i ? , , , p , , | i ^ - v ; | , / x , + / i f , a , , r , ) . (9-116) 

Then from a dimensional analysis, we can rewrite Eq.(9-105) as 

M,, = (A + PT) !^ - ̂ ^|(^^ - ^xW^i (9-117) 

where 

r-7^-^Sr—q-. (9-118) 

The dimensionless fiinction h^ depends on the following similarity groups 

L M * _ 7 M* A MJI. ry N' N' N' 
= 5 5 ^ 1 5 -^^Rel5 ^^Re25 ^^pch 
Pi ^i 

(9-119) 

Here we have defined the interfacial Reynolds number by 

Nl, ^ 2}' '^ (9-120) 

and the phase change efifect number by 

iV;, = ,^ . _ , ^ i ^ , . (9-121) 
(A+p2)K-'yi|ai 
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The phase change effect number takes account for the mass transfer effect on 
the drag forces. If this number is large, then the mass transfer effect 
significantly alters the standard drag correlations. This is exemplified in the 
field of aerodynamics by variations in the drag forces induced by changes in 
the rates of boundary-layer suction or blowing. 

For a dispersed flow regime, there are numerous researches on the drag 
forces. The analysis is relatively easy for a flow of a dilute suspension with 
constant diameter solid spherical particles. However, the problem becomes 
increasingly complex as the void fi-action of the dispersed phase increases or 
as the wall effect becomes important. It is evident that the drag correlations 
should depend extensively on experimental data, for a flow with deformable 
interfaces, interfacial mass transfer and the turbulences. 

Some of the results on the dispersed flow drag law can be found in 
Brodkey (1967), Soo (1967), WaUis (1969), Schlichting (1979), Happel and 
Brenner (1965). We discuss important special cases in Section 1.4 of 
Chapter 9. More general and complete modeling and discussion are 
presented in Chapter 12. 

Interfacial Heat Flux 
The constitutive equation for heat transfer at the interface has been 

postulated by Eq.(9-106). First, we introduce a non-dimensional heat 
transfer coefficient 6f as 

6f = ̂ =-^ r—. (9-122) 

Then we have 

«J=(^+^f)r(^-^)a^ (9-123) 

It is expected that \ depends on the following parameters 

KfT Mi TSJi _ _ ^ ^ A 
^ ^ P r l ? -^^RelJ ^^pc/i5 5 ^ 1 ? 

E* _ uE* 
j i V p ^ l , i V p p i , iV^^^j 

(^i Pi 

where the Prandtl number is defined by 

(9-124) 
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NL = '-S±^. (9-125, 

The interfacial Reynolds number N^^j^ and the phase change effect 
number N^^^ have been given by Eqs.(9-120) and (9-121), respectively. It 
is interesting to note here that actually the non-dimensional parameter bf is 
an interfacial Nusselt number. Furthermore, if we give a constitutive 
equation for F^, then it is sufficient to supply a constitutive law for only one 

of the interfacial heat transfer, a^ql^. However, it is also possible to give a 

constitutive relation for a.ql^ and for a^q!^, then it is equivalent that F^ is 
known due to the macroscopic energy jump condition. 

Interfacial Shear Stress 
Since bubbles are dispersed in continuous phase shear layer, the 

interfacial shear stress is approximated by the shear stress in continuous 
phase. Thus, we have 

K^K (9-126) 

Interfacial Momentum Source 
In the original momentum jump condition there are two distinct pieces of 

information; the normal jump and the tangential jump balances. Since we 
preserved this special characteristic in the averaged formulation, we obtained 
the drag force balance (8-19) in addition to the interfacial momentum 
transfer condition given by Eq.(9-12). Furthermore, by neglecting the mass 
thrust effect and using the assumption, Eq.(9-103), we obtain from Eq.(8-21) 

fcf 1=/^ I (9-127) 

Thus, in view of Eqs.(8-19), (9-12) and (9-13), we have 

%-p;,=-2%a (9-128) 

and 
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Y^M,, = Y.[Ml + Ml) = Mf. (9-129) 
k=l k=l 

Here we have the thermal equation of state for the interfaces 

^ = a ( ^ ) . (9-130) 

Since the normal component of the interfacial momentum transfer 
equation (9-129) specifies the mechanical equilibrium condition between 
two phases, it is necessary to specify the mean curvature H21 by a 
constitutive equation. A simple case is to assume that the interfacial 
geometries are completely irregular, thus we may take H21 = 0 . For 
dispersed two-phase flow, the mean curvature is the inverse of the radius of 
a particle. If the fluid particle size is uniform, the radius is given by 3a/a^ . 
Therefore, the ratio of a and a^ is in general an important length scale. 
6a/a^ is known as the Sauter mean diameter, thus the mean curvature is 
essentially proportional to the inverse of the Sauter mean diameter. 

The importance of the parameter a^ remains in the macroscopic 
formulation, however, since it represents the available area of contact 
between two phases. It is evident that the interfacial transports of mass, 
momentum and energy are significantly influenced by the surface area 
concentration per unit volume a^. In general, the constitutive equations for 
H21 and a^ are extremely complicated because these are the parameters that 
decide the local geometric configuration in the macroscopic field. It is 
evident that we may supply this information directly or indirectly. 

The direct information means that we have a prior knowledge of the flow 

structures. Then it is not very difficult to obtain a relation for J?2i ^^^ ^i i^ 
terms of various variables and initial and boundary conditions. For example, 
this can be done easily for a bubbly or droplet flow without phase changes, 
coalescences or disintegration of bubbles (or droplets). It is also possible to 
give indirect information on the flow structures through the constitutive 
equations for f?2i ^^^ ^i ^̂  terms of various parameters such as ce^, a, 

^ " ^ » ̂ » i^J' A etc. Then we may solve the whole set of equations 
to find a local geometrical configuration. This is difficult because the 
geometrical configuration has a long-lasting memory and it does not obey 
the principle of local action in most cases. This means that the initial 
conditions as well as the wall effects on the flow geometries are very 
important. 

Because of the difficulties encountered in the general case, let us start our 
discussion on the above constitutive equations from a simple case. Now let 
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us suppose that phase 2 is dispersed in phase 1. Then we may assume that 
the volume occupied by phase 2 in a total volume V can be given as a 
function of the mean curvature H21. Thus we have 

V,=Fy,i^^ = a^V. (9-131) 

The surface area of phase 2 in the volume V is given by 

^ = FA2^) = (^y^ (9-132) 

Exactly the same argument can be carried out in the time domain, hence we 
have 

At^^fy^i^^^a^At (9-133) 

and 

E ^ = /A2(^2.) = «i^«- (9-134) 
3 m 

Then we may assume that 

fv2[H2i) _ a^ ^ Fy^[H2ij 

/ . 2 ( ^ 2 i ) ^̂  ^^.2(^21) ^C'H,, 
(9-135) 

where (7* is a factor to take into account for the shapes and sizes of 
dispersed phase. Thus we can write the constitutive equation for H21 as 

in = —^^—. (9-136) 

Here the factor (7* is 1 for fairly uniform spherical droplets or bubbles and it 
does not vary much unless the dispersed phase has quite elongated shapes. 
The relation given by Eq.(9-136) is a static or geometric relation and we may 
take a more general form given by 
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or (9-137) 

IT » ; 
21 _ t j _ rr 

a, 

/ |Va2| 
0^2 5 

We call this relation as the geometric equation of state. From Eq.(9-137) we 
see that the mean curvature depends on the void fraction, surface area 
concentration and the void fraction gradient. 

However, we still should have one more essential constitutive equation 
for a^ . It is considered that the information on a^ in terms of other 
parameters is really a part of the solutions for a local instant formulation. 
The most general method to include a. in the two-fluid formulation would 
be to introduce one more transport equation for the interfacial area 
concentration as 

^ + V-{a,v,) = 4>,. (9-138) 

With this method, the source term takes account for the bubble or droplet 
expansions or collapses, coalescences, disintegration and the interfacial 
instabilities. It is evident that the constitutive equations for v^ and 0^ 
should be supplied. The interfacial area transport equation is a ftmdamental 
equation describing the change of surface area between phases. Because of 
its significance, it is discussed in detail in Chapter 10. In some cases the 
balance equation (9-138) may be replaced by a simpler algebraic constitutive 
relation such as 

«i = î ( ^ - '̂ 5 ft, Ih^ ̂ nlV^il, a, gy (9-139) 

The constitutive equation for M^ can be given for a dispersed flow by 

M f = « 2 V ( 2 ^ ^ ] (9-140) 

where phase 2 is the dispersed phase. However, in many practical problems 
the order of magnitude of this term is small in comparison with M^^ or 
Af-2. In such a case, we may set M f̂ is to be zero. 
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Interfacial Energy Source 
The interfacial energy source E^ is given by Eq.(8-45). It is clear that 

the inclusion of the interfacial thermal energy term, namely, the terms given 
by Eq.(8-45), complicates the formulation significantly. Except for very few 
cases, this term can be neglected with respect to the large-energy exchanges 
that involve the latent heat at the changing of phases. Consequently, we 
approximate Eq.(8-45) by 

Em=T, 
UT] Dt '' dt 

0 (9-141) 

which does not require any additional constitutive equations. 
In order to complete the model for the interfacial energy transfer 

condition given by Eq.(8-48), we should supply the constitutive equations 
for the turbulent kinetic energies, the difference between the mean velocity 
and the average interfacial phase velocity, and the interfacial turbulent flux 
from the drag force W^. As in two-phase flow with phase changes, the 
order of magnitude of these terms compared to the thermal terms is 
relatively small, therefore, we may assume 

hu K) (9-142) 

v^-%=^ 

w:, ^ 0. 

(9-143) 

(9-144) 

In analogy with Eq.(9-142), we take for the bulk phases 

K = %• (9-145) 

Then, Eq.(8-48) can be reduced to the following form 

E, = r, 
~ 2 \ 

la 2 at (9-146) 

-v«,-^-i5;; 



9. Two-fluid Model 197 

where we have used Eq.(9-103). And the interfacial total energy transfer 
condition becomes 

E^k-^K 0. (9-147) 
ifc=i 

Then, the thermal energy transfer condition (8-49) can be approximated by 

A = \rkiH + (^iQH]-Pk Dt 
(9-148) 

and 

EA = T, (da) 

k=l 

-r, 
V, V^ 

[dTJ 
2 

Dt '^ - h ' Dt 

Vu 

k=\ k=\ 

(9-149) 

in which we have used Eq.(9-128) in order to eliminate the surface tension 
term. By combing Eq.(9-148) with Eq.(9-149) we get 

E 
k=l 

~2\ 

n€+«.?«+A-y = T. 
da ] DM 

dT) 
(9-150) 

-E^^*-^ + Ev«*-^-^-
k=l k=l 

The first group on the right-hand side of the above equation is the effect of 
the surface tension, the second group arises from the interfacial drag work, 
and the third term is related to the work done by interfacial shear. Thus, we 
may assume for relatively low speed flow that 

k=\ 

Elrkiu + a,q^ ^ 0 (9-151) 

which is a well-known relation for a local instant formulation. We have 
shown here the conditions under which we can apply this important and 
useful formula to the macroscopic two-phase flow problems. 
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13 Two-fluid model formulation 

The most general case of the two-fluid model formulation has been 
discussed in the Section 1.2.3 of Chapter 9 in connection with the principle 
of determinism. We will now set up a realistic formulation by combining 
the results of the previous two sections. We already have made a number of 
assumptions on the interfacial variables and the constitutive equations, thus 
the present analysis is not a complete mapping of the microscopic field in 
terms of the local instant variables into the macroscopic field. Rather, it 
should be considered as an approximate theory based on various constitutive 
assumptions. The results presented in this section are simplified to an extent 
of being reaUstic, yet it is general enough for most engineering problems 
encountered in two-phase flow system analyses. 

First, we list all the important assumptions that have been made to obtain 
the model. 

• Fundamental hypothesis on smoothness of mean values Section 1.3 
in Chapter 4 

• Existence of the equation of state Eq.(9-55) 
• Transport properties /i^ and K^ are constant in the interval of time 

average Eq.(9-71) 
Eq.(9-79) 

• Interfacial variables are approximated by 

PH^~P^^ cr ^ a, m^ ^ rhj^ Eq.(8-9) 

r, ^ ^ Eq.(9-80) 

K^K Eq.(9-102) 

K-K Eq.(9.103) 
• Interfacial normal stress and thrust due to mass transfer are neglected 

Eq.(9-127) 
• Negligible turbulent kinetic energy or energy transfer Eq.(9-145) 
• Mechanical interaction terms in the interfacial energy transfer condition 

are neglected Eq.(9-148) 
• Uniform body force Eq.(5-50) 

Under these conditions we have the following field equations 

The continuity equations from Eq.(9-1) 

^ ( « . f t ) + V• (a,7,%) = n ik=i and 2) (9-152) 
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The equations of motion from Eq.(9-15) 

«J^+C + (^kPk9k 

+M^ - V a , • ^ + r , (i5^ - t^) + (p^ - p,) V a , (9-153) 

(fc=l and 2) 

It is noted that the last term in the above equation is retained though for most 
cases it is very small, because for some cases such as horizontal flow it can 
be important. 

The equations of thermal energy from Eq.(9-30) 

+^M •^%+r, (fu - C) + (^iVu (9-154) 

+ ( M , , - V a , • C ) • ( ^ - %) (^=1 and 2) 

Here we have neglected the turbulent work term t5̂  • V • (o^k^^) > ^^^^^ ^̂  ^̂  
considered to contribute mainly for the turbulent kinetic energy changes 
which have been neglected in the formulation. These two sets of three 
balance equations describe the physical laws of conservation of mass, 
momentum and energy in the macroscopic field. 

Two phases that are governed by their own field equations are coupled by 
three interfacial transfer conditions given below. 

The interfacial mass transfer condition from Eq.(9-2) 

T.r,^Q (9-155) 
k=\ 

The interfacial momentum transfer condition from Eqs.(9-127) and (9-
128) 

E ( ^ « * + M ^ - V « , • C ) = 2 ^ ^ « 2 + Ml (9-156) 

with the normal component satisfying 
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(9-157) 

The interfacial thermal energy transfer condition from Eq.(9-151) 

En%;+^i?LO=o. (9-158) 

Then, from the axiom of continuity we have 

a^=\~ a^. (9-159) 

The equation of state for each phase is given by Eq.(9-55) or by Eqs.(9-58) 
and (9-59), thus we have the caloric equations of state 

h-h(T„p,) (A;=land2) (9-160) 

and the thermal equations of state 

K = K(%K) (fc=land2) (9-161) 

whereas the equation of state for the surface is given by Eq.(9-130) 

^ = ^ ( ^ ) . (9-162) 

The interfacial temperature is given by the phase change condition (9-44) as 

y^-p"''{TA = lH,,a P2 

\P2-Pl) 
(9-163) 

where 

psat ^^satlrj.\ (9-164) 

is the classical saturation condition. For many practical cases we may 
approximate Eq.(9-163) by 



p. Two-fluid Model 

Pg^P 
sat 

(^ ) 
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(9-165) 

where p^ is the vapor phase pressure. __ 
The constitutive equation for the viscous stress W^ is given by 

^ = lir,[D^ + D^) = 1W,D, (fc-1 and 2). (9-166) 

Here the bulk and interfacial extra deformation tensors D,^ and D^^ are 
given by Eqs.(9-74) and (9-77). Thus we have 

'A6 2L 
viJ; + (vv.f (9-167) 

and 

Du = - :~{(V«J(^ -v,) + {v;- v,){Va,)}. (9-168) 
2a, 

The coefficient al represents the mobility of the A:*-phase. 
The constitutive equation for the turbulent stress tE^^ has been obtained 

from the mixing length hypothesis of Eqs.(9-85), (9-86), (9-87), (9-88) and 
(9-89), thus 

c=2/ir. "^kh 

1^1*p,e^l{p~D^)D^ (fc=l and 2). 
(9-169) 

Here the non-dimensional turbulent viscosity /x̂ , is a function of the 
following parameters 

T* .T* 
f^k = / ^ f c 

yf^ji^TD, 
t^k 

, a^i, 
H. 21 

a. 
»% (9-170) 

We recall here that £ and a^ are the distances firom the wall and the surface 
area concentration, respectively. If we exclude the region very near to the 
wall, then the first parameter may be dropped fi*om the arguments of /x̂  . 

The constitutive law for average conduction heat flux q^ is given by 
Eq.(9-81), thus we have 



202 Chapter 9 

-K,\ VT,-^^{T,-T, 
a. 

(9-171) 

It is interesting to note that the second term, due to the concentration 
gradient, represents the effect of the temperature difference between the bulk 
phase and the interfaces, namely, thermal non-equilibrium. 

From the mixing length model for the turbulent heat flux ql, we have 

-Kry,cj'^2D^:DA = VCK. I~ = 
VT, 

OLu 
(T^-T,) (9-172) 

-T * where the non-dimensional conductivity Kj^ is a function of the following 
parameters 

Kr=KV 
P,cj'^2D,, : D^ 

K. 
El a^^, -^,a^ (9-173) 

We note here that the first dimensionless group may be dropped from the 
argument of the function Kf. if we exclude the region very near to the wall. 

The mass transfer term r', is given by Eqs.(9-lll) and (9-112), thus we 
have 

r, 
_[K,+K^)a, 

\i-hi 
-hC^^-T) 

[K, + Kl 

hi hi 

U I- -^ 
(9-174) 

in which the coefficient h^. depends on four parameters 

N EM. Oil. (9-175) 

The group denoted by Njf. is the Jakob number defined by Eqs.(9-109) and 
(9-110) and it is the most important parameter on the phase changes. A 
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simpler case of the above constitutive law has been discussed in the previous 
section. 

In view of the interfacial momentum transfer condition, Eq.(9-156), we 
should supply two constitutive equations that specify the drag force M.^ 
and the effects of surface tension. The interfacial drag force has been given 
by Eqs.(9-117) and (9-119), thus we have 

^a=(A+pi)(^i K - ^ iK - ^)&r (9-176) 

where the coefficient 6/̂ * is expected to be a function of the following 
parameters 

7 iW^ r M* oi N' N' N' (9-177) 

Here, the interfacial Reynolds number A^^^ and the phase change effect 
number iV*̂ ^ are defined by Eqs.(9-120) and (9-121), respectively. 

Furthermore, the geometrical equation of state Eq.(9-137), specifies the 
mean curvature of the interfaces 

a, ^ f 
(9-178) 

The interfacial thermal energy transfer condition given by Eq.(9-158) 
requires the constitutive equation for the heat transfer at the interfaces. 
Thus, from Eqs.(9-123) and (9-124) we have 

a,€ = [K, + K^)o^hri^,~-T:) (9-179) 

where 

lE* JE 

^ ^ P r l ) ^^Rel5 ^^pc/i5 

H. 21 

a, 
(9-180) 

The definition of the Prandtl number is given by Eq.(9-125). In many 
practical problems, the dispersed phase can be assumed to be in thermal 
equilibrium, then it follows that the constitutive equation (9-179) reduces to 
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a trivial form a.q'^^ = 0. 
Finally, we should have a constitutive equation for the surface area 

concentration a.. In general it should have the form of the balance equation 

-^ + V-{a,v,) = (t>, (9-181) 

where the source term (pj^ is expressed by various parameters that have 
already appeared. It is expected that, in general, the constitutive equation for 
(j)^ is quite difficult to obtain unless the flow geometry is very simple, 
namely, such as the bubbly or droplet flows. The average interface velocity 
v^ can be given approximately by 

v,=v,-£^Va,=v, (9-182) 

in which the subscript d denotes the dispersed phase. 
The constitutive equation for M f̂ for a dispersed flow can be given by 

Eq. (9-140), thus we have 

M^=a,v[2T2a). (9-183) 

The basic variables appearing in the two-fluid formulation are 

Thus, the total number of unknown is thirty six, and we have: 

• Six balance equations Eqs.(9-152), (9-153) and (9-154); 
• Three interfacial conditions Eqs.(9-155), (9-156) and (9-158); 
• Mechanical condition at interfaces Eq.(9-157); 
• Chemical condition at interfaces Eq.(9-163); 

(Phase change) 
• Saturation condition Eq.(9-164); 
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Axiom of continuity Eq.(9-159) 
Two caloric equations of state Eq.(9-160): 
Two thermal equations of state Eq.(9-161) 
Surface equation of state ^^ Eq.(9-162) 
Two constitutive equations for ^ Eq.(9-166) 

Two constitutive equations for tE^ Eq.(9-169) 

Two constitutive equations for ^ Eq.(9-126); 
Two constitutive equations for g^ Eq.(9-171): 
Two constitutive equations for ql Eq.(9-172); 
Phase change constitutive law ^^ Eq.(9-174) 
(or constitutive equation for a^q'^i similar to Eq. (9-179)) 
Drag constitutive law Eq.(9-176); 
Geometrical equation of state Eq.(9-178) 

Constitutive equation for a.q'^. Eq.(9-179) 
Balance equation for surface area Eq.(9-181) 
Constitutive equation for M f Eq.(9-183) 

Constitutive equation for p ^ (for most cases) Eq.(9-103). 

This shows that we have thirty six equations. Hence the total number of 
unknown and of equations is the same. Consequently, our description is 
consistent and complete in mathematical sense, although this does not 
guarantee the uniqueness of the solution of the model nor even the existence 
of the solution. These should be checked by solving various simple cases, 
then as we have discussed in Chapter 2, the results should be compared to 
the experimental data to verify and improve the model. It is very important 

to note that F^, g/̂  and q'^. are related by the interfacial thermal energy 
transfer condition that represents the macroscopic energy jump condition. 

Therefore, the constitutive relation for q'^. can be used in place of the phase 
change constitutive law, Eq. (9-174). Since the heat flux can be modeled 
more easily than the phase change, this is a much more practical approach. 

1.4 Various special cases 

Scaling Parameter 
The general formulation of the two-fluid model has been given above. In 

the following analysis, we obtain some important scaling parameters flrom 
the field equations. Before going into the detailed study, we recall that 
dimensionless groups can be obtained from the conservation equations, 
boundary conditions and constitutive laws. The similarity of two different 
systems can only be discussed by including all these groups. This will be 
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very difficult to accomplish in the model based on the two-fluid formulation 
due to the large number of unknowns involved and of the complexity of the 
constitutive equations. For such systems, the dimensional analysis is more 
important for obtaining scaling parameters of various effects in the field 
equations than for making the similarity analysis of the entire system. The 
order of magnitude analysis based on these scaling parameters fi-equently 
leads to a much-simplified formulation that can be solved to yield 
meaningful answers to various engineering problems. It should be noted, 
however, that under certain conditions smaller terms cannot be neglected 
firom the formulation. Thus, for a system of coupled nonlinear differential 
equations, the order of magnitude analysis should be accepted as a general 
trend with exceptions. Consequently, since many compUcated problems can 
be solved only approximately, it becomes necessary to check the results with 
experimental data. 

In the following analysis, the subscript o denotes the reference 
parameters chosen to be constant. The characteristic length is L^, whereas 
the time constant is r^. For most problems it is taken as the ratio of L^ to 
the velocity scale, however, for oscillating flows it can be the period of 
oscillations. Below, we define dimensionless parameters whose order of 
magnitude is considered to be 1. 

Pko ""ko ^o 

r* - JA_ r>* - Pk-Po „* _ K + fJ'I 

M... = ^ik / _ h - ho 

aio{plo+P2o){v2o-Vio) ^iko 

T^* _ ^k +^k „ii* _ QH 

^k -—;^ ) fc ^ko 0.ioKko{Tio~Ti^o) 

Tl = IlJzI^ ~ 1:1^,a* = -^, (9-184) 
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MT =^ Mf 
«io(Ao + P 2 o ) K - ^ l o ) 

Substituting these new parameters into the field equations we obtain the 
following results. 

Non-dimensional continuity equations firom Eq.(9-152) 

(^^+v.(w;)=(iv^),r; 

Non-dimensional equations of motion from Eq.(9-153) 

(^kPk\ 

+ 

1 dvl , , 
x + ^'/fe-Vv, {N,\ Of 

{^^\ 
-V • «* (̂  + C 

= -(^i5«);fc«*V*Pl 

1 * ^ 

( ^ 

Non-dimensional thermal energy equations from Eq.(9-154) 

1 dh 
O^kPk + V, • V I, 

1 ^Pi * * * 
{NA dt 

^ + %-^ Pk 

\^.[W):^XH^Arm-i) 

(9-185) 

(9-186) 

(9-187) 
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V*a,-(5)|-(%-^)* 

Ik 

Here we have introduced several scaling parameters defined as 

Strouhal number (iV Ĵ̂  = ^ ^^^ko 

\r \L 
Phase change number (iV ê/̂ ) = "" 

Pko'^ko 

Euler number {N^^)^ = ^ 

/̂ .̂ 
Reynolds number (iVĵ )^ = PkS^^^ 

Froude number {N^^) 

Drag number (N^rag)j, = 

_ %o 

\9\k 

2 
Pko '^ko 

Peclet number \Np^)^ 
" K^^T^ 

Eckert number (^^J^ = - % 

^ho 

Interface heating number (9-188) 

( ^ . l 
Pto%^«i 'ko 

The first two parameters, the Strouhal and phase change numbers, are the 
kinematic groups. The Euler, Reynolds, Froude and drag numbers are the 
dynamic groups, since they are the ratios of various forces appearing in the 
momentum equations. Similarly, the Peclet, Eckert and interface heating 
numbers are the energy groups that scale various energy transfer 
mechanisms. From the definitions (9-188) and the forms of the non-
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dimensional field equations, the physical meanings of various scaling 
parameters are evident. In two-fluid model formulation, the phase change, 
drag and interfacial heating numbers are particularly important since they are 
the parameters to scale the effects of the interactions between two phases. 

Before we discuss various special cases that can be obtained by 
considering limiting conditions in terms of the scaling parameters, let us 
study the non-dimensional form of the conditions of interfacial transfer, 
mechanical state between phases and phase change (or chemical state). 
Non-dimensional interfacial mass transfer condition can be obtained from 
Eqs.(9-155) and (9-184), thus 

J ] r ; = 0 . (9-189) 

From Eqs.(9-156), (9-157) and (9-184) the interfacial momentum transfer 
condition is given by 

Y:MI=M": (9-190) 
k=\ 

and the condition of the mechanical state by 

A - PI = -INX^- (9-191) 

Similarly, the phase change condition (9-163) becomes 

pl - /«'^ = 1N„ 
Pi * * H^^a . (9-192) 

Pi-PJN, 

Furthermore, the energy transfer condition (9-158) becomes 

r; [{(N.\ i -(N,)^ 4}-1] + E ^^li '-"Aw: = 0. (9-193) 

In these equations, we have introduced the following scaling parameters 

TT 

Surface tension number N^ = -2lo_^ (9.I94) 
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Density ratio N = ^ (9-195) 
Plo 

Ai 
Converted enthalpy ratio {N.\ = -—^^. (9-196) 

ho "~ \o 

By combining the surface tension and Euler numbers we obtain the Weber 
number as 

^210^0 J^a[J^Eu)k 

This shows that we obtain two Weber numbers in the two-fluid formulation, 
thus using the surface tension number is more convenient. 

The converted enthalpy ratio scales the phase enthalpy change to the 
latent heat. This number is normally small, if the pressure is well below the 
critical pressure. However, the most important simplifications can be 
obtained by studying Eq.(9-192). If the surface tension number or the 
density ratio is very small we have 

P;^P"'[T,) for or (9-198) 

N„ « 1 . 
P 

Then firom Eq.(9-157) we get 

K « ^ - 2 ^ a + p^'"(^). (9-199) 

The simplest case happens, if the surface tension number is small, then 

I = ^ = P"" (^) for N^ « 1 (9-200) 

which indicates that the two phases are in mechanical equilibrium. 
Now we study some of the important special cases. 
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Flow without Phase Changes 
If the flow is without phase changes, we can set 

K-). = o (9-201) 

Then all the terms weighted by the phase change number in the field 
equations drop out from the formulation. In this case it is usually more 
convenient to transform the thermal energy equation in terms of c ĵ. and T^̂ . 
Thus, from the caloric equation of state (9-58), we have 

^ 1 
dik=CpkdTi^ + 

Pk 

Y I ^k 9pk 

Pk dT k ) Pk 

dPk 

or (9-202) 

Pk^ ' 

Consequently, we have the following set of field equations from Eqs.(9-152), 
(9-153) and (9-154) 

d_ 

dt 
0^kPk+'^-((^kPk%) = ^ (9-203) 

= D,u 
^kPk 

k"k 

Dt 
- « . V p , + V {<^k(%+%')} + ^kPk9k 

(9-204) 

and 

= D ,T , ^ / = , r \ T, dp, 
^kPk%k -jzr = - V • a , [qk + 9fc - «fc ^IW 

Dt Pk dT, k) 

DkPk 

K ^^ (9-205) 

+%^ : Vv, + a,4 H- [M,, - Va, • ^ • (^ - ^)-

Here we have substituted Eq.(9-202) into Eq.(9-154). 
Now we can define the Prandtl number as 
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( ^ p r ) , ^ ^ - (9-206) 

And the Peclet number should be modified to 

{N,X ^ """Y^"^" = {N^\ (^Pr). • (9-207) 

Furthermore, we note that the second term on the right-hand side of Eq.(9-
205) reduces to a simple form for an ideal gas or for an incompressible fluid 

-ce 

V 

, ILM. 
' P,dT,\ 

DkPk ^ 

Dt 

D„Pa 

' Dt 
0 

(ideal gas) 

(incompressible). 
(9-208) 

A simple form of the energy equations of a practical importance can be 
used if the Eckert numbers are very small, or the heat transfer dominates the 
energy exchanges. Then we have 

^kKc,, ^ = -V • {a, (T, + q^)} + a J:, (9-209) 

where the compressibility effect and the viscous dissipation term have been 
dropped from Eq.(9-205). In addition, if the two phases are incompressible 
with the temperature independent transport properties, the energy equations 
can be decoupled from the continuity and the momentum equations. 

Isothermal Flow with No Phase Changes 
Under the condition, the entire energy equations may be dropped from 

the formulation. And we have 

Pk = Pk (Pk) (9-210) 

thus the flow is called barotropic. Furthermore, if the change of pressure or 
the isothermal compressibility is small, the flow can be considered as 
incompressible. Then we have 

p^ = constant. (9-211) 
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Under this condition, the pressure p^ is independent of the density p^ and 
it represents the hydrodynamic pressure. Moreover if the effects of the 
viscous stresses can be neglected, then we have 

n - 1 7i>r (9-212) 

_A^ = ~ = V p , +g + — ^ . 

In addition, if the system has a fixed interfacial geometry, the formulation 
reduces to a simple form due to the geometrical constitutive laws. Equations 
(9-178) and (9-181), as well as the drag law Eq.(9-176), can be obtained 
without much difficulties. Some of the results on the dispersed flow regime 
given below can be applied for this case. 

Dispersed Flow with Fluid Particles 
In the following analysis, we use subscript c and d for the continuous and 

dispersed phases, respectively. Thus we set: 

phase 1 ~> phase c; continuous phase; 
phase 2 -> phase d; dispersed phase. 

For simplicity, we assume that the dispersed phase has spherical geometry 
with fairly uniform diameters at any point and time. Then, from the 
geometrical equation of state (9-136) or Eq.(9-137), we have 

^ = ^ ^ ^ (9-213) 

where 

=̂i 
Rd (9-214) 

Thus R^ can be considered as the mean radius of the fluid particles. The 
volume balance equation can be put into the following form 
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d 
dt 

367val ] 

\ 1 J 
+ v-

367ra^ 
V, -(y:-y.) (9-215) 

where 

1 367ra. 

n. a 
(9-216) 

is the free volume available per each fluid particle, where n^ is the particle 
number density. The right-hand side represents the volume source due to 
coalescences and the sink due to disintegrations of particles. 

We demonstrate the derivation of Eq.(9-138) for a simple case without 
the source or sink terms. Thus, by considering a fluid particle of average 
properties, we can approximate 

Dt 

(4 =i=] 
h'^Rd Pd = r. 

47TK 
(9-217) 

By substituting Eq.(9-136) for R^ , then using the dispersed phase continuity 
equation (9-152) to eliminate F^, we have 

d_ 
dt 

367ra^ 
+ V' 

367ra. 
-V, 

a, 
= 0. (9-218) 

We note here that if the particle diameters vary considerably then the 
coefficient C* is not a constant. In this case, we should have an additional 
term due to the changes in C* because the average surface area and volume 
of fluid particles are not exactly the same as those calculated from the mean 
diameter. 

Now let us study the drag constitutive equation in the fluid particle 
systems. The well-known Stokes' Law was extended by Hadamard to 
creeping motion of a spherical fluid particle in an infinite Navier-Stokes 
fluid (Brodkey, 1967; Soo, 1967). Thus, the total force acting on a fluid 
particle is given by 

F = (>T^lic{^coo-'^d)Rd (9-219) 
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Then we define the drag coefficient C^^ by 

F 
^Doo ~ J 

^Pci't^coo-^d) -^Rd 

215 

(9-220) 

and the particle Reynolds number by 

Pc{Vcoo-Vd)2R, 
(Re), = 

f^c 
(9-221) 

Here v^^ and v^ are the undisturbed flow velocity and the particle velocity. 
From the above, we have 

C, 
24 

Doo 
(Re), 

2/̂ c + M 
3(^c+^d) 

; {Re),<h (9-222) 

The drag law given by Hadamard is good up to a Reynolds number of about 
1. For higher Reynolds numbers we have the results of Levich (1962) and 
Chao (1962) given by 

Cn^ — 
48 

'Doo 
{Re\ 

•; {Re) < 1 0 0 (9-223) 

C 
32 

Doo 
(Re), 

1 + 2 ^ - 0 . 3 1 4 
[l + 4tijfi^) 

^ / ( ^ 
(9-224) 

respectively. We also note the review work done by Clift et al. (1978) in 
these connections. At still higher Reynolds numbers, the value of 
^Doo ̂  ^-44 given by Newton can be used for droplets. For bubbles, 
however, the interfacial deformations lead to ellipsoidal or spherical cap 
bubbles. 

By combining these results, we can set that the drag coefficient as a 
function of the Reynolds number (Re)^ and the ratio of the two viscosities, 
thus 
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^Doo ~ ^Doo {Re} 
d ' 
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(9-225) 

The above relation summarizes the ideal cases of a single fluid particle in 
infinite media. 

In general cases, we have postulated that the interfacial drag force can be 
given by the constitutive law having the forms of Eqs.(9-117) and (9-119). 
For a dispersed flow restricted by Eqs.(9-213), (9-214) and (9-218), we may 
simplify the general drag constitutive law by introducing a drag coefficient 
(7p defined by 

Cn = ^ ^ " 1 = 
pMc-'^dt ^[Rd] 

(9-226) 

In view of Eqs.(9-221) and (9-226), we redefine the appropriate particle 
Reynolds number by 

TV* = 
Pc\%-'^d\'^Rd 

K 
(9-227) 

And the Reynolds number for the dispersed phase is redundant if we use the 
viscosity ratio as a non-dimensional group. 

Thus, in view of Eqs.(9-119) and (9-227), we postulate that the drag law 
can be given by 

^D — ^Doo "^^Rec5 
Wdj f . = 5 ^pch'i ^C 

[Pd 
(9-228) 

where / is the correction factor which takes into account for the effects of 
other particles and the changes of phase. It can be said that if N^^^ is large 
then the linear correction of Eq.(9-228) cannot be applied because of the 
rapid expansions or collapses of fluid particles. A detailed discussion of the 
drag force in multi-particle systems is given in Chapter 12. 
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INTERFACIAL AREA TRANSPORT 

The interfacial transfer terms are strongly related to the interfacial area 
and to the local transfer mechanisms, such as the degree of turbulence near 
the interfaces and the driving potential. Basically, the interfacial transport of 
mass, momentum and energy is proportional to the interfacial area 
concentration and to a driving force. This area concentration, defined as the 
interfacial area per unit volume of the mixture, characterizes the kinematic 
effects; therefore, it must be related to the structure of the two-phase flow. 
The driving forces for the interphase transport characterize the local 
transport mechanism and they must be modeled separately. 

Since the interfacial transfer rates can be considered as the product of the 
interfacial flux and the available interfacial area, the modeling of the 
interfacial area concentration is essential. In two-phase flow analysis the 
void fraction and the interfacial area concentration represent the two 
fundamental first-order geometrical parameters. Therefore, they are closely 
related to two-phase flow regimes. However, the concept of the two-phase 
flow regimes is difficult to quantify mathematically at a local point, because 
it is often defined at the scale close to the system scale. This may indicate 
that the modeling of the changes of the interfacial area concentration directly 
by a transport equation, namely interfacial area transport equation. This is a 
better approach than the conventional method using the flow-regime 
transition criteria and regime-dependent constitutive relations for interfacial 
area concentration. This is particularly true for a three-dimensional 
formulation of multiphase flow. 

In this chapter, the detailed derivation and the necessary constitutive 
relations of the interfacial area transport equation is presented to establish 
the dynamic closure relation for the interfacial area concentration in the two-
fluid model. Accounting for the substantial differences in the transport 
mechanisms in small spherical and large cap bubbles, the two-group 
transport equation is derived. 
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1.1 Three-dimensional interfacial area transport 
equation 

The Boltzmann transport equation describes the particle transport by an 
integro-differential equation of the particle-distribution function. Since the 
interfacial area of the fluid particle is closely related to the particle number, 
the interfacial area transport equation can be formulated based on the 
Boltzmann transport equation (KocamustafaoguUari and Ishii, 1995; Ishii 
and Kim, 2004). 

Consider a system of fluid particles in a continuous medium, where the 
source and sink of the fluid particle exist due to the particle interactions such 
as the coalescence and disintegration. Let f{y,x,v,t) be the particle 
number density distribution function per unit mixture and bubble volume. 
This is assumed to be continuous and specifies the probable number density 
of fluid particles moving with particle velocity v , at a given time ;i, in a 
spatial range 8x with its center-of-volume located at x with particle 
volumes between V and V + 6V , Assuming that the change of particle 
velocity within the time interval t Xo t + 6t is small, the particle number 
density distribution function per unit mixture and bubble volume can be 
simplified to be f{y,x,t). This assumption of a uniform particle velocity 
for a given particle size is practical for most two-phase flow. However, for 
neutron transport, the energy of neutrons spans over many orders of 
magnitudes and is the essence of the transport theory. Therefore, the 
velocity dependence cannot be neglected. Then, we can write for a two-
phase flow system 

f{y + 8v,x + 6x,t + 8tY^i - f{y,x,tyfi 
(10-1) 

\6fi6t I.S, 
V J 

+Spk 

J 

where 5/i is a volume element in /x space. In the right-hand side of the 
equation, the Sj and Spf^ are the particle source and sink rates per unit 
mixture volume due toj-th particle interactions (such as the disintegration or 
coalescence and that due to phase change, respectively). Expanding the first 
term on the left-hand side of Eq.(lO-l) in a Taylor series in St and dividing 
it by SfjiSt, Eq. (10-1) reduces to 

+^-(f")+M'i] = ̂ ''+'^ c"-^) 
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which is analogous to the Boltzmann transport equation of particles with the 
distribution function f{y,x,t) . Here, dldt denotes the substantial 
derivative. In the following sections, we present the detailed derivations on 
the transport equations for fluid particle number ( n ) , volume fraction (a^), 
and interfacial area concentration (a^). 

1.1.1 Number transport equation 

In two-phase flow applications, the particle transport equation given by 
Eq.(10-2) is much too detailed to be employed in practice, therefore, more 
macroscopic formulation is desirable. This can be done by integrating 
Eq.(10-2) over the volume of all sizes of particles from V^^ to V^^ and 
applying the Leibnitz rule of integration. We obtain the particle number 
transport equation as 

| y + V-(nv) = E ^ . + ^ . . (10-3) 

where the distribution function for the bubbles of volume V^^^ and V^^ are 
assumed to be approximately zero. Here, the left-hand side of the equation 
represents the time rate of change of the total particle number density and its 
convection. The two terms in the right-hand side represent the number 
source and sink rates due to particle interaction (such as particle 
disintegration or coalescence) and the number source rate due to the phase 
change, respectively. 

In Eq.(10-3), the total number of particles of all sizes per unit-mixture 
volume and the number source and sink rates are defined respectively by 

n{x,t) = f"^f{V,x,t)dV (10-4) 

and 

R{x,t)= r^^ S{V,x,t)dV. (10-5) 

Also, Vp^ is the average local particle velocity weighted by the particle 
number and is defined by 
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f'^ f{V,x,t)v{V,x,t)dV 
%^{x,t)= ^- . (10-6) 

f'°^f{V,x,t)dV 

1.1.2 Volume transport equation 

The particle volume (or void fraction) transport equation can be obtained 
by multiplying Eq.(10-2) by particle volume V and integrating it over the 
volume of all sizes of particles. Then, considering that the two-phase flow 
of interest consists of the dispersed bubbles in a continuous liquid medium, 
the void fraction transport equation is given by 

da ^ , X r ^ - 9(fV) 
rli \ ^ ^1 Jv BV 

*^ ' min I 

where V denotes the time derivative of volume V. Here, the void fraction 
and the average center-of-volume velocity of the dispersed (or gas) phase are 
defined respectively by 

a^ {x,t) = £'^f{V,x,t)VdV (10-8) 

and 

r^^ f{V,x,t)VviV,x,t)dV 

r f{V,x,t)VdV 

In Eq.(10-7), the third term on the left-hand side attributes to the change 
in the particle volume (by expansion or contraction) due to the change in the 
pressure along the flow field. To better represent this term, we assume 

^^f{V) (10-10) 
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such that the time-rate of change in relative particle volume is assumed to be 
independent of its volume. If evaporation effect is small compared to the 
compressibility effect, the dominant contribution in the change in a particle 
volume attributes to the changes in the pressure. Therefore, this assumption 
is valid in most two-phase flow conditions. It should be noted, however, that 
the evaporation effect is not completely neglected in the average transport 
equation development as will be shown later in Eq.(10-14). Then, the third 
term on the left-hand side of Eq.(10-7) reduces to 

dV 
a (x,t). (10-11) 

Furthermore, since the mass transfer by the evaporation process is given by 

dpgV _(rg-VphPg)V 

dt 
(10-12) 

OL„ 

where F^ is the total rate of change of mass-per-unit mixture volume and 
7]^^ is the rate of volume generated by nucleation source per unit mixture 
volume, defined by 

V^n^fS'S^^VdV. (10-13) 

The volume source can be written as 

1 dV J_ 
Po V dt 

1 \da 
a 

rn-VpkPa dp A 

ct. dt 

\da„ I V ] 
(10-14) 

Thus, combining Eq.(10-14) with Eq.(lO-ll), and substituting them into 
Eq.(10-7), the final form of the void fraction transport equation is obtained 
as 
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dt 
+ v-h.J-^ ir-%hP, dpA 

a„ dt 

-C\Es,y+sAv 
(10-15) 

where the first two terms on the left-hand side of the equation represents the 
time rate of change and convection of a^, and the rest of the terms represent 
the change rates in a^ due to volume change, particle interactions and 
phase change, respectively. 

By rearranging Eq.(10-15), it is interesting to note that we have 

± j ^ + V.(a,p,.,)-rl = /;--Es/<iK (10-16) 

Here, it is noted that conservation of mass requires 

dapn 

dt + V-K%)-r, = o. (10-17) 

Therefore, from Eqs.(10-16) and (10-17), we obtain the identity 

VdV = 0. (10-18) 

Equation (10-18) satisfies both the volume and mass conservation, 
simultaneously. 

1.1.3 Interfacial area transport equation 

The transport equation for the interfacial area concentration can be 
obtained through a similar approach applied in the previous formulations. 
Hence, multiplying Eq.(10-2) by the surface area of particles of volume F , 
A ( ^ ) ' (which is independent of the coordinate system) and integrating it 
over the volume of all particles, we obtain 
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t + v.(..)-|^)/-/.^ 

'mm I 

(10-19) 

4dy 

where the average â  of all fluid particles of volumes between V .̂̂  and 
V^^, and the interfacial velocity are given respectively by 

a,{x,t)= fyf{V,x,t)A,iV)dV (10-20) 

and 

Vi{x,t) = 
r'^f{V,x,t)AiV)v{V,x,t)dV 

r'^f{v,x,t)Aiv)dv 
(10-21) 

Now, in view of furnishing the third term on the left-hand side of Eq.(l fl­
ip), we define the volume-equivalent diameter, D^, and surface-equivalent 
diameter, D^,ofa, fluid particle with surface area A^ and volume V, as 

TV 

o 
(10-22) 

Therefore, combining them with Eq.(10-19) and recalling the volume source, 
given by Eq.(10-14), the interfacial area transport equation can be obtained 
as 

dt ^ ' '^ 3 

=/J" [ E «,-+«,. 

/ \ 

a 9 ) 
dt +^-K%)-v 

(10-23) 

AdV 

where the third term on the left-hand side represents the change in the 
interfacial area concentration due to the particle volume change. In deriving 
Eq.(10-23), the ratio (DJD\ is assumed to be constant in view of 
simplifying the equation. While this approximation may not be appropriate 
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Figure lO-L Illustration of fluid particle coalescence and disintegration process in view of 
A^i(Ishii and Kim, 2004) 

for the bubbles in distorted or slug shape, it is a good approximation for the 
spherical and cap bubbles. Essentially, this diameter ratio is a shape factor 
and for similar particle shapes this factor can be considered as constant. 

To close the system of equations, the right-hand side of Eq.(10-23), 
which represents the source and sink rates of the interfacial area 
concentration, must be specified by the constitutive relations. In view of this, 
we define 

,dV 
^ (10-24) 

= ^ i ? ^ : particle number source and sink rate 
i 

and 

""" ^ (10-25) 
~ X>^r source and sink rate for a^. 

Furthermore, noting that 0̂  can be expressed in terms of the change in 
surface area of a fluid particle after a certain particle interaction process, we 
can write 
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0. = R.AA, (10-26) 

where R^ can be mechanistically modeled for each interaction mechanism, 
and AAi depends on the given interaction mechanism; such as the 
disintegration or coalescence processes. 

In order to specify AAi -> consider a coalescence and a break-up processes 
as illustrated in Fig. 10-1 for the spherical particles. Here, it was assumed 
that the given process is a binary process between the particles of same size. 
Then, since the total volume of the particles should be conserved, we can 
write 

V^ = 27i or D^ = 2 ' / 'A (10-27) 

where the subscripts 1 and 2 indicates the particles of smaller and bigger 
volumes, respectively. Hence, by assuming that the interaction process is a 
binary process, the change of surface area after one interaction process can 
be obtained for near spherical particles as 

AAi = —0.413^: for a coalescence process (10-28) 

and 

AA^ = +0.260^: for a break-up process (10-29) 

where the minus and plus signs are used to indicate the reduction and gain of 
the surface area after one interaction process, respectively. Furthermore, 
recalling the definition given by Eq.(10-4), the particle number density n 
can be specified through a^ and a^ by 

a^ = nAi and ag = nV (10-30) 

such that 

3 

n^ip\ (10-31) 

with a shape factor defined by 
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V; = 
1 (D^ 

^3 
Sm 

367V \ D 
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(10-32) 

where the bubble Sauter mean diameter is given by 

D = ^ 
a, 

(10-33) 

Thus, combining these with Eq.( 10-26), the surface source and sink rate, (pj 
can be given by 

* ' = ^ 
Of. 

^^^J 

R, (10-34) 

Similarly, for the nucleation process, 0̂ ^̂  can be given by 

(10-35) 

where Dj^^ is the critical bubble size. This should be determined depending 
on the given nucleation process; namely, the critical cavity size for the bulk 
boiling or condensation process, and the bubble departure size for the wall 
nucleation. For most two-phase flow, wall nucleation is the dominant 
mechanism. 

After combining the constitutive relations given above and substituting 
them into Eq.(10-23), we obtain the interfacial area transport equation as 

da. , Y-7 / \ 2 

dt ^ ' '^ 3 OL„ 

da„ 

dt +v-K^.)-^: ph 

3ip 

I N2 
(10-36) 

v«w 
E^. + Âl̂ i 'ph 

where the left-hand side represents the time rate of change and convection 
of the interfacial area concentration. Each term on the right-hand side 
represents the rates of change in the interfacial area concentration due to the 
particle volume change caused by the change in pressure, various particle 
interactions and phase change, respectively. As can be seen in Eq.(10-36), 
R^ 's should be modeled independently, based on the given particle 
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interaction mechanisms. Hence, the mechanistic models of the number 
source and sink rates for the coalescence and disintegration mechanisms, or 
those for the bubble nucleation and condensation phenomena, should be 
established as constitutive relations to solve the transport equation. 

1.2 One-group interfacial area transport equation 

When the transport phenomena of the fluid particles of interest do not 
vary significantly in a given two-phase flow system, and the particles remain 
similar in shape after the particle interactions, their characteristic transport 
phenomenon is similar and can be described by one transport equation. 
However, when fluid particles of various shapes and size present 
simultaneously, their transport mechanisms can be significantly different. In 
such cases, it may be necessary to employ multiple transport equations to 
describe the fluid particle transport. 

In view of this, we first consider the two-phase flow system of the 
dispersed bubbles in a continuous liquid medium (namely, bubbly flow), 
where all the present bubbles can be categorized as one group. In such flow 
conditions, it is assumed that the bubbles are spherical in their shapes, and 
they are subject to the similar characteristic drag on their transport 
phenomena. Hence, accounting for the spherical shape in the one-group 
transport, ^ defined in Eq.( 10-32) can be approximated by 

1 . 
^ ^ = 8.85 X10 ^ for dispersed bubbles (10-37) 

367r 

because the bubble Sauter mean diameter is approximately equal to the 
volume-equivalent diameter. Furthermore, noting that critical bubble size 
due to nucleation is much smaller compared to the average bubble Sauter 
mean diameter, we may assume 

Ac 
DsmJ 

0. (10-38) 

Also, since rj^^ can be approximated as 

S^,VdV ^ R^,-Dl (10-39) 
Vmm O 

the interfacial area transport equation for the dispersed bubbles, or the one-
group interfacial area transport equation, is given by 
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dt ^ ' '̂  3 

+ 
3V̂  

/ \2 

/ \ 

\ 9 / 

da„ 

dt 
+ V-Kt;J 

E^i + ̂ A'cV 

(10-40) 

The left-hand side represents the total rate of change in the interfacial area 
concentration, whereas the right-hand side represents the rates of change in 
the interfacial area concentration due to the change in particle volume, 
various particle interactions and phase change, respectively. It is noted that 
the effect of rŷ ;̂  can be neglected because the departure size is smaller than 
the Sauter mean diameter. 

1.3 Two-group interfacial area transport equation 

In a gas-liquid two-phase flow system, a wide range of bubble shape and 
size exists depending on the given flow regime. Therefore, to develop the 
interfacial area transport equation describing the bubble transport in a wide 
range of two-phase flow regimes, the model must account for the differences 
in the transport characteristics of different types of bubbles. These 
variations in shape and size of bubbles cause substantial differences in their 
transport mechanisms due to the drag forces. Furthermore, the bubble 
interaction mechanisms in such flow conditions can be quite different 
compared to those in the one-group transport. 

In most two-phase flow conditions, bubbles can be categorized into five 
types: spherical; distorted; cap; Taylor; and chum-turbulent bubbles. 
However, in view of their transport characteristics, they can be classified 
into two major groups, such that Group 1 includes the spherical and distorted 
bubbles, while Group 2 includes the cap, Taylor and chum-turbulent bubbles. 
Thus, in the present analysis, the approach employing two transport 
equations is given in describing the bubble transport over a wide range of 
two-phase flow conditions. That is. Group-1 transport equation describes 
the transport of spherical and distorted bubbles, and Group-2 transport 
equation describes the transport of cap, Taylor and chum-turbulent bubbles. 

In the one-group formulation, the transport equation was averaged by the 
integration process over the volumes of all sizes of particles because the 
shape of the particles and their transport phenomena were assumed to be 
similar over the given range of particle volume. In the two-group 
formulation, however, the integration limit for each transport equation 
should be bounded by the bubble volume, by which the bubble group is 
determined. In view of this, we define V as the critical bubble volume 
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given by TTD^^^/G with the maximum distorted bubble limit, D^^^^^ , 
specified by Ishii and Zuber (1979) as 

^dmax — 4 / : maximum distorted bubble limit (10-41) 

over which the bubble becomes cap in shape and the drag effect starts to 
deviate from that on the smaller bubbles due to the large wake region. 
Therefore, the Group 1 bubbles exist in the range of V^^ to V^, whereas the 
Group 2 bubbles exist in the range of V^ to V^^. 

1.3.1 Two-group particle number transport equation 

The two-group particle number transport equation can be readily 
obtained by integrating Eq.(10-2) over the different ranges of integration 
limit bounded by V^; namely, fi-om V^^ to V^, for Group 1 and fi-om V^ to 
^max ^^^ Group 2. In two-group formulation, as in the one-group 
formulation, /(V^x^t) describes the particle-number density distribution 
function per unit mixture and bubble volume. This is assumed to be 
continuous, specifying the probable number density of fluid particles moving 
at a velocity t;, at a given time t, in a, spatial range 6x with its center-of-
volume located at x with particle volumes between V and V + dV, Then, 
the number transport equations for Group 1 and Group 2 are given by 

^+v-hv.) = -J'.̂ Jf + V • (n, V. ) = ~IK\I?\ + E «I> + *p» <>»-«) 
J 

and 

dn. 2 

dt 

(v) 
+ V• (n,v^^,) -fcVA-\ + T.Rj2 (10-43) 

where the subscripts 1 and 2 in the equations denote Group 1 and Group 2, 
respectively, and v^^^ and Vp^2 ^^ ^^^ average local particle velocity 
weighted by the particle number for each bubble group, such that they are 
defined by 
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f^\ f{V,x,t)v{V,x,t)dV 
•"pmlix>t) = 

Vp,n2{x,t) 

f f{V,X,t)dV 
"" (10-44) 

l'^f{V,x,tXV,x,t)dV 
£_Xc r-'f{v,x,t)dv 

In Eqs.(10-42) and (10-43), the left-hand side of the equations represent the 
time rate of change and convection of fluid particle number for each bubble 
group. Each term on the right-hand side represents the rates of change of 
particle number through inter-group transfer by particle volume change, 
particle interaction and phase change for each bubble group. Here, it is 
interesting to note that in the two-group formulation, there are terms 
accounting for the inter-group transfer caused by particle volume change that 
did not appear in the one-group formulation. This is due to the fact that 
when two groups of bubbles present, the change in the particle volume in 
one group may serve as the number source in another due to the changes in 
bubble distribution function. These inter-group transfer terms disappear 
when the two equations are added together to obtain the total fluid particle 
number transport equation. 

1.3.2 Two-group void fraction transport equation 

The two-group void fraction transport equation can be obtained in a 
similar manner. Multiplying Eq.(10-2) by particle volume V , and 
integrating it over the specified limits for each group, we obtain 

dc^ai . ^ / \ . r^^ Ur d (^dV] "51 

dt -^•M-unn] \dV 

(10-45) 

and 
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dV{ dt] 
\dV 

231 

(10-46) 

For Group 1 and Group 2, respectively, the third term on the left-hand side 
of the equations represents the rate of change in void fraction due to particle 
volume change. They are given by 

-JVr^A dV\ dt] 
\dV 

V 
{-«pi+K(/cK)} (10-47) 

and 

W-
d {.dV\ 

dV f 
dt j 

[dV^ 
V 

{-«,2-K(/cK)} (10-48) 

for Group 1 and Group 2, respectively, where /̂  is the distribution function 
of a bubble with critical volume V^,or f (V^). 

Here, the volume source iv/v) can be expressed by the total mass 
transfer rate as shown previously in the one-group formulation. However, 
due to the presence of the two groups of bubbles and their interactions, the 
rate of mass transfer between the two groups must be considered. Hence, by 
denoting the subscripts if as the inter-group transfer from group / to group y, 
the volume sources for each group are given by 

1 (dVA_ 1 

V,[dt j 
^gl " ^ ^ 2 dPg 

a pi dt 

i|^-M,)-..l 
(10-49) 

and 
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1 idV^\ 1 
F, dt ) 

r 2 + ^mi2 dp. 

a 92 dt 

a S2 

da 92 

dt 
+ ^-(oi^2'"g2) 

(10-50) 

for Group 1 and Group 2, respectively, where Z\rn,2 represents the inter-
group mass transfer rates from Group 1 to Group 2. The constitutive relation 
for the mass transfer between groups Ari\2 will be discussed later. Hence, 
Eqs.(10-49) and (10-50) require the following identities 

9^9ip9 

dt + ^-%lPs-"gX 

= r^i — Ari\2'- Mass Balance for Group 1 
(10-51) 

and 

dag2Pg 
—^^ r V ^g2Hg"g2 + V - Q ; „ 2 P « 

Fg^ + Am^2- Mass Balance for Group 2. 
(10-52) 

Furthermore, by adding the two equations, we obtain the continuity equation 
for the gas phase as 

daaP. 9^9 

dt 
+ v-(«A^J = r, (10-53) 

with the following constitutive relations 

«p = «Sl + " j2 (10-54) 

^ = ^ 1 + ^ 2 (10-55) 

and 

v„ = 
«Sl + «J2 

(10-56) 
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The term fy^ on the right-hand side of Eqs.( 10-47) and (10-48) represents 
the rate of change in the void fraction due to inter-group transfer, and it can 
be expressed in terms of other two-phase flow parameters. For convenience, 
the detailed discussion on this term will be presented in the following section. 
The two-group void fraction transport equation for each group is then given 
by 

9%iP> gif^g 

dt 

da 

+ V-Kp,t;^,)-^.i+^^2 

dt r+^-Mi)-^; ph \x 
sc 

D. Sml J 

(10-57) 

and 

J_ 
Pg 

do^oiP gj-<^g 

dt 
+ '^ •[oc^2pg%,)- r,2- Am,^ 

da 
9l 

dt 
+ ^-[%x"9x)-%k\x 

+ /"E sydv 

{D 1 
\ 5ml / 

(10-58) 

for Group 1 and Group 2, respectively. Here, D^^ is the critical bubble size 
for the group boundary with surface area and volume of A^^ and V^. Also, 
X is the coefficient accounting for the contribution from the inter-group 
transfer, which will be discussed in detail in the following section. 

In Eqs.(10-57) and (10-58), the left-hand side of the equations represents 
the time rate of change and convection of void fraction for each group and 
the right-hand side represents the rates of change in the void fraction due to 
the volume change. This includes the inter-group transfer and various 
particle interactions. Furthermore, since the left-hand side of the equations 
corresponds to the continuity equations for each bubble group, it requires the 
following identities; 
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dt 
+ V-(a,,-y^i)-r7^ ph \x\ 

A, 
D. + 

5ml . 
/ : Ê , VdV (10-59) 

= 0 

and 

da 

dt 

0 

r + v-{v,.)-^; /?/i X 
D„ 

\ ^Sm\ ) 
*£-Es,yiv (10-60) 

for Group 1 and Group 2 respectively, which indicates the conservation in 
bubble volume. Here, the first terms in Eqs.(10-59) and (10-60) represent 
the inter-group transfer at the bubble group boundary, and the second terms 
represent sources and sinks due to various fluid particle interaction for the 
given bubble group. 

1.3.3 Two-group interfacial area transport equation 

Similarly, as in the one-group interfacial area transport equation 
formulation, multiply Eq.(10-2) by the surface area of particles with volume 
V, which is independent of the coordinate system. Then, after integrating it 
over the volume within which each bubble group is defined, we obtain 

da, 

dt ̂
 + V.(a...)+f A 

d (.dV 

dV 
f dt ) 

dV 

=Ck'^+'^^ AidV for Group 1 

(10-61) 

and 

da, 

dt f + V-(a,«,) + / ; 
d 

Airrf 
(.dV] 

dV [ dt ) 
dV 

(10-62) 

= / °" E 5 , 4 d F for Group 2 

where the average interfacial velocity for each bubble group is defined by 
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J^[ f{V,x,t)Av{V,x,t)dV 
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v,,{x,t) 

Va{x,t) = 

£[ f{V,x,t)AdV 

f{V,x,t)A,v{V,x,t)dV 

r'^f{v,x,t)Adv 
(10-63) 

In Eqs.(10-61) and (10-62), the third terms on the left-hand side of the 
equations represent the changes in the interfacial area concentration due to 
the particle volume change, such that 

x:i^ d 

dv 
- 3 0 , 1 + 4 x 7 , (10-64) 

and 

A 
d 

dV 
'f—\ 

dt] 
W --a, n ~ AJcK (10-65) 

where ^^/cK ^̂  attributed to the inter-group transfer as a result of bubble 
interactions between the two groups of bubbles. Hence, when ^ -^ 0 , 
there is no contribution due to the inter-group interaction. In reality, 
however, when two bubble groups present /̂  is finite, and this inter-group 
transfer term plays an important role as sources or sinks of the interfacial 
area concentration for each group. 

In order to incorporate the contributions fi"om this inter-group transfer, 
the particle distribution fimction should be specified. However, the accurate 
mathematical description for the particle distribution function in two-phase 
flows with various sizes of bubbles requires the use of the original 
Boltzmann transport equation and statistical mechanics. For our purpose, we 
need to develop a simple integrated transport equation. Hence, in the present 
analysis, a linear profile or a uniform profile is assumed in the particle 
distribution for simplicity as shown in Fig. 10-2. In this, V^^ is the peak 
bubble volume in Group 1 bubbles specifying the value /^, and is defined by 

K = ^K where 
V <e<i. (10-66) 
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min ^Ip V. 

Figure 10-2. Linear approximation on profile of fluid particle distribution function (Ishii and 
Kim, 2004) 

Then, the number density for Group 1 bubble can be expressed as 

(10-67) 

which yields 

fcVAc = 
2 {V.-V^) 

1-e «,(i-o 
/ l nAc- (10-68) 

Now, consider three limiting cases as shown in Figs.lO-3(a) through 10-
3(c) such that 

Case I: f = f^ = constant, hence 

Case II: ^-^ V^/V,, or V^^ -^ V^,, hence 

(10-69) 

(10-70) 
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^ V 

I'il 

Figure 10-3. Limiting conditions for fluid Particle distribution (a)/=constant, (b) ^—^Vmin/Vc > 
(c) <f^l (Ishii and Kim, 2004) 
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and 
Case III: ^ -^ 1; V;, ^ F,; /, - . / , , hence 

n, /^ J l V "̂  c ^ min / — /i^./cV'^c ^ min / (10-71) 

Therefore, assuming that V̂  > > V^^, and defining an arbitrary coefficient 
X as 

AJcVc = xnAc 

we obtain, for each limiting case 

[l for Case I 

- ^ ^ for Case II 

12 for Case III 

(10-72) 

X = i (10-73) 

and fi-om Eq.(10-68) 

X 
K 

1-e n,(i-e) 
/ i in general. (10-74) 

Thus, recalling that there is no inter-group transfer contribution when 
f^ ^ 0, the constant x should be bounded by 

0 < X < 2. (10-75) 

In providing the analytical solution for x ? we have three unknowns with 
three equations, such that 

nr=f(A,l,V,^) 

"ji =f(fv LVip) (10-76) 

where a^y and o^j, defined by Eqs.(10-8) and (10-20), can be obtained 
through experiment, and Uy can be furnished by Eqs.(10-31) and (10-67). 
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Therefore, if necessary, the analytical solution for x can be obtained. 
Furthermore, since the â  can be written in terms of the average surface area 
of the particles Ai, and the particle number density, n as 

and since D^^ ^ D. 

4 [DJ 

Sml 

D,. 
\ 2 

D. Sml 

we can rewrite Eqs.(10-64) and (10-65) as 

W = |-|a., 
Jv^Y^dVV dt) V 

2 'D " 

y^SmX J 

(10-77) 

(10-78) 

(10-79) 

and 

^'dvVl^] •dV 

V 3 a,2 

D,. 

D. Sml J 

(10-80) 

respectively. 
Thus, combining above equations, the two-group interfacial area 

transport equation is given by 

at 3 â i 

da 
pi 

dt 
+ V-KiV,i)~77, ph 

-X 
D.. 

D, Sml J Z{^--M %h\ (10-81) 

+r ks, + s. ph \AdV 
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^ + V.(a.A) = ̂ ^ f e + V.Kv)l 

+x 
A. 

D Sm\ ) a pi 

da 
pi 

dt 

3 Q:̂ 2 I ^^ 

+ ^ - K i ' ^ p i ) - ^ p / . (10-82) 

+tY.sAiy 

for Group 1 and Group 2, respectively. In this, the left-hand sides of the 
equations represent the time-rate of change and convection of a. for each 
group. Each term on the right-hand side represents the rate of change in a^ 
due to the particle volume change, inter-group transfer, various particle 
interactions and phase change for each group. The total interfacial area 
transport equation can be also obtained by adding the two equations, such 
that 

da, } + '^im) = j;^VLs^ + s^Mdv 
dt 

+Ef^|^+v. (.,.,)-,, 
(10-83) 

where the subscript k denotes the bubble group. 
In this analysis, we demonstrate the inter-group transfer as a result of 

bubble interactions between the two groups of bubbles by assuming a liner 
profile or a uniform profile in the particle distribution. However, in two-
phase flow applications, the uniform profile in the particle distribution may 
be assumed to be employed in practice. 

1.3.4 Constitutive relations 

In this section, the necessary constitutive relations in solving the 
interfacial area transport equation are summarized, and they are as follows: 

I °^ ^5^ .c^y = Ji,i source and sink rate 
(10-84) 

for particle number 
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\ "^^^S^AidV — (\)y source and sink rate for â  (10-85) 

(\)^^ = ^Al^p/i- source and sink rate for a. 

by phase-change 
(10-86) 

n — i\) —y where i\) = -— 
a^ 367r 

R Sm 

v A , 
(10-87) 

6a, n — L 
"^Sm 

a, 
(10-88) 

9 Pl ' p2 (10-89) 

9 9^ ^ 9^ 
(10-90) 

and 

v^ = 
%1 + ^gl 

(10-91) 

For the continuity equations, the net-mass transfer rate between Group 1 
and Group 2 bubbles due to bubble interactions at steady state without phase 
change effect can be obtained from the modeUng of the two-group bubble 
interactions as 

Z\mi2 = P, 
' A, '' 

j {•^SmlJ 

(10-92) 

In this, r]j2 is the net volume transfer from Group 1 bubbles to Group 2 
bubbles due to they-th interaction between the two groups of bubbles, such 
as bubble coalescence and disintegration. 
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Among the constitutive relations given above, the number source and 
sink rates defined by Eq.(10-84) should be established through mechanistic 
modeHng of the major particle interactions that contribute to the change in 
the interfacial area concentration. Accounting for the wide range of gas-
liquid two-phase flow, the major bubble interaction mechanisms that lead to 
the particle coalescence or disintegration can be summarized as follows: 

• Random Collision {RRC)'- coalescence through random colUsion driven 
by turbulent eddies; 

• Wake Entrainment ( R^^ ): coalescence through collision due to 
acceleration of the following particle in the wake of the preceding 
particle; 

• Turbulent Impact (R^j): disintegration upon impact of turbulent eddies; 
• Shearing-off ( R^Q ): shearing-off around the base rim of the cap bubble; 
• Surface Instability (Rgj-): break-up of large cap bubble due to surface 

instabiUty; 
• Rise Velocity {Rj^y): collision due to the difference in the bubble rise 

velocity; 
• Laminar Shear {Rig )• breakup due to the laminar shear in viscous fluid, 

and; 
• Velocity Gradient (Ry^): collision due to the velocity gradient. 
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CONSTITUTIVE MODELING OF INTERFACIAL 
AREA TRANSPORT 

The two-fluid model is widely used in the current two-phase flow 
analysis codes, such as nuclear reactor safety analysis codes RELAP5, 
TRAC, and CATHARE. In the conventional model, the interfacial area 
concentration is given by empirical correlations. The correlations are based 
on two-phase flow regimes and regime-transition criteria that do not 
dynamically represent the changes in interfacial structure. There exist the 
following shortcomings caused by this static approach. 

1. The flow-regime transition criteria are algebraic relations for steady-state, 
fully-developed flow. They do not fully reflect the true dynamic nature 
of changes in the interfacial structure. Hence, the effects of the entrance 
and developing flow cannot be taken into account correctly, nor can the 
gradual transition between regimes. 

2. The method based on the flow-regime transition criteria is a two-step 
method that requires flow configuration transition criteria and interfacial 
area correlations for each flow configuration. The compound errors fi'om 
the transition criteria and interfacial area correlations can be very 
significant. 

3. The transition criteria and flow-regime dependent interfacial correlations 
are vaUd in limited parameter ranges for certain specific operational 
conditions and geometries. Most of them are obtained fi-om simple air-
water experiments and phenomenological models. Often the scale effects 
of geometry and fluid properties are not correctly taken into account. 
When applied to high-to-low pressure steam-water transients, these 
models may cause significant discrepancies, artificial discontinuities and 
numerical instability. 
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In Chapter 10, a physics-based approach, namely the interfacial area 
transport equation, was introduced to dynamically obtain the interfacial area 
concentration. In bubbly flow regime, bubbles may be assumed close to 
spherical in shape and with similar size, and thus a one-group interfacial area 
transport equation is sufficient to describe the interfacial area transport 
phenomena. However, in more generalized gas-liquid two-phase flows such 
as cap bubbly, slug and chum-turbulent flows, there exist bubbles with 
different sizes and shapes such as spherical, distorted, cap, slug, or chum-
turbulent bubble. These variations in bubble size and shape substantially 
affect the bubble transport phenomena due to the differences in drag force 
and bubble interaction mechanisms. In developing the transport equation 
applicable to a wide range of two-phase flow, the differences in the shape 
and size of bubbles and in the characteristic transport phenomena should be 
accounted for. In view of this, the bubbles are categorized into two groups: 
spherical/distorted bubbles as Group 1 and cap/slug/chum-turbulent bubbles 
as Group 2. In Chapter 10, a general approach to treat bubbles in two groups 
was presented and the two-group interfacial area transport equation was 
formulated. In implementing the two-group interfacial area transport 
equation to the two-fluid model, some modifications of the conventional 
two-fluid model are required. This is mainly because the introduction of the 
two groups of bubbles requires two gas velocity fields while the 
conventional two-fluid model only provides one gas velocity through the 
momentum equation. 

This chapter presents the modified two-fluid model that is ready to be 
implemented in the approach of the two-group interfacial area transport 
equation. Two momentum equations can be written for the two groups of 
bubbles, although it is not yet very practical to solve two gas momentum 
equations. However, for fully three-dimensional flow this may be necessary, 
whereas for one-dimensional flow a simplified approach is proposed. In this 
case, the momentum equation for the averaged velocity of the gas-phase is 
retained by combining the two gas momentum equations. Additional terms 
related to the velocity difference between Group-1 and Group-2 bubbles 
should be specified. This velocity difference can be estimated based on the 
simplified momentum equations for both Group-1 and Group-2 bubbles by 
accounting for the pressure gradient and general drag force. Furthermore, in 
one-dimensional simplification, a modified drift-flux model may be applied 
to solve for the velocity difference. In addition to this, this chapter 
demonstrates the modeling of sink and source terms in one-group and two-
group interfacial area transport equations. 
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1.1 Modified two-fluid model for the two-group 
interfacial area transport equation 

1.1.1 Conventional two-fluid model 

As discussed in Chapter 9, a three-dimensional two-fluid model has been 
obtained by using temporal or statistical averaging. The model is expressed 
in terms of two sets of conservation equations governing the balance of mass, 
momentum and energy in each phase. However, since the averaged fields of 
one phase are not independent of the other phase, the interaction terms 
appear in the field equations as source terms. For most practical appUcations, 
the two-fluid model can be simplified to the following forms (Ishii, 1977; 
Ishii and Mishima, 1984) fi-om Chapter 9. 

Continuity equation for the gas phase 

% ^ + v.Kp,.,) = r. (u-i) 

Continuity equation for the liquid phase 

d 
*'""^''J + v.[(i-aJp,.,] = r, (11-2) 

dt 

Momentum equation for the gas phase 

Qi \ g'^g g gj g ^g 

+V-K(^''+^')] + «,P,P (11-3) 
+r,v^ + M^ - V a , • % + (p^ - p^)Va^ 

Momentum equation for the liquid phase 

d (l-a^)pfVf 

dt + V-[(l-^)/'/^/^/l = - ( l -^)VP/ 

+V' (l-aJ(^/+r/)] + (l-aJp,5 (11-4) 
+ r , t , , + M ^ - V ( l - a J - r , + ( p , - ; ) , ) v ( l - « J 
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Thermal energy equation for the gas phase 

dt 
+ V-Kp,V,) = -V-[a,(gJ^+<) 

Thermal energy equation for the liquid phase 

-—j^ + V • 1(1 - «JP/vAj 

(11-5) 

=-V •[(!-«.)(.?+.ni + ( l - « J ^ (11-6) 

^[pf - % ) ^ V ^ + ^ ^ ^ ' "̂  "̂ ^̂  "̂  '̂ ^ 

Here, F^, ikT.̂ ^ ^^ Qu ^^^ 0^ are the mass generation, the generalized 
interfacial drag, the interfacial shear stress, the interfacial heat flux, and the 
dissipation, respectively. For simplicity, in the above equations the 

mathematical symbols of averaging are dropped, and ^ , &^ and ^ are 
represented by ^ '^ , S^ and q^ . 

In Eqs.(ll-l) to (11-6), the generation of mass per unit volume, the 
generalized drag force per unit volume, and the interfacial energy transfer 
per unit volume constitute the interfacial transfer terms. The jump 
conditions for the interfacial transfers are given as 

M,^+M^ = 0 (11-7) 

1.1.2 Two-group void fraction and interfacial area transport 
equations 

The two-group void fraction transport equation is given by 
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dt 
+ ^-[%kP,'",k)-r^,+{-Vt Am,, 

247 

(11-8) 

where k=\ and 2 for Groups 1 and 2, respectively. F^^ is the mass 
generation rate of Group-A: bubbles due to phase change, and Arf\2 
represents the net inter-group mass transfer rate from Group-1 to Group-2 
bubbles due to the bubble interactions and the hydrodynamic effect given by 

Am, 12 E-^ + xlD^l'l^+v-K.^.,)-,^. (U-9) 

where 77̂- 2 ^^^ '^phk ^^ ^^ ^^^ inter-group void fraction transport from 
Group-1 to Group-2 bubbles and the source and sink term for the gas volume 
due to phase change, respectively, x is the inter-group transfer coefficient 
and JD Î is the non-dimensional bubble diameter defined by 

D* = ^ ^ ' c l 
D 

(11-10) 
5ml 

where D^^^ is the volume-equivalent diameter of a bubble at the boundary 
between Groups 1 and 2. 

The two-group interfacial area transport equation is given by 

da. 

dt 
r + V-(a«t;̂ 0 

(11-11) 

at ^^'^'^ 3 a S2 

da 92 

dt 
+ V-(«,2'U,2)-?7; ph2 

Pl 

da 
+^(^^)-h7^+^-K^.O-^. dt 

phi (11-12) 

+J2^,2 + ^', phi 
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where 0^^ and (j)^^^^ are the source and sink terms for the interfacial area 
concentration due to bubble interactions for Group-^ bubbles and phase 
change, respectively. 

1.1.3 Modified two-fluid model 

In what follows, the two-fluid model is modified for two-group 
interfacial area transport equation (Sun et al, 2003). The general form is 
given by the multi-field model for the gas phase. In general, the pressure 
and temperature for Group-1 and Group-2 bubbles can be assumed to be 
approximately the same. However, the velocities of two groups are not the 
same, therefore it is necessary to introduce two continuity and two 
momentum equations in principle. Based on the above assumption, the 
density of the gas phase is the same for Group-1 and Group-2 bubbles. This 
leads to the gas phase continuity equations as 

Continuity equation for Group-1 bubbles 

- ^ ^ + V • [%.P,'^,.) = r,, - Am,, (11-13) 

Continuity equation for Group-2 bubbles 

d[o^,2Ps) 

dt 
+ V • (a.aP.v.s) = r^2 + ^ ^ 2 - (11-14) 

Here, A'ri\2 is the inter-group mass transfer due to hydrodynamic 
mechanisms. Furthermore, if the following identities are introduced, 

«Sl + «s2 = «s 

^ 1 + ^ 2 = ^ (11-15) 

_ K I % I ± ^ A ) 
a 

then the summation of Eqs.(ll-13) and (11-14) recovers the conventional 
continuity equation, i.e. Eq.(ll-l). The continuity equation for the liquid 
phase remains the same as Eq.(l 1-2) with 
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(11-16) 

The momentum equation is more complicated due to the introduction of 
the two groups of bubbles. Unlike the continuity equation for the gas phase, 
it is not desirable to have two momentum equations for Group-1 and Group-
2 bubbles due to the complicated nature of the momentum equation at least 
for the one-dimensional formulation. If we assume Group-2 bubbles as the 
"third phases" in addition to the liquid phase and Group-1 bubbles and 
neglects the direct momentum interactions between the Group-1 and Group-
2 bubbles, then two momentum equations may be written for both Group-1 
and Group-2 bubbles as 

^Ki/^.^.i) 
dt 

+ ^'[^glPg'^gl^9l) = ~^9l^Pgl 

+V. \a, (^f + ^f)] + a^.p^g + [F^, - Am,̂ ) ^ 

and 

d[o^g2Pg'Og2) 

dt 
+ ^-[^92Pg'"g2"g2) = -(^2^P, 92 

- V a ^ • ̂ 2 + M,^2 + (V^2 - Pg2)^»g2-

Then, combining Eqs.(l 1-17) and (11-18) yields 

9(^gPg'"g) 

gi2 

dt 

= - V ' 

+v-h^.'"««J 

KlVPjl+",2Vp,2) Pg^(Vg.-vJ 
[ 9 

(11-17) 

(11-18) 

(11-19) 
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- (V«i • %, + Va^ • r^2) + [M^i + M^,) 

with the definitions in Eq.(l 1-15). It is interesting to note that the first term 
on the right-hand side of Eq.(ll-19) is an additional diffusion term due to 
the difference between the bubble velocities in different bubble groups. 

However, Eq.(ll-19) is too complicated to be applied in general 
applications. As mentioned earlier, for most of the practical applications, the 
pressure for the two groups of bubbles can be approximated as the same such 
that 

P. pi P92 = Ps'^ P gil Pgi2 — Pg (11-20) 

Furthermore, the interfacial shear for both groups of bubbles may be 
assumed to be very similar such that. 

%1 ^ %2 = %- (11-21) 

We also have the following definition to further simplify Eq.(l 1-19) 

fjr^ :zr gl gl p2 gl 

a 

(11-22) 

Therefore, Eq.(l 1-19) can be simplified as 

dt + ^-("A^p^J = -'^' 
(^gl^92 

cx„ 
Ki-^r 

(11-23) 

-c.^Vp,+V-[a,(^''+^^)] + «,p,p 
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Va„ • C 

It may be reasonable to assume that the averaged stresses in the bulk fluid 
and at the interface are approximately the same. Thus, 

9« \ 9 9 I 

Then, Eq.(l 1-23) is flirther simplified as 

(11-24) 

dt + ^-['^9p9%%)^-^-
%1^92 

Kl-%2)' 

- « p V p , + a^V .(^'^ + W;) + a^p^g (11.25) 

+ (P9i-P9)^'^9-

The generalized interfacial drag terms, Af̂ ĵ and M^g2 . should be 
individually modeled for Group-1 and Group-2 bubbles. 

Furthermore, the momentum equation for the Uquid phase has the same 
formasEq.(ll-3). Thus, 

d (l-a,)pfVf 

dt 
+ v-[(i-«>,«,t;,l = -(i-«Jvp, 

+V' (i-aj(r/ + r/)l + (i-ajp,^ (11-26) 

+r,v,+M,-V(l-a^)-W^+(p,-p,)v(l-a^) 

with 

M,f=-Mi9=~(^i9l+^i92)^ (11-27) 

It may be reasonable to assume that the averaged stresses in the liquid phase 
and at the interface are approximately the same. Thus, 
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m^^iWf+mf). (11-28) 

Then, Eq.(l 1-26) is further simplified as 

a (l-"p)p/^/ + V-[(l-aJp,t;,^/] = -(l-aJVp, 
dt 

+ (l - a j V • {mf + r / ) + (l - a j p / p (11-29) 

In the above derivation, it is assumed that the pressures and the 
temperatures for the two groups of bubbles are essentially the same. Then, 
similar to the momentum equation, the thermal energy equation for the gas 
phase can be expressed as 

^^ (11-30) 

where the following definitions have been applied 

oi^ (11-31) 

The operator D^/Dt is defined as 

- ^ = — + '' '' ^' "̂  • V = — + y • V. (11-32) 
Dt dt aji+aj2 9t ' 
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Similarly, the thermal energy equation for the liquid phase is written as 

~—j^ ' + V • 1(1 - « J P M | 

= -V-[(l-«.)(9?+9j)] + ( l - « J ^ + r,/ ,̂ (11-33) 

with the interfacial heat transfer at the liquid-phase side as 

q'' = ^:i4L±3dl, (11.34) 

Note that the following interfacial energetic condition should be satisfied 

M + rx) + («4' + ̂ A) = 0- (11-35) 

In the above derivation, very complicated interfacial transfer terms are 
introduced. To solve the modified two-fluid model with the two-group 
interfacial area transport equation, various constitutive relations, interfacial 
transfer terms, and boundary conditions should be specified for the 
additional variables. These variables can be summarized as 

1.1.4 Modeling of two gas velocity fields 

For strongly one-dimensional flow, the introduction of two gas 
momentum equations may bring in unnecessary complications. In this case, 
the gas mixture momentum equation and an additional constitutive relation 
specifying the relative velocity between Group-1 and Group-2 gas velocities 
is sufficient. It is important to ensure that doing so will not over-specify the 
unknowns since the number of unknowns should equal the number of 
available equations. 
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The difference of the bubble velocities may be related to the local slip as 

^,1 - -̂ ,2 = (^,1 - ^ / ) - (%2 - -̂ Z ) = -^rl - '̂ r2 ' (11'^S) 

To obtain the local relative velocity between the gas phase and liquid phase, 
a similar approach to Ishii (1977) may be taken along the drift-flux model 
formulation. 

The momentum equation for Group-1 bubbles, i.e. Eq.(ll-17) can be 
written in the following form by substituting the continuity equation and 
considering the assumptions of Eqs.(l 1-20) and (11-21) and p^ = Pgi-

%1P9 dt "pi "gi - ^ i V p , i + « , i V - ^ , 
(11-37) 

+^,iPg9 + (^,1 - ^rh,,)(v^, -%i) + ^ ip i 

Similarly, we obtain the momentum equations for both Group-2 bubbles and 
the liquid phase as 

%2Pg dt " * «,2VP,2 + "<,2V • C S2 i/2 

+(^g2Pg9 + (^j2 + ^ ^ 1 2 ) ^ 2 " %2 ) + M, JS2 

(11-38) 

and 

^ ^ I 5^ J ^ ' (11-39) 

To obtain the local relative velocity correlation, we consider a special 
condition such as steady-state condition without phase change and with 
negligible-transverse pressure gradient. Without phase change effect, the 
interfacial velocity and the phase velocity for each phase can be considered 
equal, i.e. 

V ^ ^ i ; ^^2^ 'y ,2 ; '^fi^'^r (11-40) 

And the pressure for each phase may be approximated as 
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Pg -Pf -Pm' (11-41) 

Under these approximations, for a nearly one-dimensional flow, the above 
momentum equations can be expressed as 

M,,i ^ " . iVp„ - «,iV • ^ 1 - a^.p^g (11-42) 

Mig2 ~ %2^P^ - «s2V • ^ 2 " (^92Pg9 (11-43) 

and 

M^ ^ (l - « J V;>„ - (l - a j V • ^̂  - (l - ajp^p. (11-44) 

From the interfacial force balance, i.e. Eq.(ll-27), the summation of the 
above three equations yields 

Vp^-M^^-p^g^O (11-45) 

in which M^^ is the force associated with the mixture transverse stress 
gradient and given by 

M , „ = (a, iV • ^ 1 + a^^V • ^ 2 ) + (1 - "p) V • r , 

with 

M , , i = V - ^ i ; M , ^ 2 = V - ^ 2 ; M^^ = V-^ (11-47) 

while /9^ is defined as 

/̂ m = (%1 + ̂ ,2 ) Pp + (1 " S ) ^/ = ^./^P + (1 - % ) /^/- (11-48) 

Equation (11-45) also assumes that Eq.(l 1-28) is valid for most appUcations. 
Furthermore, from Eq.(ll-45), the gravitational force field may be 

replaced with the pressure field, which is an unknown in the momentum 
equation, as 
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Pm 
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(11-49) 

This allows the approach to be applied in microgravity conditions. In steady 
state, the generalized interfacial drag force is approximated by neglecting the 
virtual mass force, the Basset force and non-drag force such as lift force as 

M.., 
3a 

yi 

8 r 
^DlPf^^rlM (11-50) 

di 

where r^^ and (7^^ are the drag radius and the drag coefficient of Group-1 
bubble, and the relative velocity for Group-1 bubbles is defined as 

'^rl='^gl-'^r (11-51) 

Thus, in steady state, by using Eqs.(ll-49) and (11-50), we can rewrite 
Eq.(ll-42)as 

3a 

8r. 
-CmPf'^rMi 
di 

a gi 

{ \ 

1 - ^ 
Pm) 

or in the following form 

Vp„ + a,i - ^ M - M 
[Pm 

rgl 

(11-52) 

8r. 
V r l K l 

dl 

3C DlPf 

[/ 
1-

A 

\ / 
.p^ 

Pm\ 
Vp^ + 

\ 
- ^ M -M 

rm 
[Pm 

rgl . (11-53) 

Similarly, for Group-2 bubbles, we have the following formulation 

«'r-2|'y.2| 

Sr d2 

3C D2Pf 

1 -
. V Pm] \ \Pn 

-Mrm-^rg2 (11-54) 

where r^^ ^^^ ^D2 ^^ ^^ ^^8 radius and the drag coefficient of Group-2 
bubbles, respectively, and the relative velocity for Group-2 bubbles is 
defined as 
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%2 = '^ ,2- '^/ - (11-55) 

From Eqs.(ll-53) and (11-54), together with Eq.(ll-36), we can solve the 
local slip between the two groups of bubbles, i.e. v^^ — v^^. 

In the case of one-dimensional flows, the one-dimensional drift-flux 
model to be discussed in Chapter 14 can be utilized to specify the velocity 
difference. The one-dimensional drift-flux model is modified for two-group 
interfacial area transport equation as 

^,*>) = ^ o . ( i ) + ( f c ) ) (11-56) 

where (v^gU/^ ^ok ^^^ \V9jk)) ^^ ^^^ ^^^^ fraction weighted mean gas 
velocity, the distribution parameter, and the void fraction weighted mean 
drift velocity of Group-A: bubbles, respectively. Then, the velocity difference 
is given by 

= \K -1){3) + {K))\ - [(c» - i){j> + {{v„))\. 

The distribution parameters for both groups of bubbles should be 
obtained from experimental data for certain flow geometry. Furthermore, if 
we assume thaf the distribution parameters for both groups of bubbles are 
essentially similar for certain flows, then the following simplified form can 
be approximately obtained as 

{M)'{M)'^{K))-{K)y (»-'«) 
1.2 Modeling of source and sink terms in one-group 

interfacial area transport equation 

To model the integral source and sink terms in the interfacial area 
transport equation caused by particle coalescence and breakup, a general 
approach treats the bubbles in two groups: the spherical/distorted bubble 
group and the cap/slug bubble group, resulting in two interfacial area 
transport equations that involve the inner- and inter-group interactions as 
shown in Fig.11-1. As shown in Fig.11-2, the mechanisms of these 
interactions can be summarized in five categories: the coalescence due to 
random collisions driven by Hquid turbulence; the coalescence due to wake 
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Group 1 
(1+1 & 1) 

Inter-group 
(1+2 & 2) 

Inter-group 
(1+1 & 2) 

Group 2 
(2+2 & 2) 

Coalescence Breakup 

" • Y •••' 

Jk h 

Figure 11-L Classification of possible interactions of two-group bubbles (Hibiki and Ishii, 
2000b) 

Coalescence Mechanisms 

Random Collision 
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Wake Entrainment 
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Breakup Mechanisms 

o 
Turbulent impact 

• * I 
oo o o o ^ c^cs 

Shearing-off Surface instability 

Figure 11-2, Schematic illustrations of two-group bubble interaction (Ishii et al., 2002) 
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entraimnent; the breakup due to the impact of turbulent eddies; the shearing-
off of small bubbles from cap/slug bubbles; and the breakup of large cap 
bubbles due to flow instability on the bubble surface (KocamustafaoguUari 
and Ishii, 1995; Wu et al., 1998). Some other mechanisms such as laminar-
shearing induced coalescence (Friedlander, 1977) and the breakup due to 
velocity gradient (Taylor, 1934) are excluded because they are indirectly 
caused by the distributions of the flow parameters and void fraction, and the 
direct mechanisms still follow the above five categories. 

In practice, when the void fraction of a two-phase bubbly flow is small, 
no cap or slug bubbles exist. The two-group interfacial area transport 
equation is then reduced to one group without the involvement of the 
interactions between the two groups as 

da, 
^ + V.(a,̂ 0 

2 

3 dt +v-K^p)-^i ph + ^(f)j + (t>ph-

(11-59) 

In this section, some models of source and sink terms in one-group 
interfacial area transport equation are explained briefly. 

1.2.1 Source and sink terms modeled by Wu et al. (1998) 

Wu et al. (1998) considered three mechanisms of the interfacial area 
transport in an adiabatic bubbly flow, namely coalescence due to random 
coUisions driven by liquid turbulence, coalescence due to wake entrainment, 
and breakup due to the impact of turbulent eddies. Then, Eq.(ll-59) is 
further simplified as 

da. 

dt 
- + V-(a,T;,) 

Q^. 

da„ 

dt 
+v-K%) + {hc+^WE+^Tl)^ 

(11-60) 

A. Bubble coalescence due to random collision 
To model the bubble coalescence rate driven by turbulence in the 

continuous medium, the bubble random collision rate is of primary 
importance. These collisions are postulated to occur only between the 
neighboring bubbles because long-range interactions are driven by large 
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Figure 11-3. Geometric definitions of two approaching bubbles (Wu et al., 1998) 

eddies that transport groups of bubbles without leading to significant relative 
motion (Prince and Blanch, 1990; Coulaloglou and Tavlarides, 1976). 
Between two neighboring spherical bubbles of the same size as shown in 
Fig. 11-3, the time interval for one collision, At^, is defined as 

(11-61) 

Here, u^ is the root-mean-square approaching velocity of the two bubbles, 
and Lj, represents the mean traveling distance between the two bubbles for 
one collision. This is approximated by 

D^ - 6D. oc 
A 

1/3 
ce' 

«'A 
a' ^ ' 

(11-62) 

in which D^ is the effective diameter of the mixture volume that contains 
one bubble, and D^ is the bubble diameter. Since the bubble-traveling 
length for one collision varies from D^ to [D^ "~ A ) ' ^ factor 5 is 
introduced in Eq.(ll-62) to feature the averaged effect (whereas (5̂  is a 
collective parameter in considering the sign of proportionality between D^ 
and D^lal^). For small void fraction, 6' plays a minor role due to the fact 
that D^ is much larger than D^. However, it is important if the traveling 
length is comparable to the mean bubble size. When void fraction 
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approaches the dense packing limit (a^ = ^g,mox\ ^^^ mean traveling 
c/ \ , -1/3 length should be zero, which leads to 8' equal to OL^'J^^ . Using this 

asymptotic value as the approximation of 5 ' , the mean traveling length is 
reduced to 

L ~ A oc 1/3 

c^i 
1 -

/ \l/3 

a g,max J 

(11-63) 

Accordingly, the collision frequency for two bubbles moving toward each 
other, fj^c' is given by 

1 
/ / 2 ( 7 = - I ^ ^ T f ^ . 

^t JP 
At, A 

1/3 

a g,max 
1/3 1/3 

^g,max ^g 

(11-64) 

Since the bubbles do not always move toward each other, however, a 
probability, / ^ , for a bubble to move toward a neighboring bubble is 
considered here to modify the collision rate. By assuming a hexagonal 
close-packed structure, this probability is given by 

Pc ^ 
D. 2/3 

- a]\ a^ < a^^^t and P^ = 1' «s > %,crif (11-65) 

where ô ^ cnt î  ^^^ critical void fraction when the center bubble cannot pass 
through the free space among the neighboring bubbles. In reality, the 
neighboring bubbles are in constant motion and the critical void fraction can 
be very close to the dense packing limit. This leads to 

P^oc 
\ g,max 

(11-66) 

Subsequently, the coUision frequency for a mixture with bubble number 
density, n^, is given by 

/ . 
Q!„ 

RC 
At 1/3 / 1/3 1/3 \ 

^g,max y^g,max ^g J 

(11-67) 
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oc n^u^D^ 
1/3 

OLL 
1/3 

OLL g,max \ g,max 

1/3 \ 

The functional dependence of the above collision rate agrees with the model 
of Coulaloglou and Tavlarides (1976) proposed for a liquid-liquid droplet 
flow system, analogous to the particle collision model in an ideal gas. The 
difference is that the present model contains an extra term in the bracket, 
which covers the situation when the mean-free path of a bubble is 
comparable to the mean bubble size. Nevertheless, the model in the present 
form is still incomplete, since no matter how far away the neighboring 
bubble is located, the collision would occur as long as there is a finite 
approaching velocity. In actuality, when the mean distance is very large, no 
collision should be counted because the range of the relative motion for 
collisions between the neighboring bubbles is limited by the eddy size 
comparable to the bubble size. To consider this effect, the following 
modification factor is suggested for Eq.(l 1-67) 

1 — exp (11-68) 

where Cj, and L^ are, respectively, an adjustable parameter depending on 
the properties of the fluid and the average size of the eddies that drive the 
neighboring bubbles together. These eddies are assumed to be on the same 
order of the mean bubble size because smaller eddies do not provide 
considerable bulk motion to a bubble. Larger eddies, however, transport 
groups of bubbles without inducing significant relative motion among the 
bubbles. Thereafter, the final form of the bubble collision frequency is given 
by 

IRC ~ (^t^bDl) 

1 —exp -C. 

a 
1/3 

g,max y^g,max ^g j 
(11-69) 

1/3 1/3 ^ 
max 

T 1/3 1/3 

a' 

For each collision, coalescence may not occur and thus a collision 
efficiency was suggested by many investigators (Oolman and Blanch, 
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1986b; Kirkpatrick and Lockett, 1974). The most popular model for the 
collision efficiency is the film thinning model (Kirkpatrick and Lockett, 
1974). In this model, when the bubbles approach faster, they tend to bounce 
back without coalescence due to the limitation of the film-drainage rate 
governed by the surface tension. Mathematically, the coalescence rate 
decreases exponentially with respect to the turbulent fluctuating velocity, 
which is much stronger than the linear dependence of the colUsion rate, 
resulting in an overall decreasing trend of the coalescence rate as the 
turbulent fluctuation increases. Hence, a constant coalescence efficiency, 
A^, is employed in the model to depict the randomness of the coalescence 
phenomenon after each collision. Nevertheless, the constant coalescence 
efficiency is only an approximation and further efforts are needed to model 
the efficiency mechanistically. The mean-bubble fluctuation velocity, u^, in 
Eq.(l 1-69) is proportional to the root-mean-square liquid fluctuating velocity 
difference between two points of length scale, D^, and is given by e^'^D^I^ 
where e is the energy dissipation rate per unit mass of the continuous 
medium (Rotta, 1972). Thus, the decrease rate of the interfacial area 
concentration due to the bubble coalescence caused by random collisions, 
0^^, is given by 

^Rc = -
Oi„ 

Q'i 
iRc'^\ 

n 2 1/3 

Df 1/3 / 1/3 1/3 \ 

^g,max y^g,max ^g I 

(11-70) 

X 1 — exp ~^T~~[, 

1/3 1/3 "̂  

^g,max^g 
1/3 1/3 
g,max ^g 

where T^^ is an adjustable parameter depending on the properties of the 
fluid, which is determined experimentally to be 0.016. The constants in 
Eq.(ll-70) are set at Q̂ ^̂ âo; =0.75 and 0^=3. 

B. Bubble coalescence due to wake entrainment 
When bubbles enter the wake region of a leading bubble, they will 

accelerate and may collide with the preceding one (Otake et al., 1977; 
Bilicki and Kestin, 1987; Stewart, 1995). For a spherical bubble with 
attached wake region in the Uquid medium, the effective wake volume, F ^ , 
in which the following bubbles may collide with the leading one, is defined 
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as the projected bubble area multiplied by the effective length, L^. The 
number of bubbles inside the effective volume, N^^, is then given by 

iV. 
w Vw^b -M'^-Y] n,. (11-71) 

Assuming that the average time interval for a bubble in the wake region to 
catch up with the preceding bubble is Ai^ , the collision rate per unit 
mixture volume, R^^, should satisfy 

\^Dlnl ihr - A/21 
At^ 

(11-72) 

where u^^r is the averaged relative velocity between the leading bubble and 
the bubble in the wake region. SchUchting (1979) gave the analj^ical 
expression of non-dimensionalized relative velocity as 

"rW (c,Ar 
[PY) 

(11-73) 

where v^^, v^, Cj^, A, /3 and y are: the relative velocity between the 
leading bubble and the bubble in the wake region; the relative velocity 
between the leading bubble and the liquid phase; the drag coefficient; the 
frontal area of the bubble; the ratio of the mixing length and the width of the 
wake; and the distance along the flow direction measured from the center of 
the leading bubble. The averaged relative velocity in the wake region, u^^, 
is then obtained by integrating v^^^ over the critical distance as 

7 / '^j 3v, 
(C,.] 

rW 
[P' } 

1/3 

LW/(D,/2) 

L^ 

D, b ) 

ci\ 

AT 
A/2 P] 

1/3 

(11-74) 

where F[L^ID\ is a function of L^ID^, since /3 is usually assumed to be 
constant (Schlichting, 1979). The exact form of F ( / ^ / D J is not important 
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since the effective bubble wake region may not be fully established. 
According to Tsuchiya et al. (1989), the wake length is roughly 5-7 times the 
bubble diameter in an air-water system, and thus J^ jD^ as well as 
Fil^lDA are treated as constants depending on the fluid properties. As 
long as their values obtained from experimental data fall into the range of 
L^ ID^ =5-7, the mechanism should be acceptable. Thus, the decrease rate 
of tne interfacial area concentration due to the bubble coalescence caused by 
wake entrainment, (t)^^^, is given by 

( 2̂ n n^^ 2 
a 

«w 
^ A - - "^^^2 ' ' • (11-75) 

A 

where F^^^ is an adjustable parameter mainly determined by the ratio of the 
effective wake length to the bubble size and the coalescence efficiency, 
which is determined experimentally to be 0.0076. 

C. Bubble breakup due to turbulent impact 
For binary bubble breakup due to the impact of turbulent eddies, the 

driving force comes from the inertial force, Fl^erUa > of the turbulent eddies in 
the continuous medium, while the holding force is the surface tension force, 
^tendon' ^^ ^ ^ ^ ^^^ daughter bubbles apart with a characteristic length of 
Dj^ within time interval At^, a simple momentum balance approach gives 
the following relation. 

^ •'^inertia ^tension (11- /0_) 

Here, the inertia of the bubble is dominated by the virtual mass because of 
the large density ratio of the liquid and gas. Rearranging Eq.(l 1-76) leads to 
the following averaged bubble breakup frequency 

u. 
fri 0^77 

fi We^/' u . . - ^ X A 
A We 

We = ^^J-^^>We^,. (11-77) 

The velocity, u^, is assumed to be the root-mean-square velocity difference 
between two points of length Dj^, which implies that only the eddies with 
sizes equivalent to the bubble size can break the bubble. We^^ is a 
collective constant, designated as a critical Weber number. The reported 
value of We^^ for bubble breakup varies in a wide range due to the 
resonance excitation of the turbulent fluctuation (Sevik and Park, 1973). 
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In a homogeneous turbulent flow, the probability for a bubble to collide 
with an eddy that has sufficient energy to break the bubble, namely the 
breakup efficiency, A^ , is approximately (Coulaloglou and Tavlarrides, 
1976) 

A^ oc exp u^ t.crit 

u. 
(11-78) 

where u^^^^^ is the critical mean-square fluctuation velocity obtained from 
We^^. Finally, the increase rate of the interfacial area concentration due to 
the bubble breakup caused by turbulent impact, (f>j,j, is given by 

t/yj 3i^ 

( ^2 

v « . y 

r^^< 
D, 5/3 

1 
we^,^y' 

We 

1/2 

exp 
We„. 

We } 
We > We„ 

(11-79) 

0, We < We^,. 

The adjustable parameters rj,j and We^^^ are determined experimentally to 
be 0.17 and 6.0, respectively. This expression differs from the previous 
models (Prince and Blanch, 1990) because the breakup rate equals zero 
when the Weber number is less than We^^^. This unique feature permits the 
decoupling of the bubble coalescence and breakup processes. At a low 
liquid flow rate with small void fraction, the turbulent fluctuation is small 
and thus no breakup would be counted. This allows the fine-tuning of the 
adjustable parameters in the coalescence terms, independent of the bubble 
breakage. 

D. One-dimensional one-group model 
The simplest form of the interfacial area transport equation is the one-

dimensional formulation obtained by applying cross-sectional area averaging 
over Eq.(l 1-60) 

dt 

2 

+1 1^-^(K)((v») [{a,)]\ dt • dz 

(11-80) 
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Due to the uniform bubble size assumption, the area-averaged bubble 
interface velocity weighted by interfacial area concentration, Uv^S) , is 
given by 

This is the same as the conventional area-averaged gas velocity weighted by 
void fraction, if the internal circulation in the bubble is neglected. The exact 
mathematical expressions for the area-averaged source and sink terms would 
involve many covariances that may further complicate the one-dimensional 
problem. However, since these local terms were originally obtained from a 
finite volume element of the mixture, the functional dependence of the area-
averaged source and sink terms on the averaged parameters should be 
approximately the same if the hydraulic diameter of the flow path is 
considered as the length scale of the finite element. Therefore, Eqs.( 11-70), 
(11-75) and (11-79), with the parameters averaged within the cross-sectional 
area, are still applicable for the area-averaged source and sink terms in 
Eq.(ll-80). 

In Eqs.(ll-70), (11-75) and (11-79), the energy dissipation rate per unit 
mixture mass should be specified. In a complete two-fluid model, e comes 
from its own constitutive relation such as the two-phase k-e model (Lopez 
de Bertodano et al, 1994). For one-dimensional analysis, however, this term 
can be approximated by a simple algebraic equation as 

{vjf (11-82) <^> = 

where v^ 

JTW 

2D^ 

. DH and /y^ are the mean mixture velocity, the hydraulic 
diameter of the flow path and the two-phase friction factor. 

1.2.2 Source and sink terms modeled by Hibiki and Ishii (2000a) 

Hibiki and Ishii (2000a; 2002c) discussed the contribution of wake 
entrainment to the interfacial area transport. Wake entrainment would play 
an important role in the bubbly-to-slug transition, slug and chum-turbulent 
flows. It may also be important for bubbly flow in a small diameter tube or 
for very low flow conditions as the lateral fluctuation of bubbles is small. 
However, for relatively high flow conditions, even bubbles captured in the 
wake region would easily leave the wake region due to liquid turbulence, 
resulting in a minor contribution of wake entrainment to the interfacial area 
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transport. Thus, Hibiki and Ishii (2000a) dropped the wake entrainment term 
from the interfacial area transport equation in an adiabatic bubbly flow, and 
considered two terms of coalescence due to random collisions driven by 
liquid turbulence and breakup due to the impact of turbulent eddies. 

A. Bubble coalescence due to random collision 
The bubble coalescence is considered to occur due to the bubble random 

collision induced by turbulence in a Hquid phase. For the estimation of 
bubble-bubble collision frequency, it is assumed that the movement of 
bubbles behaves like ideal gas molecules (Coulaloglou and Tavlarides, 
1977). Following the kinetic theory of gases (Loeb, 1927), the bubble 
random collision frequency, /^^, can be expressed by assuming the same 
velocity of bubbles, ix ,̂ as a fiinction of surface available to the collision, 
Sfj, and volume available to the collision, U^ 

f.aA (U-S3, 

Taking account of the excluded volume for bubbles, the surface and volume 
are given by 

24a 
S^ = A-K[N, - 1)Dl ^ 4nN,D^ ^V--^ (11-84) 

-Lyu ^h 

U,=v\l-(3,^7vv,D, 
(11-85) 

where N^, D^, V, n^ and a^ denote the number of bubbles, the bubble 
diameter, the control volume, the bubble number density and the void 
fraction, respectively. The variable f3fj{<\) is introduced into the excluded 
volume in order to take account of the overlap of the excluded volume for 
high void fraction region. Although it may be a function of the void fraction, 
it is treated as a constant for simplicity. The distortion caused by this 
assumption will be adjusted by a tuning parameter in a final equation of the 
bubble coalescence rate as introduced later. 

The mean fluctuation velocity difference between two points D^ in the 
inertial subrange of isotropic turbulence is given by (Hinze, 1959) 
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u. \A[eD,f (11-86) 

where e denotes the energy dissipation. Taking account of the relative 
motion between bubbles, the average bubble velocity is given by 

u^ V lc[^D,f (11-87) 

where 7^ is a constant. 
The collision frequency will increase to infinity as the void fraction 

approaches to maximum void fraction, OL^^^ . Since 74.1 % of the volume 
is actually occupied by identical spheres close-packed according to a face-
centered cubic lattice, OL^^^ may be assumed to be 0.741. Finally, we 
obtain 

/ 1/3 

JRC =" "3^37 ~ T (11-88) 
0 \ C,max g J 

where 7^ is an adjustable valuable. 
In order to obtain the bubble coalescence rate, it is necessary to 

determine a coalescence efficiency. Coulaloglou and Tavlarides (1977) gave 
an expression for the coalescence efficiency, A^, as a function of a time 
required for coalescence of bubbles, t^j , and a contact time for the two 
bubbles r^ 

A^ = exp (11-89) 

The time required for coalescence of bubbles was given by Oolman and 
Blanch (1986a; 1986b) for the thinning of the Uquid film between bubbles of 
equal size as 

^ ^ = 1 ^ I n ^ (11-90) 
2 ^ Sent 

where Pf, a, 6.^^ and 6^^^ are, respectively, the liquid density, interfacial 
tension, the initial fihn thickness, and the critical film thickness where 
rupture occurs. Levich (1962) derived the contact time in turbulent flows 
from dimensional consideration. 
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Tn = 

2/3 

Chapter 11 

(11-91) 

where r^ is the bubble radius. Finally, we obtain 

A^ = exp 
crit 

Kirkpatrick and Locket (1974) estimated the initial thickness of the film in 
air-water systems to be 1x10"̂  m, whereas the final fihn thickness was 
typically taken as 1x10"̂  m (Kim and Lee, 1987). Thus, the experimental 
coefficient, K^, is determined to be 1.29 for an air-water system. 

The decrease rate of the interfacial area concentration, 0^^ , is then 
expressed as 

^RC = 
3ip 

Oi„ 

fnc'^b^c 

^ RC^g^ 
2JP 

A'^'K,max-%) 
exp 

(^.^fflf.'n 
1/2 

(11-93) 

The adjustable variable, /"^^, would certainly be a function of the overlap 
of the excluded volume, the bubble deformation, and the bubble velocity 
distribution. However, the adjustable variable might be assumed to be a 
constant for simplicity and is determined experimentally to be 0.0314 for 
bubbly flow. 

B. Bubble breakup due to turbulent Impact 
The bubble breakup is considered to occur due to the collision of the 

turbulent eddy with the bubble. For the estimation of bubble-eddy colUsion 
frequency, it is assumed that the movement of eddies and bubbles behaves 
like ideal gas molecules (Coulaloglou and Tavlarides, 1977). Furthermore, 
the following assumptions are made for the modeling of the bubble-eddy 
collision rate (Prince and Blanch, 1990): (i) the turbulence is isotropic; (ii) 
the eddy size D^ of interest lies in the inertial subrange; (iii) the eddy with 
the size from c^D^ to D^ can break up the bubble with the size of D^, since 
larger eddies have the tendency to transport the bubble rather than to break it 
and smaller eddies do not have enough energy to break it. Azbel and 
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Athanasios (1983) developed the following expression for the number of 
eddies as a function of wave number. 

dNXK) 
dk 

= O.lit' (11-94) 

where N^[k^) denotes the number of eddies of wave number k^(=2/D^) 
per volume of fluid. Here, the number of eddies of wave number per volume 
of two-phase mixture, n^ {K)' î  given by 

nM = NM{^-a^y (11-95) 

Following the kinetic theory of gases (Loeb, 1927), the bubble-eddy random 
collision frequency, fj,j, can be expressed by assuming the same velocity of 
bubbles, li^, as a function of the surface available to the collision, S^, and 
the volume available to the collision C/p 

(11-96) 

Taking account of the excluded volume for the bubbles and eddies, the 
surface and volume are given by 

5'.= 
/ 4 . K - l ) ( | + ̂ j dn^ 

I dn. 

24a„ 
4nN,D^-F,{e,) = V--^F,{c,) 

A 

(11-97) 
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where Fg{c^) and Fy{c^) are functions of ĉ  defined by DJD^ . The 
variable P^{<1) is introduced into the excluded volume in order to take 
account of the overlap of the excluded volume for high void fraction region. 
Although it may be a function of the void fraction, it is treated as a constant 
for simplicity. The distortion caused by this assumption will be adjusted by 
a tuning parameter in a final equation of the bubble breakup rate as 
introduced later. 

According to Kolmogorov's Law (Azbel, 1981), for the inertial subrange 
of the energy spectrum, the eddy velocity, u^, is given as 

u'^ = S.2[e/k,f or u^ = 23{eDj/'. (11-99) 

Here, taking account of the relative motion between bubble and eddy, the 
averaged relative velocity, u^, can be expressed as 

« B - 7 5 ( C e ) ( ^ A f (11-100) 

where 7^ (c^) is a function of c^. Finally, we obtain 

I'Ac.) a^s 
1/3 

fB= ^23, ' ' ^ (11-101) 

where 7^ (c^) and ex^ max ^^ ^^ adjustable variable depending on c^ and 
maximum allowable void fraction, respectively. The maximum allowable 
void fraction, o^Bmas > ^̂  Eq.(l 1-101) can approximately be taken at the same 
value as o^cmax» iiamely, 0.741, if eddies with almost the same size of 
bubbles are assumed to break up the bubbles. Consequently, the functional 
form of the frequency of the bubble-eddy random collision, Eq.(l 1-101) 
looks similar to that of the frequency of the bubble-bubble random colUsion, 
Eq.(ll-88). 

In order to obtain the bubble breakup rate, it is necessary to determine a 
breakup efficiency, A^. The breakup efficiency is given in terms of the 
average energy of a single eddy, E^, and the average energy required for 
bubble breakup, E^ , as (Prince and Blanch, 1990; Coulaloglou and 
Tavlarides, 1977; Tsouris and Tavlarides, 1994) 
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\Q = exp 
E^ 

(11-102) 

For binary breakage, that is, the bubble breaks into two bubbles, the 
required energy, Eg, is simply calculated as the average value of the energy 
required for breakage into a small and a large daughter bubble as follows 

EB = TraAU + ^ ^ A U - ^^A'- (11-103) 

The average values of the breakup energy for two extreme cases are 
calculated by averaging Eq.(l 1-103) from D^ — DJI^^^ 

(D,min=DM'' ) to A,.a. = A (A,..n = 0 ) to bc 0 .200^^^ and by 
setting D^^^ = D^^^^ = DJl' to be 0260TiaDl . Thus, the breakup 
energy, E^, is approximated to be 0.2307rcrDĵ  by averaging the breakup 
energies for two extreme cases. It should be noted here that the relative 
difference between EQ(=0.2307TaD^) obtained by averaging Eq.(l 1-103) 
and E^ (= 0,2607vaD^) assuming the binary breakage into two equal-size 
bubbles is about 13 %. Therefore, the assumption on the size of small and 
large daughter bubbles may not affect the estimation of E^ significantly. 

The average energy of single eddies acting on the bubble breakup is 
simply calculated from 

Ee^-f^ (11-104) 

*^^e,min 

where e is the energy of a single eddy given by 

e = ^ m , ^ ^ (11-105) 

In this, m^ is the mass per a single eddy. From Eqs.(ll-94), (11-95), (11-
99), (11-104) and (11-105), the average energy of single eddies acting on the 
bubble breakup is then given by 
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E. 
J^7le,max , ^ ^ . ^ 2 / 3 / . s r^e.max , --
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Prince and Blanch (1990) set the minimum eddy size, which would not cause 
bubble breakup, at eddies smaller than 20 % of the bubble size, ĉ  =0.2. 
Thus, the average energy of single eddies is expressed by 

£,=0.145 V ' ' - D ; ' ' ' . 

The final form of the breakup efficiency is then given by 

(11-107) 

f 
A^ = exp K,a 

PfDfe^'' 
(11-108) 

where Kj^ is a constant to be 1.59 (=0.230/0.145). 
The increase rate of the interfacial area concentration, 

expressed as 
^TI , is then 

0: 'TI 

1 ( 2̂ 

1/3 

exp 
K,a 

sj^ m [ PfDr^rj 

(11-109) 

where Fr^j is an adjustable variable. The adjustable variable, / B , would 
certainly be a function of the overlap of the excluded volume, the bubble 
deformation, the bubble velocity distribution, and the ratio of eddy size to 
bubble size. However, the adjustable variable might be assumed to be a 
constant for simplicity and is determined experimentally to be 0.0209 for 
bubbly flow. 

It should be noted here that for one-dimensional analysis the energy 
dissipation rate per unit mass is simply obtained jfrom the mechanical energy 
equation (Bello, 1968) as 
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(e) 
Pm 

dP] 
dz) 
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(11-110) 

where j , p^, P and z denote the mixture volumetric flux, the mixture 
density, the pressure, and the axial position from the test section inlet, 
respectively. 

1.2.3 Source and sink terms modeled by Hibiki et al. (2001b) 

Hibiki et al. (2001b) discussed the main mechanism of the interfacial area 
transport in a relatively small diameter tube at low liquid velocity where the 
bubble breakup is negligible. Here, a relatively small diameter tube is 
defined as a tube with a relatively high bubble size-to-pipe diameter ratio. In 
such a relatively small diameter tube, the radial bubble movement would be 
restricted due to the presence of the wall resulting in insignificant bubble 
random collision, whereas the bubbles are aligned along the flow direction 
resulting in significant wake entrainment. Thus, Hibiki et al. (2001b) 
developed the sink term due to the bubble coalescence considering the 
dependence of the bubble coalescence mechanism on the tube diameter. 

A. Bubble coalescence due to random collision 
The same model as in Hibiki and Ishii (2000a) was used. 

r 2 V3 

'^RC 
DT(^c,m..-%) 

exp 
( K^pfDre'P] 

1/2 (11-111) 

B. Bubble coalescence due to wake entrainment 
The model was developed by modifying the model proposed by Wu et al. 

(1998). 

(KE = -rwE(^To'h exp 
' KapfpTe'l'' 

1/2 
a' 

(11-112) 

where JT^^, and K^ are, respectively, an adjustable parameter 
experimentally determined to be 0.082 and the experimental constant 
determined to be 1.29 for an air-water system. 

C. Effect of tube size on interfacial area transport mechanism 
The above simple consideration suggests that the major mechanism of the 
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bubble coalescence in a relatively small diameter tube would be wake 
entrainment. However, experimental data (Hibiki and Ishii, 1999; Hibiki et 
al., 2001a) suggested that the bubble coalescence mechanism of bubbly 
flows in medium pipes (25.4 mm < D < 50.8 mm) could successfully be 
modeled by considering the bubble random collision induced by liquid 
turbulence. Thus, the bubble coalescence mechanism is likely to be 
dependent on the ratio of bubble diameter to tube diameter, D^ID. For 
example, a trailing bubble should certainly exist in a projected area of a 
leading bubble for DJD=0,5, Also, if the leading bubble rises in the center 
of the channel, the trailing bubble should certainly exist in the projected area 
of the leading bubble even for DJD=033. In a small diameter tube, since 
the radial bubble movement would be restricted due to the presence of the 
wall, the bubble coalescence due to bubble random collision is unlikely to 
occur. Thus, as the ratio of bubble diameter to tube diameter increases, the 
dominant bubble coalescence mechanism is expected to change from the 
bubble random collision to the wake entrainment. This suggests the 
following functional form of the sink term for bubbly flows in small and 
medium tubes. 

^C = ^RC exp 
{n \\ 

f D, 
[D) + <5W 1-exp / A 

[Dj 
(11-113) 

The function, flD^/D) , may be approximated based on experimental data 
as 

/ 
f n \ D, 
[Dj 

= -1000 
'D,]' 
[Dj 

(11-114) 

The interfacial area transport equation taking account of the tube size effect 
would be promising for predicting the interfacial area transport of bubbly 
flows in small and medium tubes. 

1.3 Modeling of source and sink terms in two-group 
interfacial area transport equation 

The interfacial structures in different flow regimes change dramatically. 
For cap bubbly, slug and chum-turbulent flows, bubbles are divided into two 
groups according to their geometrical and physical characteristics. The 
spherical and distorted bubbles are categorized as Group 1, and the cap, slug 
and chum-turbulent bubbles are categorized as Group 2. These two groups 
are subject to different coalescence/disintegration mechanisms. Therefore, a 
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two-group interfacial area transport equation needs to be introduced and the 
bubble coalescence and breakup processes should be modeled properly. In 
this section, some two-group models are explained briefly. 

1.3.1 Source and sink terms modeled by Hibiki and Ishii (2000b) 

Hibiki and Ishii (2000b) developed the two-group interfacial area 
transport equation at adiabatic bubbly-to-slug transition flow in a moderate 
diameter tube and evaluated it using a vertical air-water flow data taken in a 
50.8 mm-diameter tube (Hibiki et al., 2001a). In what follows, the 
classification of interfacial area transport mechanisms and the modeled 
source and sink terms are explained briefly. 

A. Classification of interfacial area transport mechanisms 
The boundary between Group-1 and Group-2 bubbles can be determined 

by (Ishii and Zuber, 1979) 

where D^^^ is the volumetric equivalent diameter of a bubble at the 
boundary between Group-1 and Group-2 bubbles. Equation (11-115) gives 
the value of about 10 mm for air-water system at atmospheric pressure. 

To model the integral source and sink terms in two-group interfacial area 
transport equation caused by bubble coalescence and breakup, the possible 
combinations of bubble interactions can be classified into eight categories in 
terms of the belonging bubble group (see Fig.11-1): (1) the coalescence of 
bubbles (Group 1) into a bubble (Group 1); (2) the breakup of a bubble 
(Group 1) into bubbles (Group 1); (3) the coalescence of bubbles (Group 1 
and 2) into a bubble (Group 2); (4) the breakup of a bubble (Group 2) into 
bubbles (Group 1 and 2); (5) the coalescence of bubbles (Group 1) into a 
bubble (Group 2); (6) the breakup of a bubble (Group 2) into bubbles (Group 
1); (7) the coalescence of bubbles (Group 2) into a bubble (Group 2); and (8) 
the breakup of a bubble (Group 2) into bubbles (Group 2). As summarized 
in Table 11-1, Hibiki and Ishii (2000b) considered the three major bubble 
interactions: (1) the coalescence due to random collisions driven by 
turbulence; (2) the coalescence due to wake entrainment; and (3) the breakup 
upon the impact of turbulent eddies. They assumed that the bubble 
coalescence due to the shearing-off of cap or slug bubbles might be 
insignificant at bubbly-to-slug transition flow. They also assumed the 
bubble breakup due to surface instability could be neglected in a moderate 
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Table 11-1. List of intra- and inter-group interaction mechanisms in the model by Hibiki and 
Ishii (2000b) 

Symbols 

A 
4f^ 
^WE 

4j 
</>(? 

0(^-) 

Mechanisms 

Random collision 

Wake entrainment 

Wake entrainment 

Turbulent impact 

Turbulent impact 

Turbulent impact 

Interaction 

(1)+(1)->(1) 

(l)+(2)->(l) 

(2)+(2)-.(2) 

(1)-(1)+(1) 

(2)-(2)+(l) 

(2)-(2)+(2) 

Parameters 

r^^^i =0.351, ir^^^i =0.258 

^H^^,i2 =24.9, ir^^^i2 =0-460 

^WE,2 =63.7, K^E,2 =0.258 

7Yl=^*^2j lyj^j 1—6.S5 

^ r/,i2=^l'7> -^r/,i2=l^-^ 

J7 2=4*26j l\rpj2—6,^5 

diameter tube where the tube size is smaller than the limit of the bubble 
breakup due to surface instability. 

Hibiki and Ishii (2000b) developed the two-group model with the 
necessary inter-group coupling terms due to turbulent impact and wake 
entrainment as well as source and sink terms due to wake entrainment and 
turbulent impact in Group 2 (see Table 11-1). Here, some other mechanisms 
such as coalescence due to random collision between cap bubbles are 
excluded because the model is developed for bubbly-to-slug transition flow 
in a moderate diameter tube. In such a condition, cap and slug bubbles 
would rise around the tube center resulting in a minor role of random 
collision between cap bubbles. Two more mechanisms are also omitted in 
this model. They are interchange terms due to the complete breakup of a cap 
bubble (Group 2) into small bubbles (Group 1) and the coalescence of small 
bubbles (Group 1) into a cap bubble (Group 2). Since the ratio in diameter 
of cap bubbles to small bubbles is about 10 to 20 in the experimental 
conditions of the database (Hibiki et al., 2001a), these interchanges of 
bubbles are unlikely to occur. Eventually, six terms listed in Table 11-1 are 
considered as source and sink terms in the two-group interfacial area 
transport equations to be applied at the bubbly-to-slug transition flow in a 
moderate diameter tube. 

B. Simplified two-group interfacial area transport equation 
Here, an isothermal flow condition is assumed. In addition, the 

coefficient x is neglected. It is due to the fact that there is very little portion 
of bubbles at the group boundary that could transfer to the other group 
simply due to expansion. Thus, two-group interfacial area transport equation 
is simplified as 
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dt 
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(11-116) 

at 3 a^i 

da 
si 

â  
+ v-(v,0 

*>W t(12,2) (1) +0);^+€T+0ii;+<^'Ti 
/.(2.12) 

(11-117) 

'""+V. («.,..,)= ^«-

+0̂ 1 +4/̂ -
3 a p2 L 

da 92 

dt 
+ ^'(o^g2V,2) 

(11-118) 

C. Summary of modeled sink and source terms 
The modeled sink and source terms are summarized as follows. In the 

one-dimensional formulation, all the two-phase parameters, such as a^, a^, 
and Dg^, are area-averaged values. For simplicity, the < ) signs standing 
for the area-average are omitted in the following formulations. 

Bubble coalescence due to random collision 

r ^ c-

AT(^^,max-^,) 
exp 1/2 

a 

Bubble coalescence due to wake entrainment 

4f = -%^fc--/) 
M , l &,2 

xexp j K 6 ^ 
D,,+D, '6,1 b,2 ) 

(11-119) 

(11-120) 
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€1 r a"-
^ WE,2'-^g2 (vj2-f^/)exp ^WE,2\\ 

'Dipy (11-121) 

(12,2) 
VwE 

xexpj 

a ̂ 1 

^L\ KAa 
^ 3 ^ 2 

^WE,\1\\ 3 
A,iA.2 

lA,i + A,2j 

(11-122) 

Bubble breakup due to turbulent impact 

-1/3 ( 

A« 
'^TI 5/3 

^ T / , l " s l ( l - « s ) ^ ' ' 

ATK/,ma^-«J 
exp 

K„.^a 
,5/3,2/3 

I p/^.!i-n 
(11-123) 

</>; (2,12) 

xexp 

-^r j , i2Q'g2( l -Q'Jg 

[ jr.,u^{(A^.2 - ^ ^ r + [ D i , - DI2)]] 
PfDi, 

1/3 2/3 

(11-124) 

0^ 
- r r / ,2Q 'g2( l -Qg)g 

exp 
K^TG 

5/3 2/3 

i p/A:2e^ J 
(11-125) 

^ ^ • ' ^ ^ 

xexp 

3^r7 , i2« f f2 ( l -«s )e ' ' ' ^ 

11/3 2/3 
P/A,2 £ 

(11-126) 
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The values of the coefficients in the source and sink terms are listed in Table 
11-1. 

1.3.2 Source and sink terms modeled by Fu and Ishii (2002a) 

Fu and Ishii (2002a) developed the two-group interfacial area transport 
equation for bubbly flow, slug flow, and chum-turbulent flow in a moderate 
diameter tube and evaluated it using a vertical air-water flow data taken in a 
50.8 mm-diameter tube. In what follows, the classification of interfacial 
area transport mechanisms and the modeled source and sink terms are 
explained briefly. 

A. Classification of interfacial area transport mechanisms 
Fu and Ishii (2002a) adopted five major bubble interactions: (1) the 

coalescence due to random collisions driven by turbulence; (2) the 
coalescence due to wake entrainment; (3) the breakup upon the impact of 
turbulent eddies; (4) the breakup due to shearing-off; and (5) the breakup of 
large-cap bubbles due to flow instability on the bubble surface. In view of 
the complexity for incorporating all source and sink terms into the interfacial 
area transport equation and the difficulty of experimental verification, they 
performed an analysis to simplify the interaction terms according to their 
nature and the order of magnitudes. It is verified firom experiments that the 
majority of inter-group interactions is caused by the wake entrainment and 
the shearing-off of Group-1 bubbles to and from the Group-2 bubbles (Fu 
and Ishii, 2002a). In addition, the wake entrainment between Group-2 
bubbles predominantly governs the Group-2 bubble number which 
significantly affects the flow structure and intensiveness of inter-group 
interactions. The Group-2 bubble disintegration due to surface instability is 
significantly enhanced by the high turbulent intensity and active eddy-bubble 
interaction in the wake region of the slug bubbles. 

The random collision between Group-1 and Group-2 bubbles may be 
included into the wake entrainment of Group-1 into Group-2 bubbles due to 
the similar nature. In addition, the contribution from the collision of Group-
1 bubble at the head of Group-2 bubble could be small due to the lower 
Group-1 bubble number density and lower turbulent intensity outside the 
wake region. Meanwhile, the random collision between Group-2 bubbles 
could also be negligible in a moderate diameter flow (2.5 cm < J5 < 10 cm) 
because the predominant interaction is normally within a wake region of the 
leading bubble, and the coalescence mechanism can be treated as wake 
entrainment between Group-2 bubbles. Similarly, the turbulent 
disintegration that results in a generation of the Group-1 bubble from the 
Group-2 bubble can be seen as part of the shearing-off effect and might not 
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Table 11-2. List of intra- and inter-group interaction mechanisms in the model by Fu and Ishii 
(2002a; 2002b) 

Symbols 

Ana) 

9wE 

4f 
^WE 

^WE 

4j 
0^ 

4^'' 

Mechanisms 

Random colHsion 

Random collision 

Wake entrainment 

Wake entrainment 

Wake entrainment 

Wake entrainment 

Turbulent impact 

Turbulent impact 

Shearing-off 

Interaction 

(1)+(1)--(1) 

(l)+(l)-(2) 

(1)+(1)-(1) 

(l)+(l)-.(2) 

(l)+(2)->(2) 

(2)+(2)-(2) 

(1)-(1)+(1) 

(2)->(2)+(2) 

(2)--(2)+(l) 

Parameters 

C^(. =0.0041, Cr=3.0 

«<,l,max=0-75 

Cj^,^ =0.002, C^^^^ =0.015 

Cg-10.0 

C„ =0.0085, We^^ =6.0 

Cgo =0.031, ^go =0.032 

PgO=l.6 

need to be modeled individually. Furthermore, the disintegration of Group-2 
bubbles due to surface instability is considered to be very small and can be 
combined with the disintegration of Group-2 bubbles induced by turbulent 
impact. Eventually, nine terms listed in Table 11-2 are considered as sink 
and source terms in the two-group interfacial area transport equations to be 
applied at the bubbly, slug and chum-turbulent flows in a moderate diameter 
tube. 

B. Simplified two-group interfacial area transport equation 
Here, an isothermal flow condition is assumed. In addition, the 

coefficient x is neglected. It is due to the fact that there is very little portion 
of bubbles at the group boundary that could transfer to the other group 
simply due to expansion. Thus, two-group interfacial area transport equation 
is simplified as 

^Ki/^J 
dt +v-Ki/^.^.i) (11-127) 

-/^.(^r+^r+^i:^^^+^^^^) 
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at 3 â , 
da. 

ffi 

dt 
+ V - ( V P , ) 

Ĉ) /,{11.2) ^(1) (11,2) /,(12.2) ,̂(1) 

(11-128) 
^(2.12) 

+0^^+«^+<«.i+«/+«^+c+^ro! 

P2 

5 a P2 

â  
+ V-(a^2'y,2) 

/.(2) ^(2A2) /.ai.2) (2) /.(11'2) 

+ î+«+c:2^+0^^+« 
^(12,2) 
WE,2 • 

(11-129) 

C. Assumed Group-2 bubble shape and bubble number density 
distribution 

Group-2 bubbles consist of cap and slug bubbles. Bubble shapes are 
subject to the wall effects when the diameter ratio D. ID exceeds certain 
limits, where D^^^^^ is the bubble cross sectional diameter, and D is the 
tube diameter. In addition, there are two important parameters that are 
considered crucial for determining the bubble shape. They are the viscosity 

number given hy N . = f^f/\Pf^ l^/d^p] ' ^^^ ^^^ length-scale ratio 
number given by D* = DJ la/gAp . According to Clift et al. (1978), when 
^b cross I^ - ^•^' ^^^ walls cause little deformation on the cap bubble shape 
as in an infinite medium. In this case, the shape of cap bubbles can be 
closely approximated as a segment of a sphere, and the wake angle is nearly 
50°. When the diameter ratio D. ID exceeds a value of about 0.6, the 

0,cross I ' 

tube diameter becomes the controlling length governing the frontal shape of 
a bubble and then the bubble is called a slug bubble. The definitions of the 
geometrical parameters, including cross-sectional radius, a , the bubble 
height, h, and the wake angle, 6^, are shown in Fig. 11-4. It is shown (Clift 
et al., 1978) that the slug can be considered to be composed of two parts, a 
rounded nose region whose shape is independent of the slug length and a 
near-cylindrical section that is surrounded by an annular film of the liquid. 
It is also verified that for N^^ < 0.032 and D >10, the viscosity and surface 
tension forces are negligible and the bubble shape on the potential flow 
theory can be well applied. The air-water flow in a moderate diameter tube 
(7V^^=2.36X 10"̂  and D*=19 for a 50.8 mm-diameter tube) satisfies the 
above requirement. Therefore, the bubble shape can be predicted based on 
an appHcation of the Bernoulli equation (Mishima and Ishii, 1984). 

A simplified bubble number density distribution is given in Fig. 11-5. It 
is assumed that all the bubble groups have flat number density distributions 
in the corresponding bubble volume range. The values of the distribution 
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' ^ 

• 1 n 

2fl 

Figure 11-4. Definition of the geometrical parameters for cap and Taylor bubbles (Fu and 
Ishii, 2002a) 

/ 

/ i 

/ . 

/ , 

1/ . 1/ y y 
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Figure 11-5. Illustration of the simplified bubble number density distribution (Fu and Ishii, 
2002a) 

function are denoted as /^, /^, and /^ for Group-1 bubbles, cap bubbles, and 
slug bubbles, respectively. 

D. Summary of modeled source and sink terms 
The modeled source and sink terms are summarized as follows. In the 

one-dimensional formulation, all the two-phase parameters such as a^, a., 
and Dg^ are area-averaged values. For simplicity, the < ) signs standing for 
the area-average are omitted in the following formulations. 
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Bubble coalescence due to random collision 
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4>'^c=H'''),R'^c (11-130) 

€i = {8€''),R'^c (11-131) 

/,(n,2) H'''),Rfa (11-132) 

rif^'={8V^''''),R'^c (11-133) 

where 

^RC ~ ^RC 
u,n,i'R Sm\ 

C,l/3 / ^ l / 3 _ ^ l / 3 \ 

X 1 — exp -a 
r\ I ry I I 

T 1/3 ^ 1 / 3 
"ffl,max "fll ) 

(11-134) 

% = 1 4 
367r a 

pi 

(11-135) 

The turbulent fluctuation velocity (or root mean-squared velocity), u^ , is 
composed of the isotropic turbulence intensity, u^^^^^ and the wake 
turbulence intensity, \^^^^, as 

t t,isot "" t,wake (11-136) 

^ %isot ~ [^-^Sml) 
2/3 

(11-137) 
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<a.e = 0.056(7, 
. ^ 3 ^ > / ^ 

V 
K fr 

where 

c^ 

* 

rrz: 
/25^P 

V /̂ 

V • 
s,min 

K. 

Chapter 11 

(11-138) 

(11-139) 

(11-140) 

K. = 1 - exp 
*l/2 ^ 

<^^K*'/̂  
# 

1/2 (11-141) 

Here, the constant Cf, is set at 1.8536. When Dg^^ > 8.3338 X 10'̂  m, 

{641^'^^)^ = Dl,[-3.U2D*J + 2.mD*J -03950: 

+3.392 (0.5791>;i^-l)^^^ 
(11-142) 

{SA^''^}^ = Dl, [8.82 + 2.035(0.5791?;^ - 1 ) 
8/3 

- 5 . 4 2 8 D : 

(11-143) 

{641'''^)^ = Dl, (6.462 - 2.mD*J + 0395D*J) (11-144) 

{6V^''''^)^=DU(0.603 + 0.349D*J) (11-145) 
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e = 2 ( 1 - 0 . 2 8 9 4 2 ) 7 ) ' • 

Otherwise, 

and(,54''2)) , (^A-""'') > {^^*"''') are all equal to zero. 

Bubble coalescence due to wake entrainment 

c=K"0.^i 'E 
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(11-146) 

(11-147) 

(11-148) 

€S = H'''),^^ (1) 
'E 

(11-149) 

YWE,2 — yAi' )n ^hn 
(1) 

'E 
(11-150) 

^(12,2) _ _ > o ( 1 2 , 2 ) ^ ( 1 2 , 2 ) y * y 2 _ ^ V ^ ^ ff -

l - « » 2 

(11-151) 

J,(12,2) _ ^(12,2)y(12,2)T^*l/2 <^g\(^g2 
VWE,2 — ^WE •"•H«,2 *'s 1 '^ 

l - « . 2 
(11-152) 

VWE ~ '-^WE-^'-WE^i 92 
1 — exp -23l\aX' 

D' 

X exp 
0.06C, (a„2/«ff2 - 1 ) 

F: 

(11-153) 
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VWE =K'̂ O.^i (1) 
'E 

Chapter 11 

(11-154) 

„(12,2) _ ^(12,2)y(12,2)T^*'/2 Q'<,l"g2 

— a 92 

(11-155) 

where 

p(i) - r r^^n^D^ V (11-156) 

\9Dsmi ^P 

3C D Pf 
(11-157) 

2 gAp 1 +17 .67 (1 -a^ , ) " 

18.67(1-a^,) 
(11-158) 

KS = ^-cp'i' (11-159) 

7̂ (12,2) _ 27.(7 D'^l a-^'^ (11-160) 

iif*̂ ^ = 10.24Z)'/' (11-161) 

K^ = 0.57rC,# 
1/2 

(11-162) 

Eqs.(ll-142)-to-(l 1-145) and (11-147). The maximum cross-sectional void 
fraction of a slug bubble, a^^ •> ^^^ ̂ ^ specified as 0.81 for most conditions 
and Ci is the adjustable parameter determined to be 0.1. 
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Bubble breakup due to turbulent impact 
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a TI 

18 
^fia 
a »! J 

1 -
We. 'cffit 

We 

1/2 

exp 
We. 

'crit 

We ) 

We >We. 
'crit 

0, We <We^, 

(11-163) 

where We is the Weber number defined by 

We 
PfUfD, Sml (11-164) 

1 ~ ^Pl " ^y2 

\ — a 92 

(11-165) 

where 

4^' = D' 
( \5/3 

X 14.38+ 1.57a„y^ 1 ^ 1 "ml 

4/3 f ^ 15.95a„f p ^ l 
\l/3 

(11-166) 

V̂  can be determined by 

1.35D 
^Sm2 ~ 

1 + 6.867; - 2 .547 '2 • (11-167) 

It is observed from experiments that for moderate and small diameter pipes, 
the (p^j term is very small compared with other three mechanisms. 
Therefore, it could be neglected to simplify the equation for appUcation (Fu 
and Ishii, 2002b). 
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Bubble breakup due to shearing-off 

& = CsoKfia^y,-'" (1 - 0 . 6 5 3 5 K , 0 4 O V (11-168) 

& = - ^ 5 o 4 S « X " ' ^ ' (1 - 0 .6474AC,04 / ' (11-169) 

4^" = C5o^Fo\2K* '^' (1 - 0M74K,,)K'/' (11-170) 

where 

^50 1 —exp -750 

\f^so 

a, ml 

^ml ^gl } 

We^ 'crit 

We, 
(11-171) 

0.2 V/7 % - (^~"-^<r-r^/v;- - . -^) (11-172) 

i 4 S = 0.5755C>;/^ 
r p, ^̂ / 

lcTi)j 
(11-173) 

i fg ) = 4.4332a^,^.f Z)-'/Vl/,^C;/^ (11-174) 

K'i^^=\.\^%lv'l'D~'l'C^'l' (11-175) 

where v^ is the kinematic viscosity of the gas phase. The values of the 
coefficients in the source and sink terms are listed in Table 11-2. 

1.3.3 Source and sink terms modeled by Sun et al. (2004a) 

Sun et al. (2004a) developed the two-group interfacial area transport 
equation for bubbly flow, cap-turbulent flow, and chum-turbulent flows in a 
confined channel and evaluated it using a vertical air-water flow data taken 
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Table 11-3. List of intra- and inter-group interaction mechanisms in the model by Sun et al. 
(2004a; 2004b) 

Symbols 

(6« 

Ana) 

^(12,2) 
'TRC 

9RC 

A 
4f 
VWE 

VWE 

4] 
4/' 
4/'' 
4} 

Am 
Vso 

'Psi 

Mechanisms 

Random collision 

Random collision 

Random collision 

Random collision 

Wake entrainment 

Wake entrainment 

Wake entrainment 

Wake entrainment 

Turbulent impact 

Turbulent impact 

Turbulent impact 

Turbulent impact 

Shearing-off 

Surface instability 

Interaction 

(1)+(1)-(1) 

(1)+(1)^(2) 

(l)+(2)-(2) 

(2)+(2)-(2) 

(1)+(1)-(1) 

(1)+(1H(2) 

(l)+(2)-(2) 

(2)+(2)-(2) 

(1)-(1)+(1) 

(2)-(l)+(l) 

(2)-(l)+(2) 

(2)-(2)+(2) 

(2)-(2)+(l) 

(2)-(2)+(2) 

Parameters 

C^'^ =0.005, C^'^') =0.005 

^RC =0-005 Cjici =3-0 

^RC2 =3-0 

C^^ =0.002, C^f^ =0.002 

C^^ =0.005 

C^] =0.03, 4^^=0.02 

We^t^Tn=^.5, P^e^,,r/2=7-0 

C50 =3.8X10-', Crf=4.80 

W'e,ri*,5O=4500 

in a rectangular channel with the width, W, of 200 mm and the gap, G , of 
10 mm. No stable slug flow regime was observed in the test section due to 
the large width of the test section (Sun et al., 2004a). In what follows, the 
classification of interfacial area transport mechanisms and the modeled 
source and sink terms are explained briefly. 

A. Classification of interfacial area transport mechanisms 
Sun et al. (2004a) adopted five major bubble interactions: (1) the 

coalescence due to random coUisions driven by turbulence; (2) the 
coalescence due to wake entrainment; (3) the breakup upon the impact of 
turbulent eddies; (4) the breakup due to shearing-off; and (5) the breakup of 
large cap bubbles due to flow instability on the bubble surface. Fourteen 
terms listed in Table 11-3 are considered as source and sink terms in the 
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two-group interfacial area transport equation to be applied at the bubbly, 
cap-turbulent and chum-turbulent flows in a confined channel. 

B. Simplified two-group interfacial area transport equation 
Here, an isothermal flow condition is assumed. Thus, two-group 

interfacial area transport equation is simplified as 

dt 

+ « + « + « + x( i^ : )T^ + V • (a^,v^,) 
da„ 

dt 

(11-176) 

da. 

dt 
r + v-Mi) 

(11-177) 

^H-V-la^^^l-^"" 
3 a 92 

da 92 

dt 
da +xKr^p^+v.(«A,) 

^(2) 

at 

+ V-(a^2^,2) 

+ ^(11'2) , ^(12,2) 
^ rj?c,2 ^ y^Rca 

/,(12,2) ,(2) /.(2) /,(2,12) A(2) +0̂ ^ + « + « +C^ +C^ 

(11-178) 

C. Assumed Group-2 bubble shape and bubble-number density 
distribution 

In order to model source and sink terms analytically, the bubble shape 
should be simplified. For Group-1 bubbles, spherical shape can be assumed. 
For Group-2 bubbles, however, the unique geometry of the test section of 
interest should be accounted for. Since the boundary between Group-1 and 
Group-2 bubbles defined by Eq.(ll-115) is approximately 10 mm in an 
adiabatic air-water system at atmospheric pressure, the cap bubbles are 
assumed to be sandwiched between the two parallel flat walls such that the 
cap bubbles have a thickness of G , as shown in Fig. 11-6. Here, R and 2a 
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G 
* H 

Figure 11-6. Definition of the geometrical parameters for a cap bubble (Sun et al., 2004a) 
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Figure 11-7. Illustration of the simplified bubble number density distribution (Sun et al., 
2004) 

are the radius of curvature and the base width of a cap bubble, and 9^ is the 
wake angle. A 50° wake angle is assumed as a reasonable approximation for 
all Group-2 bubbles in the flow conditions of interest in view of the wake 
angle correlation given by Clift et al. (1978). Furthermore, in view of the 
characteristic feature of the confined flows as well as the underlying physics, 
2a is chosen as the characteristic length that determines the group boundary 
and the maximum stable bubble size. 

A simplified bubble number density distribution is given in Fig. 11-7. It 
is assumed that all the bubble groups have flat number density distributions 
in the corresponding bubble volume range. The values of the distribution 
function are denoted as /̂  and f^ for Group-1 bubbles and Group-2 bubbles, 
respectively. In the figure, V^^^ is the volume for the minimum bubbles in 
the system, and V^^^^ is the volume of the maximum stable bubble, which 
corresponds to 
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(11-179) 

It should be noted, however, that bubbles of this size might not exist in the 
system and D^,^^ solely provides an upper limit for the maximum bubble 
size possible, beyond which the bubbles are assumed to disintegrate 
instantaneously. V^^^^^ and V2^^ are the maximum bubble volumes for 
Group 1 and Group 2, respectively, for a given flow condition by assuming 
the uniform bubble number density distribution. Furthermore, V^ is the 
critical bubble volume at the boundary for Group-1 and Group-2 bubbles, 
which corresponds to D^^ beyond which bubbles become cap-shaped and 
are categorized as Group-2 bubbles. The boundary between Group-1 and 
Group-2 bubbles can be determined for the narrow channel by 

^CH*=1-7G a V/' 

[g^p] 
(11-180) 

where JD^^ is the volumetric equivalent diameter of a bubble at the 
boundary between Group-1 and Group-2 bubbles. 

D. Summary of modeled source and sink terms 

Bubble coalescence due to random collision 

0« = -0.17C« RC 

1 —exp -C 

1/3 1/3 5/3 

1/3 

^g\,max \^gl,max 4') 
1/3 1/3 

^g\,max^gl 
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a 
1/3 

g\,max a 

(11-181) 

C ? = -4.85C^fey^^^^ 

X 1 —exp -C RC\ 

1/3 1/3 

^g\,max^g\ 

la'' a 
1/3 

(11-182) 
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where Ri^^^^ is the radius of curvature of the maximum bubble in the 
system by assuming a uniform bubble number density distribution as 

R,,^^-\.9\5D^^, (11-183) 

for the application of Sun et al. (2004a). 
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2 1/3 
A2) _ 1T, fy^(2) ^92^ p 4/3 1 - im? + -̂̂ ^ 
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(11-186) 

where 

^ "" f f 
(11-187) 
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Bubble coalescence due to wake entrainment 

^wE — ~0.27C^j^^^iCj5i % (11-190) 
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(11-191) 

2^.1 ^(11.2) _ 1 A o W l l , 2 ) , , ^ 1/3 " g l Q i l f, 2 ^ ^ * 

1 + 0.7G 
7/6 

c V/-

a sU 

a 
N-l/3 

U^pj 
forI>;i < 1 . 5 

(11-192) 

rf-S = 26.1C^§^^a îO;, S2 
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(11-193) 
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(11-194) 
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Q; .Q;„ 
(11-196) 

Bubble breakup due to turbulent impact 
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Bubble breakup due to shearing off 

0gf) = 64 .51C, ,C/ -^^ 
GRl,r, 

{We. 
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(11-201) 

where v^^ and We^^gQ are the relative velocity of the large bubble with 
respect to the liquid film near the cap bubble base and the critical Weber 
number, respectively, and We2^^^ is defined by 

^^^2,max — (11-202) 

In upward flow in round tubes, when a large cap or slug bubble rises, the 
liquid phase is pushed away and flows downward as a liquid film between 
the bubble side interface and the wall However, in the flow channel 
considered by Sun et al. (2004a), when a large cap bubble rises, the liquid 
film between the bubble side interface and the wall may remain almost 
stagnant since more free space is available for the liquid phase in the width 
direction of the flow channel. This may be even truer when the cap bubble 
velocity is high and the shearing-off occurs. In view of this, the relative 
velocity of the cap bubble with respect to the liquid film around the bubble 
base, v^^, may be estimated by the velocity of Group-2 bubbles in the main 
flow direction. 

« ) = -21 .50C, ,C. 

1 -

SO^d 
a 

X3/5 

[Pf) 

a 92 

^rb ^ ^,max 

We 
\3 

'crit.SO 

We. + 
2,max J 

3.24G We. 
\2l 

(11-203) 

'crit,SO 

We '2,max ) 



IL Constitutive Modeling oflnterfacialArea Transport 299 

N3/5 

cno — ~^^*'^^SO^d VsO,2 
a 

[PfGj 

5/5 

a «2 

%i Ki 

X 
We, 'crit^SO 

We. ml ) 

(11-204) 

Bubble breakup due to surface instability 

4 ) = 1.25a;, a 
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(11-205) 

The values of the coefficients in the source and sink terms are listed in Table 
11-3. 

Inter-group transfer coefficient at group boundary 
The inter-group transfer coefficient at group boundary is determined 

experimentally as 

X = 4.44 X10 
D. 

xO.36 

Sml 

D. crit ) 
a 

-1.35 
yi 

(11-206) 

This correlation is obtained based on the limited experimental database (Sun 
et al , 2004a). Nevertheless, in general cap-turbulent and chum-turbulent 
flow, the value of a^^ is usually between 0.05 and 0.40. Therefore, the 
correlation may be applicable to most of these flow conditions since the 
database by which the correlation is developed covers the similar range of 
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HYDRODYNAMIC CONSTITUTIVE RELATIONS 
FOR INTERFACIAL TRANSFER 

In analyzing the interfacial force and relative motion between phases, 
consider first, the momentum equation for each phase. Under the 
assumption that both the average pressure and stress in the bulk fluid and at 
the interface are approximately the same, the A:-phase momentum equation is 
given by 

[ o ^^ \ r / V 

(12-1) 

where ^ , ^ ^ , ^ , and M^^ are the average viscous stress tensor, the 
average turbulent stress tensor, the interfacial shear stress, and the 
generalized interfacial drag force. The conservation of the mixture 
momentum requires 

E-^**=0 (12-2) 

which is the modified form of the average momentum-jump condition. 
Constitutive equations of the average turbulent stress tensor and the 
generahzed interfacial drag force are required to analyze two-phase flows 
using the two-fluid model. 

In a macroscopic two-phase flow analysis such as a one-dimensional 
two-phase flow analysis, the average turbulent stress term may be neglected 
except the wall shear contributions, whereas in a microscopic bubbly flow 
analysis, turbulence models such as mixing length model and k-s model has 
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been attempted to estimate the average turbulent stress term. However, due 
to the complexity of the two-phase flow turbulence, an accurate method to 
predict the turbulence in two-phase flow has not been established well. 

In the two-fluid momentum equation, the most important term to be 
modeled by a constitutive relation is the generalized drag force M^^ which 
specifies the interfacial surface forces. The simplest way to model this force 
is to formulate as the linear combination of various known interfacial forces 
as 

M,, = ^(Ff+F.'+Ff+F.'+Fr+Ff) 
^d (12-3) 

= Mf +MJ +M! +M^ +MJ +MJ 

where B^, F^, F^, F^, F^, F^, and F^ are the volume of a typical 
particle, the standard drag force, the virtual mass force, the Basset force, the 
lift force, the wall lift force and turbulent dispersion force for a typical single 
particle, respectively. 

The significance of the various terms in the equation is as follows. The 
term on the left-hand side is the combined generalized interfacial drag force 
acting on the dispersed phase. The first term on the right-hand side is the 
skin and form drag under the steady-state condition. The second term is the 
force required to accelerate the apparent mass of the surrounding phase when 
the relative velocity changes. The third term, known as the Basset force, is 
the effect of the acceleration on the viscous drag and the boundary-layer 
development. The fourth term is the lift force normal to the relative velocity 
due to rotation of fluid. The fifth term is the wall lift force due to the 
velocity distribution change around particles near a wall. The last term is the 
turbulent dispersion force due to the concentration gradient. In a 
macroscopic two-phase flow analysis such as a one-dimensional two-phase 
flow analysis, forces except the standard drag force and the virtual mass 
force are not taken into account, whereas additional forces such as the lift 
force and the turbulent dispersion force are also considered in a microscopic 
analysis for three-dimensional flow. 

In the present chapter, the constitutive equations for the interfacial 
transfer and the interfacial fluid mechanics of multiphase flows are discussed 
in detail following Ishii and Zuber (1979), Ishii and Chawla (1979) and Ishii 
and Mishima (1984). In the following discussion, symbols designating the 
time-average are omitted for simplicity except in the Section 1.4 of Chapter 
12. 
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1.1 Transient forces in multiparticle system 

The forms of the two transient terms are not firmly established. Because 
of their importance under transient conditions and for numerical-stability 
problems, further research in this area is required. 

The Basset force is given by 

F. = 6r!^^^^ji:f-^{v, - v^-j^ (12-4) 

where //^ is the mixture viscosity. This term represents the additional drag 
due to the development of boundary layer or viscous flow during a transient 
acceleration of particles. The derivative Dj^/Dt is the convective derivative 
relative to velocity v^. The subscripts c and d stand for continuous phase 
and dispersed phase, respectively. The detailed expression for mixture 
viscosity is given in the Section 1.2 of Chapter 12. Due to its complicated 
time-integral form, the Basset force is not considered in a practical two-
phase flow analysis. Some evaluation of this term for a higher Reynolds 
number is given by CUft et al. (1978). 

Zuber (1964a) studied the effect of the concentration on the virtual mass 
force and obtained. 

aM 1 l + 2a, D, H-^d 
-a. Pc-^X'"d-'"c)- (12-5) 

B, 2 \-a, -'Dt 

Lahey et al. (1978) studied a necessary condition for the constitutive 
equation for the virtual mass term. From the requirement of the frame-
indifference of the constitutive equation, they determined that the virtual 
mass force F / should satisfy 

F / c x 
Dt Dt ^ 

(12-6) 

In view of Zuber's study (1964a) on the effect of concentration and the 
above frame-indifference condition, a new form for FJ is proposed here. 
Due to the acceleration of the particles relative to the fluid, the acceleration 
drag arises. This should be proportional to the induced mass p^B^ and the 
frame-indifferent relative-acceleration vector. Hence, 
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Fl = -PA c-^d Dt Dt ^ ' 
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(12-7) 

The value of induced mass p^B^ for a single particle in an infinite medium 
can be obtained from potential theory. Hence, the limiting value of Fj at 
a^ —> 0 for a spherical particle is 

MmFj = -^p,B, r ".-0 - 2 • " " Dt 

From this limit, it can be shown that 

Iim5;=l5, 

(12-8) 

(12-9) 

and 

lim A = 2. (12-10) 

If A is constant in Eq.(12-7), the value of A should be 2. 
The effect of the concentration on B^ can be taken into account by the 

method used by Zuber (1964a). Thus, from the solution for the induced 
mass for a sphere moving within an outer sphere, B^, may be approximated 
by 

B: 
1.^ l + 2a. 
2 ' 1 OLA 

(12-11) 

where a^ is the volumetric fraction of the dispersed phase. Under the 
assumption of A =constant, the constitutive equation for the virtual mass 
force is obtained from Eqs.(12-7) and (12-11) as (Ishii and Mishima, 1984) 

B. 

1 \ + la. 
— a^ 1 a. Dt 

(12-12) 

The above equation indicates that the virtual mass force Fj per particle 
increases considerably with increasing particle concentration. This relation 
implies that the effect of concentration on djTiamic coupling can be scaled 
by a factor of (l + 2Q; J / (1 - a^) . Mokeyev (1977) used an 
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electrohydrodynamic analog method to determine the velocity potential 
through an electric field potential and obtained an empirical function 
5 j /5^ = 0.5 + 2. la^ . The theoretical result of Eq.(12-12) compared 
favorably with this correlation. 

A correlation for the virtual mass force in a slug flow can be developed 
fi'om a simple potential flow analysis using a Bernoulli equation. First a 
cylindrical bubble of length L^ with diameter D^ in a tube of diameter D is 
considered, see Fig. 12-1(a). Then the void fraction in a slug bubble section 
is given by 

^h = (12-13) 

Slug Bubble 

(a) Cylindrical Bubble 

Slug Bubble 

D 

(b) Spherical-edged Cylindrical Bubble 

Figure 12-1. Slug-flow model for virtual-mass-force analysis (Ishii and Mishima, 1984) 
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and the average overall void fraction a.^ by 

a,=^a, (12-14) 

where L is the pitch. Now let the continuous phase accelerate with respect 
to a bubble. This will generate a pressure force acting on a bubble due to the 
acceleration along the film section. From a simple one-dimensional analysis, 
this force can be found as 

^ ; = - j A % / - - ^ . (12-15) 
4 \~ a^ at 

However, the volume of a bubble is given b y 5 , =(7r/4)l>,%,thusthe 
virtual mass force per unit volume becomes 

^ ^ = - - . - ^ ^ = -5a,p^ ^ . (12-16) 
B, U-a, dt '^' dt 

Here the second form is obtained by approximating the void fraction in the 
slug bubble section by â  = 0.8 . 

The second case considered is a train of spherical-edged cylindrical 
bubbles, see Fig. 12-1(b). Application of the Bernoulli equation 

dt 
+ r - ^ + i? + — = constant (12-17) 

J n 9. 

where ^ and Q are respectively the velocity potential and the potential 
function to this geometry under a relative acceleration yields 

0 .66t t^+0.27 '^ ^^1 
dv 

p^-f- (12-18) 
at 

where a simplification has been made on an approximation a^ ^ 0 . 8 (Ishii 
and Mishima, 1981). For a limiting case of a train of spherical bubbles, 
L^ = D^, the above equation reduces to 

^ = - 3 . 3 . , , , ^ . (.2-19) 
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If L^ » D^, L^jL can be approximated by OL^IOLI, . Thus for long slug 
bubbles, Eq.(12-18) essentially converges to the simple solution given by 
Eq.(12-17). The virtual mass force for a slug flow given by Eq.(12-18) is 
expressed in terms of the relative acceleration in the absence of a large 
convective acceleration. However, if the convective acceleration can not be 
neglected, a special convective derivative in the form of Eq.(12-7) may be 
more appropriate. Thus for a general case. 

^x 
B. 

= - 5 0.66a. + 0.27 {h D,\ 
Pc -^-^ -v-Vv 

Dt 
(12-20) 

This formula can also be applied to chum-turbulent flow. 
Now the solutions for a dispersed flow, Eq.(12-12), and slug flow, 

Eq.(12-18), can be examined by introducing an induced mass coefficient 
Cj^ defined by 

a,F, d-^d 

B, 
= -CMPC 

[ Dt 
(12-21) 

where 

^M — 

1 l + 2a. 
— oi^ 

5a, 

\ - OL, 

0.66 + 0.34 
1 - A/A 
1 - A/34 

(Bubbly flow) 

(Slug flow). 

(12-22) 

A plot of Cj^ against a^ is shown in Fig. 12-2. The virtual mass force 
increases with an increasing void fraction of a dispersed phase due to 
stronger coupling between two phases. The intersection of the above two 
solutions occurs at the void fraction between 0.66 and 0.75. For a lower 
void fraction, the virtual mass force for a bubbly-flow is smaller than that for 
a slug-flow. This implies that the vapor phase has less resistance to an 
acceleration in a bubbly-flow configuration than a slug-flow configuration if 
a^ < 0.66. This may also suggest that an accelerating slug flow has a 
tendency to disintegrate into a bubbly flow when a^ < 0.66 . For 
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Figure 12-2. Virtual mass coefficient for dispersed and slug-flow regimes (Ishii and Mishima, 
1984) 

a^ > 0.66 a slug flow should be quite stable even under a transient 
condition. 

Due to a similarity in flow geometries, the virtual mass force for a chum-
turbulent flow may be approximated by the solution for a slug flow given by 
Eq.(12-19). In a liquid-dispersed flow, the virtual mass force becomes 
considerably smaller than that in a vapor-dispersed flow. This decrease is 
caused by a change in the continuous phase density to be used in Eq.(12-12). 
By changing p^ from p^ to p^, the virtual mass force for a droplet flow 
becomes insignificant. This also indicates that the virtual mass force should 
be reduced considerably in annular and annular dispersed flow. 

1.2 Drag force in multiparticle system 

The standard drag force acting on the particle under steady-state 
conditions can be given in terms of the drag coefficient Cj^ based on the 
relative velocity as 

Ff =-^C!j,p^v^\v^\A, (12-23) 
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where A^ is the projected area of a typical particle and v^ is the relative 
velocity given by v^ = v^ —v^. Then F^ is related to the interfacial drag 
force by 

F / = ^ ^ ^ , (12-24) 

Hence, the portion of M^^ represented by the drag force becomes 

/ A 
a. — ~pMVr\- (12-25) 

In what follows, a constitutive relation for the drag coefficient (7^ in 
dispersed two-phase flows will be explained in detail starting from a single-
particle system. 

1.2.1 Single-particle drag coefficient 

Motion of the single solid particles, drops, or bubbles in an infinite 
medium has been studied extensively in the past, see for example, Peebles 
and Garber (1953), Harmathy (1960) and WaUis (1974). In what follows we 
summarize these results in simple forms useful for the development of the 
drag correlation in multiparticle systems (Ishii and Chawla, 1979). 

By denoting the relative velocity of a single particle in an infinite 
medium by v^^ = '^d~ ^coo»^^^ ^^8 coefficient is defined by 

Cooo = -2FD/{PC%^ WJ^r^} (12-26) 

where F^ is the drag force and r^ is the radius of a particle. To calculate 
the drag force Fj^ in terms of the relative velocity, we should determine a 
constitutive relation for (7^^ independent of Eq.(12-26). For a single-
particle drag correlation, two similarity parameters are important. They are 
the particle Reynolds number and the viscosity number 

î Reoo = ^ ^ ^ ^ J ^ (12-27) 

and 
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Figure 12-3. Single-particle drag coefficient (Ishii and Chawla, 1979) 
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Pc^ 
a 

V/' 
(12-28) 

[' ^g^PJ 

Extensive studies on the single particle drag show that for most cases, the 
drag coefficient is a function of the Reynolds number (see Fig. 12-3). 
However, the exact functional form depends on whether the particle is a 
solid particle, drop, or bubble. Briefly, for a soKd-spherical-particle system, 
we have the viscous regime, in which the Reynolds-number dependence of 
^Doo is pronounced, and Newton's regime, in which (7^^ is independent of 
^Reoo • I^ ^̂ s® of ^ clean fluid sphere in the viscous regime, C^^ can be 
reduced up to 33 %, in comparison with the value predicted by the 
correlation for solid particles. This is explained by the internal circulation 
within the fluid particles. However, sUght amounts of impurities are 
sufficient to eUminate this drag reduction. Therefore, for most practical 
applications, the drag law in a fluid- particle system may be approximated by 
that for a solid-particle system up to a certain particle size. Beyond this 
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point, both the distortion of a particle shape and the irregular motions 
become pronounced. In this distorted-particle regime, Cj^^ does not depend 
on the viscosity, but increases linearly with the radius of a particle. Because 
of the hydrodynamical instability, there is an upper limit on C^^, and the 
particle reaches the cap bubble condition or the maximum droplet size. 
These regimes for the drag coefficient can be seen in Fig. 12-3. 

For a viscous regime, the function (7^ is given by an empirical 
correlation as 

C ^ = T r — ( 1 + 0 . 1 < 1 ) . (12-29) 

When the Reynolds number is small ( N ^ ^ < 1 )> the above correlation 
essentially reduces to the well-known Stokes drag law, Cj^ = 24/Nj^^ . 
The correlation for the viscous regime indicates that the dependence of the 
drag coefficient on the Reynolds number decreases with increasing values of 
the Reynolds number. 

In solid particles, the drag coefficient becomes essentially constant at 
approximately 

C^^ = 0.45 for N^^ > 1000. (12-30) 

This Newton's regime holds up to N^^ = 2 x 1 0 ^ . Beyond this Reynolds 
number the boimdary layer separation point moves from the front side to 
back side of a particle due to the transition of the boundary layer from 
laminar to turbulent. This results in sharp drop in the drag coefficient. 

For fluid particles such as drops or bubbles, we have a flow regime 
characterized by the distortion of particle shapes and the irregular motions. 
In this distorted particle regime, the experimental data show that terminal 
velocity is independent of the particle size (see Fig. 12-4). In Fig. 12-4, 
dimensionless terminal velocity, v^^, and reduced radius, r^ , are defined by 

hoo\(Pc/M^pY ^ ^ n[pc9^pli^lY^ respectively. From this, it can be 
seen that the drag coefficient C^^ does not depend on the viscosity, but it 
should be proportional to the radius of the particle (Harmathy, 1960). 
Physically, this indicates that the drag force is governed by distortion and 
swerving motion of the particle, and change of the particle shape is toward 
an increase in the effective cross section. Therefore, (7^^ may be scaled by 
the mean radius of the particle rather than the Reynolds number (Harmathy, 
1960). Then we have 
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Figure 12-4. Terminal velocity for single-particle system (Ishii and Chawla, 1979) 

Cn^ =Y<'^ fo'-^. ^36V2(l + 0.1<:)/7Vl,^. (12-31) 

Here, the fluid particle size based on the terminal velocity is used. 
Therefore, the flow regime transition between the viscous flow and the 

distorted particles flow can be given in terms of the viscosity number as 
shown in Figs. 12-3 and 12-4. However, since in this regime the terminal 
velocity can be uniquely related to properties, Eq.( 12-31) can be generalized 
in terms of the terminal velocity or the Reynolds number as 

V2 
(12-32) 

As the size of a bubble increases further, the bubble becomes spherical-
cap shaped, and the drag coefficient reaches a constant value of 
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C D O O = 1 - (12-33) 

The transition from the distorted-bubble regime to the spherical-cap bubble 
regime occurs for 

(12-34) 

For a liquid drop, the drag coefficient may increase further according to 
Eq.( 12-31). However, eventually a droplet becomes unstable and 
disintegrates into small drops. This limit can be given by the well-known 
Weber number criterion. By introducing the Weber number. 
We = IpgVlr^la, where v^ is the relative velocity, we can give the 
stability criterion approximately as We — 12. Since the terminal velocity 

corresponding to Eq.(12-31) is v^^ = yJllgaAp/p^) , the maximum 
possible drop radius is 

which corresponds to the maximum drag coefficient Cj^ = 4 for droplets. 
If the stability of a drop interface is governed by the Taylor instability, the 
characteristic drop radius is given by 

which may be a more practical upper limit of the drop size. It is also noted 
that in highly turbulent flow (Hinze, 1959) or imder pressure shock 
conditions (Dinh et al, 2003; Theofanous et al, 2004) the stability limit 
Weber number can be much smaller than 12. 

The cap bubble maintains a certain regular shape with the wake angle of 
about 50°, however there is also a maximum stable cap bubble diameter 
(Grace et al, 1978; CKft et al, 1978; KocamstafaoguUari et al, 1984; Miller, 
1993). This instability is shown in Fig. 12-5. KocamustafaoguUari et al. 
(1984) used the stability analysis based on the Kelvin-Helmholtz instability 
along the cap bubble surface. By comparing the surface wave residence time 
and the time for the wave amplitude to grow to the order of the magnitude of 
the bubble size, the stability criterion has been obtained. For most practical 
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Figure 12-5. Large bubble breakup due to instability (500 frames/s) 

cases, this stability limit can be approximated by 

a 
coo.max \ \ A (12-37) 

This result is significant because it defines the boundary between the smaller 
pipe where slug flow is possible and the larger pipe where slug flow cannot 
be formed due to the instability of the Taylor bubbles. For a pipe diameter 

D < 2r^^p ̂ ^ (= 40 la/gAp] a stable slug flow can be formed. However for 

D » 2r bubbly flow is followed by cap-turbulent flow where 
multiple interacting cap bubbles exist at higher gas flux. 

Using the above drag coefficient, we can obtain the terminal velocity in 
infinite media by balancing the pressure, gravity, and drag forces. The 
results are summarized in Fig. 12-4 for various particles and flow regimes. 
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1.2.2 Drag coefficient for dispersed two-phase flow 

A. Effects of Particles and Flow Regimes 
In the preceding section it has been shown that the drag correlation for a 

single-particle system depends not only on the flow regimes but also on the 
nature of the particles; namely, solid particle, drop or bubble. Therefore, for 
a multiparticle system, these differences are also expected to play central 
roles in determining the drag correlation. In the present study, the 
multiparticle drag correlation is developed in parallel with the single-particle 
system by considering the following flow regimes 

Solid-particle system 

Fluid-particle system 

Viscous regime 

Newton's regime 

Viscous regime 

(Undistorted-particle regime) 

Distorted-particle regime 

Chum-turbulent-flow regime 

Slug-flow regime 

In the viscous regime, distortions of fluid particles are negligible. Therefore, 
for this regime, solid- and fluid-particle systems are considered together. 
Although small differences exist between these two systems due to the 
surface flow, for most cases these differences can be neglected (Clift et al., 
1978). The other flow regimes are analyzed separately because of 
significant differences in the flow around the particles and the motions of the 
interfaces. 

B. Viscous Regime (Undistorted-ParticIe Regime) 
This regime is characterized by the strong effect of viscosity on the 

particle motion. For a fluid-particle system, this regime occurs only when 
particle shapes are not distorted due to interfacial instabihties or turbulent 
fluid motion. To develop a multiparticle drag correlation, several similarity 
hypotheses are introduced. First, it is assumed that the drag coefficient in 
the viscous regime can be given as a function of the particle Reynolds 
number. Thus, 
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CD=C^{N^) (12-38) 

where the Reynolds number is defined in terms of the mixture viscosity ji^ 
as 

The introduction of the drag coefficient, Eq.(12-23), and the use of Eq. 
(12-38) are based on the assumption that the resistance to particle motion in 
a two-phase mixture can be evaluated by considering the local resistance to 
the shearing caused by the relative motion between the representative 
particle and the surrounding fluid. The effect of the other particles on the 
drag force arises from the resistance of the particle to the deformation of the 
flow field. Since the particles are more rigid than the fluid against 
deformations, the particles will impose a system of forces that will react 
upon the fluid. As a result of additional stresses, the original particles see an 
increase in the resistance to its motion, which appears to it as arising from an 
increase of viscosity. 

Consequently, in analyzing the motion of the suspended particles, 
mixture viscosity should be used (Burgers, 1941; Zuber, 1964a). It is 
expected that the mixture viscosity is a function of concentration, fluid 
viscosity and particle viscosity. The viscosity of the dispersed phase takes 
account of the mobility of the interface and is the measure of the resistance 
to the particle-material motion along the interface. The effect of the particle 
collisions may be indirectly reflected in the mixture viscosity through the 
void fraction. Furthermore, for a fluid-particle system, the surface tension 
should have an effect on the particle collisions and coalescences. This is 
particularly important in determining the flow-regime transitions. 

In the present analysis, we extend the linear correlation (Taylor, 1932) 
for the mixture viscosity for fluid particles along the power relation (Roscoe, 
1952) for solid particles based on the maximum packing a^^. Taylor's 
viscosity model for a fluid-particle system is given by 

^ = l + 2 . 5 a / ^ + ^ - ^ ^ - (12-40) 

which is applicable only for Q;_̂  < < 1. The simple power-law viscosity 
model for a solid-particle system is given by 
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(12-41) 

This shows that the viscosity of the mixture increases rapidly near the 
maximum packing. Note also that linear expansion of Eq.(12-41) at small 
a^ is /x^//ic = 1 + 2.5a^, which is similar to Eq.(12-40). The maximum 
packing a^^ for solid-particle systems ranges from 0.5 to 0.74. However, 
^dm = 0 - 6 2 suffices for most of the practical cases. For a bubbly flow, 
theoretical a^^ can be much higher because of the deformation of bubbles. 
In the absence of turbulent motions and particle coalescences, the void 
fraction in a fluid-particle system can be as high as 0.95. By taking a^^ to 
be unity, we can include these foam or dense packing regimes in the analysis. 
Therefore, for fluid-particle systems, we take a^^ = 1. Combining the 
above two expressions produces the following model for both a solid-
particle system and a fluid-particle system at all concentrations 

1 ^ 
a dm ) 

-2.5aa^{fia+0Afic)/{fJ'd+fJ'c, 

(12-42) 

Figure 12-6 compares this mixture-viscosity model to the various 
existing models for solid-particle systems (Eilers, 1941; Roscoe, 1952; 
Brinkman, 1952; Frankel and Acrivos, 1967; Landel et al., 1965; Thomas, 
1965). Note that, for a solid particle system, /JL^ approaches oo. Thus, if 
we take the limit of Eq.(12-42), the viscosity-ratio term becomes unity and 
the correlation reduces to the power law, Eq.(12-41). By including the effect 
of viscosity of the dispersed phase in the correlation, this model has the 
advantage over the conventional correlations, because it is not limited to 
particulate flows, but can also be applied to droplet and bubble flows. 

Using the recommended values for maximum packing, we can 
approximate the mixture viscosity by a simple power law given by 

/̂ m//̂ c = (1 - ^ J ~ ' (12-43) 

where n 

1 Bubbly flow 

1.75 Drops in liquid (12-44) 

2.5 Drops in gas, particulate flow. 
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Figure 12-6. Comparison of present mixture-viscosity model and existing models for solid-
particle system (Ishii and Chawla, 1979) 

The expression for the soKd-particle system is applicable only up to a 
moderate value of a^. These relations are shown in Fig. 12-7. 

The second similarity hypothesis introduced in the analysis is that, in the 
viscous regime, a complete similarity exists between a single-particle system 
and a multi-particle system. Therefore, the multiparticle drag coefficient 
Cj^ has exactly the same functional form in terms of N^ as C^^ in terms 
of N^oo given by Eq.(12-29). Then C^ = C^^ {N^) or 

Cn = 
24 
AT, 

- ( i + o.iiv-). 
Re 

(12-45) 

The relation given by Eq.(12-45) is shown in Fig. 12-8. This correlation 
indicates that the drag coefficient increases with an increasing volumetric 
concentration a^ . This trend is clearly shown in Fig. 12-9 for a solid-
particle system by comparing single- and multi-particle systems. 

The similarity criterion given by (7^ (^Re) — ^DOO (-^Re) ^^^^ ^̂ ® 
Reynolds number based on mixture viscosity is first introduced for solid-
particles system in the Stokes regime (Hawksley, 1951; Zuber, 1964a). Note 
that the present model is not limited to a solid-particle system or to the 
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Figure 12-7. Mixture viscosity for various systems (Ishii and Chawla, 1979) 
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Figure 12-8. Drag coefficient in viscous regime (Ishii and Chawla, 1979) 
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Figure 12-9. Effect of concentration on drag coefficient in viscous regime (Ishii and Chawla, 
1979) 

Stokes regime, however, because of the use of the generalized drag law and 
the applicability of the mixture-viscosity model to fluid-particle systems. 

C. Newton's Regime 
In Newton's regime, a vortex system develops behind a particle and its 

departure creates a large wake region. The drag force is mainly determined 
by the eddies generated by a separation of the flow. Hence, for a single-
particle system, the drag force is approximately proportional to the inertia 
force and the drag coefficient can be considered constant. 

For a multiparticle system, the drag coefficient in Newton's regime is 
assumed not to depend on the Reynolds number but on the void fraction. 
The effect of the other particles should be through a^. Hence, 

C^=0A5E{a,). (12-46) 

The function E[a^) can be obtained by considering a special case of the 
terminal velocity in an infinite medium. From a force balance between 
gravity, pressure, and drag forces, we have 
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(12-47) 

For a single-particle system, this reduces to 

, , 8 r, 
roo roo 3 C,^p, 

•{Pc-Pd)9- (12-48) 

By comparing a multiparticle system to a single-particles system having the 
same particles size, we have 

Vr _ \Coo.{N^J)[^-a,) 

Cn[Nj) 
(12-49) 

Since Reynolds numbers can be a function of the velocities, Eq.(12-49) is an 
implicit equation for the terminal velocity v^. If we consider the viscous-
regime drag laws given by Eqs.(12-29) and (12-45), Eq.(12-49) becomes 

/ . , , , „. ,1 + O.liV^ l̂ 

^^n ^^ ""'^'i-Fo.iivr • ' R e 

(12-50) 

The limiting case of r̂  —> 0 (or N^,Nj Reoo 

lim /^c 

0) i s 

(12-51) 

For r^^oo (or N^,N^^ -^ oo). 

l i m A . = 
\^m) 

( 1 - - . ) ' • (12-52) 

By interpolating between these limits in view of Eq.(12-50), we obtain an 
approximate explicit solution for v^ given by 

( i - « . ) 
/^c 1-hO.liV, 0.75 

Reoo 

^-i+o.i^^dvr^/^c/M 
6 / 7 - (12-53) 
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Since the terminal velocity v^^ is uniquely related to the Reynolds number 
by Eq.(12-48), however, N^^ can be replaced by a radius of a particles. 
Thus, 

^ ( i - « . ) 
/^c 1 + V'(r;) 

/̂ mH-v(r;) [71-«,//,///„ 
6/7 (12-54) 

where 

and 

V'(r;) = 0.55(l + 0 .08r ;y - 1 
i0.75 

(12-55) 

For a single-particles system, the transition from the viscous regime to 
Newton's regime occurs at r^ =34.65 (or N^^ c:^ 990 ). At this 
particles size, Eq.(12-46) reduces to 

= ( ! - « . ) 
f^c 18.67 

/̂ m 1 +17.67 U l - a . / x / ^ i , 
6/7 • (12-56) 

This equation is valid up to the transition from the viscous regime to 
Newton's regime in a multiparticle system. Therefore, at this transition 
point the drag-coefficient ratio can be calculated from Eqs.(12-49) and (12-
56) as 

Co — Cooo 

i + n.67(^li^fi,/tx^f' 

18.67 T T : ^ / / , / / / ^ 
(12-57) 

where C^^ = 0.45 at rj' = 34.65 . In view of Eq.(12-42) with 
^dm = 0.62, we obtain 
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Figure 12-10. Drag coefficient for Newton's regime (Ishii and Chawla, 1979) 

Co = 0.45 
(l + 17.67[/(a,)fl 

18.67/(Q,) 

with/K)^(l-a,r(l-^) 

(12-58) 

The increase of the drag coefficient with increasing volumetric concentration 
a^ is shown in Fig.12-10 by plotting Eq.(12-58). This implies that the 
equilibrium relative velocity generally decreases with increases in the 
concentration due to stronger coupling between phases. 

D. Distorted-fluid-particle Regime 
In the distorted-fluid-particle regime, the single particle drag coefficient 

depends only on the particle radius and fluid properties and not on the 

velocity or the viscosity, namely, C^^ =(4/3)r^ IgApJa , as discussed 

by Harmathy (1960). Thus, for a particle of a fixed diameter, (7^^ becomes 
constant. In considering the drag coefficient for a multiparticle system with 
the same radius, we must take into account the restrictions imposed by the 
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existence of other particles on the flow field. Therefore, Cj^ is expected to 
be different fi-om C^^, in this regime. 

Because of the strong contribution of the turbulent eddies on the wake 
region, a particle sees the increased drag due to other particles in essentially 
similar ways as in the Newton's regime for a solid-particle system where 
^Doo ̂ s ^^^ constant under a wake-dominated flow condition. Hence, we 
postulate that, regardless of the differences in C^^ in these regimes, the 
effect of increased drag in the distorted-fluid-particle regime can be 
predicted by an expression similar to that in the Newton's regime. 

Under this assumption, Eq.(12-57) can be used with a proper expression 
for Cj^^ given by Eq. (12-43). Thus, 

C =—N N 
1+17.67 (yr :^^ , / / / , ) ' 

5/7 "l 

18.67 j r ^ ^ / i / / i ^ 
(12-59) 

In view of the approximation given by Eq.(12-43), the above correlation 
reduces to 

C =—N N 
f l + 17.67(1-a , f""-^yn 

3 " "^'^[ 18.67(1-a,f^" ' 

where n is given by Eq.(12-44). Thus, for a bubbly flow (n = 1), 

(12-60) 

72 fl + 17.67(l-«,) ' - ' ] 

( 18.67(1-a,) 

For a droplet-liquid flow (n = 1.75) 

1.5 (12-61) 

C =—N N 
f l + 17.67(1-a,y 

/A Reoo 

1.9 \ 

[ 18.67(1-a,) 

For a droplet-gas flow (n = 2.5) 

2.3 (12-62) 

^/2 
fl — NN^ 

fl + 1 7 . 6 7 ( 1 - a , ) 
2.6^2 

[ 18.67(1-«,)^ J 
(12-63) 
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Figure 12-11. Drag coefficient in distorted-particle regime (Ishii and Chawla, 1979) 

The above three correlations are shown in Fig. 12-11. The form of the 
correlations indicates that the momentum coupling between phases increases 
with increasing particle concentration as in the case for Newton's regime. 

E. Churn-turbulent-flow Regime 
As the radius of the fluid particle is further increased, the wake and 

bubble boundary layer can overlap due to the formation of large wake 
regions. In other words, a particle can influence both the surrounding fluid 
and other particles directly. Hence, the entrainment of a particle in a wake 
of other particles becomes possible. This flow regime is known as the 
chum-turbulent flow regime and is commonly observed in bubbly flows. In 
the existence of sufficient turbulent motions in the continuous phase, the 
transition from the distorted-particle regime to the chum-turbulent flow 
regime occurs at the particle concentration around 0.3. This criterion for the 
transition can be apphed to most forced-convection two-phase flows. In a 
batch process, however, detailed coalescence mechanisms and surface 
contaminations become important in determining the transition criterion. 

In the chum-turbulent flow regime, a typical particle moves with respect 
to the average volumetric flux j rather than the average velocity of a 
continuous phase due to the hydrodynamic conditions discussed above. 
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Hence, the reference velocity in the definitions of the drag coefficient and 
the drag-similarity law should be the drift velocity rather than the relative 
velocity. Hence, the drag force should be given by 

Fn --\c'nPy,i\V,^'^rl (12-64) 

Here the drift velocity V^^ is the relative velocity of the dispersed phase with 
respect to the center-of-volume velocity of a mixture. It can also be related 
to the true relative velocity between phases by 

K i = ^ r f - i = ( l - ^ J % (12-65) 

where the total flux j (center-of-volume velocity) is given by 

i = ^ d ^ c / + ( l - ^ J ^ c - (12-66) 

In a chum-turbulent-flow regime, some particles should have reached the 
distortion limit corresponding to the cap-bubble transition or the droplet 
disintegration. This limit can be given as an extension of the Weber number 
criterion (WaUis, 1969) by using the drift velocity as a reference velocity in 
the following form 

a 

8 (bubble) 

12 (droplet). ^^^"^^^ 

Due to the entrainment of particles in the wake of other larger particles and 
the coalescence and disintegration caused by the turbulence, the average 
motion of the dispersed phase is mainly governed by those particles that 
satisfy the Weber-number criterion. Hence, the effective drag coefficient is 
given by (7^ = 8/3 . If we recast the above drag-force expression based on 
the drift velocity to the conventional one based on the relative velocity, we 
obtain 

F . = - 5 ( l - « . f ^ ^ ^ (12-68) 

where the reference r^ for the drag-force expression is given by 
r^ = (4 or G)o-/\p^v^ [l-a^f], because these particles govern the relative 
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Figure 12-12. Drag coefficient for chum-turbulent flow (Ishii and Chawla, 1979) 

motion. The above equation implies that the apparent drag coefficient based 
on the true relative velocity between phases should be given by 

^.=f(l--.f. (12-69) 

The form of Eq.(12-69) indicates that the drag coefficient decreases as the 
particle volumetric concentration increases, as shown in Fig. 12-12. 
Therefore, the effect of a^ on (7^ in the chum-turbulent-flow regime is 
opposite that in the other flow regimes. This peculiar trend can be explained 
by the effect of the entrainment of other particles behind a wake of larger 
particles. This entrainment promotes the channeling of the dispersed phase 
without increasing the drag force. As the volumetric concentration increases, 
the interaction among particles increases in the direction of reducing the drag 
force. 

F. Slug-flow Regime 
One of the Umiting cases of the dispersed two-phase flow in a confined 

channel is a slug flow. When the volume of a bubble becomes very large, 
the shape of the bubble is significantly deformed to fit the channel geometry. 
The diameters of the bubbles become nearly that of the pipe with a thin 
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liquid film separating the bubbles from the wall. The bubbles have an 
elongated bullet form with a cap-shaped nose. The motion of these bubbles 
in relatively inviscid fluids can be studied by using a potential flow analysis 
around a nose of a single bubble. Hence, Dumitrescu (1943) analytically 
obtained the rise velocity to be 

v^^ = 035^gDAp/p^ (12-70) 

where D is the hydraulic diameter. This result is also in good agreement 
with the experimental data of Dumitrescu (1943) and White and Beardmore 
(1962). 

In a flowing system with chains of bubbles, the effect of the 
concentration and velocity profile should be considered. In general, the core 
velocity is higher than the cross-sectional area-averaged velocity due to the 
velocity profile. Therefore, the relative velocity based on the average 
velocities is larger than the local relative velocity in the core. This effect, 
known as the distribution-parameter effect, was studied extensively by 
Bankoff (1960), Zuber and Findlay (1965), and Ishii (1977) among others. 
When the average velocities are used, the results of Nicklin et al. (1962) and 
Neal (1963) show that 

V, - (j) = 0.2 (j) + 035^gDAp/p^. (12-71) 

Here the left-hand side is the drift velocity of a bubble, namely, 
V^j = v^— [j). The above equation can be rewritten as 

% - Lre = 035^gDAp/p^ (12-72) 

where j^^^^ = l-2(j) and j^^^^ may be considered as the local total flux in 
the core. In this case, v^ — j^^^^ is the local drift velocity in the core. In 
view of the relation given by Eq.(12-65), the local relative velocity v^ 
should satisfy 

{l-a,)v^= 035^gDAp/p^ (12-73) 

which agrees with Dumitrescu's result at a^ ^ 0. 
By limiting our discussion to the local drag coefficient, we can recast the 

above semiempirical result into a correlation for a drag coefficient in the 
slug-flow regime. In view of Eqs.(12-73) and (12-47), we obtain 
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Figure 12-13. Drag coefficient for slug flow (Ishii and Chawla, 1979) 

C, = 1 0 . 9 ^ ( 1 - a , ) \ (12-74) 

For most practical applications, Ir^jD can be approximated by 0.9. Then, 

C ^ ~ 9 . 8 ( l - a , ) ' . (12-75) 

This correlation shows that the drag coefficient decreases with increase in 
the volumetric concentration, as shown in Fig. 12-13. This clearly indicates 
the effect of the wake and channeling in the chains of bubbles in the slug-
flow regime. Furthermore, C^ does not depend on the fluid properties. 
These two characteristics are similar to those of the chum-turbulent-flow 
regime. Table 12-1 summarizes the present drag coefficient in various flow 
regimes. 

1.3 Other forces 

In addition to the standard drag force and the virtual mass force, some 
forces such as the lift force and the turbulent dispersion forces are also 
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Table 12-1. Local drag coefficient in multiparticle system (Ishii and Chawla, 1979) 

Fluid Particle System 

Bubble in 
Liquid 

Drop in 
Liquid 

Drop in Gas 
Solid Particle System 

Viscosity 
Model 

Mm 

Mc ^dm) 

-2-5ad^M* 

» /̂  
fJ'd+f^c 

Max. Packing 
0.62 - 1 0.62 

/̂  0.4 0.7 

f^m/f^c ( 1 — . ) " ' (i~«.r' .75 1 - -
0.62 

Stokes 
Regime Q, C , = - J 1 where i V ^ . ^ ! ^ ^ 

ATi Re 

Viscous 
Regime CJQ 

24(l + 0.1i\r^^ )̂ 

iN^i R^ 

Newton's 

Regime Q, 

Distorted 

Particle 
Regime C^ 

a.5 

l + 17.67{/(a,)}' 
6/7 

18.67/(a^) 

C^ = 0.45 

where 

l + 17.67{/(^,)} 
6/7 

18.67/(a,) 

/ K ) = ( i - « . r (1--.) (1--.) / K ) = NA^^ 
iMmj 

Chum-
turbulent 

Flow Regime 
C.=|(l-a,f 

Slug Flow 
C ^ = 9 . 8 ( l - a , 

considered in a multidimensional two-phase flow analysis. As can be seen 
from Eq.(12-3), these forces are customarily added to the standard drag force 
and the virtual mass force linearly. In an actual two-phase flow, a wake 
behind a bubble may completely change the liquid turbulence structure, and 
thus the lift force may closely be coupled with the turbulence-induced force. 
Since the lift force and other lateral forces are small and may closely be 
coupled each other, it is difficult to identify each force experimentally. 
Therefore, it may be controversial that such forces can be added to the 
standard drag force and the virtual mass force linearly. In the present status 
of the development, constitutive equations for some forces are proposed 
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Figure 12-14. Schematic diagram of a particle in a shear flow 

based on a speculation, and the applicable flow ranges of the constitutive 
equations are not given clearly. Thus, unlike the standard drag force, the 
constitutive equations for such lateral forces have not been well-developed. 
Nevertheless, these forces play an important role in predicting three-
dimensional bubble distribution. In what follows, some constitutive 
equations for lift force and turbulent dispersion force, which are often used 
in a multidimensional two-phase flow analysis, are explained briefly. A 
review of lift force modeling can also be found in Akiyama and Aritomi 
(2002). 

1.3.1 Lift force 

Consider a single spherical particle moving through a very viscous liquid 
relative to a uniform simple shear, see Fig. 12-14. Then, the particle 
experiences a lift force, F^^~^ , perpendicular to the flow direction as 
(Saffinan, 1965) 

jpLS-V 
• doo -6A6iifU^ -1/2 2 dVf 

dx 

1/2 

sgn 
(dv^^ 

dx 
(12-76) 
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For positive relative velocity and velocity gradient ( v^^ > 0 and 
dvJdx > 0), the lift force pushes the particle towards the negative x 
direction. 

Consider a single spherical particle placed in a weak shear flow of an 
inviscid flow. Then, the particle experiences a Uft force, F^^^^, as (Auton, 
1987) 

F,T' = -O.Spf^TrrXoo x rotv^. (12-77) 

Mei and Klausner (1994) proposed an expression for the shear lift force at 
finite Reynolds number and finite shear by interpolating Safftnan's result at 
small Nj^^ (1965) and Anton's result at large N^^ (1987). They also 
considered the extension of the lift force to a fluid sphere. The proposed lift 
force model is given by 

F'l = -f{Gsoo,N^oo)\^r^PfvL sgn dx 
(12-78) 

/ i " ^ s o o ) - ' ' R e o o j 

= G'/' 

1/2 

(12-79) 

J ( V 2 G . o o / ^ R . o o 

0.6765 - tanh|2.5(logio ^IG^p^ + 0.191 

0.667 + tanh|6(^2G,^/iVj^^ - 0.32)} 

(12-80) 

G. 
v,^ dx 

(12-81) 
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The Reynolds number of a single particle system, N^^, is defined by 
Eq.(12-27). 

In the 1980s and 1990s, extensive experiments were performed to 
identify important parameters to determine the lateral bubble migration 
characteristics. The experiments showed that relatively small and large 
bubbles tend to migrate toward a channel wall and center, respectively (Zun, 
1988; Liu, 1993; Hibiki and Ishii, 1999). A numerical simulation of single 
bubbles in a Poiseuille flow (Tomiyama et al., 1993; 1995) suggested that 
the bubble migration toward the pipe center was related closely to a slanted 
wake behind a deformed bubble. Thus, it has been indicated that the bubble 
size and complex interaction between a bubble wake and a shear field 
around the bubble play an important role in the lateral bubble migration 
(Serizawa and Kataoka, 1988; 1994). Tomiyama et al. (2002) measured 
bubble trajectories of single air bubbles in simple shear flows of glycerol-
water solutions to evaluate transverse lift force acting on single bubbles. 
Based on the experimental result, they assumed the lift force caused by the 
slanted wake has the same functional form as that of the shear-induced lift 
force, and proposed an empirical correlation of the hft coefficient. 

Hibiki and Ishii proposed the correlation of the lift coefficient based on 
the shear-Uft force model of Mei and Klausner (1994) and the concept of the 
lift force caused by slanted wake, F^^, (Tomiyama et al., 2002) such as the 

LS functional form of F. to be the same as that of F. . Thus, the net 

transverse lift force, F^^ , is given by 

•wpLT _ rpLS I jp 
doo • doo 

/ \ 1 2 2 ( ^^f 
= -f [Gsoo 5 ^Reoo) 2 ""^d Pf%oo sgn v^^ - ^ 

-CLWI {GSOO . ^Reoo ) " ^^^Pf^L SgH 
dVf] 

dx 

(12-82) 

where C^^r is the coefficient of the lift force caused by slanted wake. Here, 
we assume that the lift force caused by slanted wake pushes the particle 
towards the negative x direction for positive relative velocity. The 
coefficient was determined based on the data of Tomiyama et al. (2002) 
taken under the conditions of -5.5 < logio M < -2.8 , 1.39 < Eo < 5.74 
and 0 < \dvJd: < 8.3 5 S where M and Eo are the Morton number and 
the Eotvos numoer, respectively, as defined by 
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Figure 12-15. Dependence of lift coefficient on bubble size 

M 9(Pf-P<,)f''f (12-83) 

Eo = 
9[Pf-pg)^ 

a 
(12-84) 

Then, as shown in Fig. 12-15, the following correlation of the lift 
coefficient is proposed based on the data of Tomiyama et al. (2002) as 

C,^=l-exp(2D*;/') (12-85) 

where D^ is the ratio of the bubble diameter to the bubble diameter at the 
distorted bubble limit as 

_ d, _ EQI 
1/2 

D. 
a 

(12-86) 

g^p 
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We may extend the applicability of Eq.(12-82) in a single particle system 
to a multiparticle system by replacing N^^ and G^^ in Eq.(12-82) with 
N^^ and G^, where the Reynolds number of a multiparticle system, N^^, is 
defined by Eq.(12-39) and the non-dimensional velocity gradient, G^, is 
defined by 

a = 
dv 

v^ dx 
(12-87) 

Thus, the net transverse lift force in multiparticle system, M^ , is 
approximated as 

-m,N^)^ 

- C ? w / ( G . , J V ^ ) ^ ^ s g n 
or. 

8r, 

dVf^ 

dx 

sgn 

e.. 

dVf] 

dx 
(12-88) 

A reasonable agreement between the lift force calculated by Eq.(12-88) with 
Eq.(12-85) and air-water bubbly flow data (Wang et al, 1987) was obtained, 
which impHes the Hft force model, Eq.(12-88) with Eq.(12-85), to be 
promising to predict the net transverse lift force in multiparticle bubbly flow. 
Further efforts to examine the applicability of Eq.(12-88) with Eq.(12-85) to 
a multiparticle system should be made in a future study. As described above, 
the lift force is still poorly understood, and further experimental and 
numerical efforts are needed to understand the lift force (Sridhar and Katz, 
1995; Ervin and Tryggvason, 1997; Loth et al., 1997). 

1.3.2 WaU-Uft (walHubrication) force 

The wall-lift force Mj has been introduced and it is explained due to 
the velocity distribution change around particles near a wall (Antal et al., 
1991). This force was used to predict the observed void profiles for 
cocurrent laminar upward and downward flows. This wall-lift force 
analogous to a lubrication force acts on a bubble near a wall and prevents the 
bubbles firom touching the wall. 

Consider the drainage of the liquid around a bubble moving in the 
vicinity of a wall. The no-slip condition at the wall should slow the drainage 
rate between the bubble and the wall, whereas the drainage rate should be 
increased on the opposite side. Thus, the asymmetrical drainage of the 
liquid around the bubble in the vicinity of the wall may be quite different 
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from the symmetrical drainage of the liquid around the bubble in infinite 
liquid. As a consequence, the bubble experiences a hydrodynamic force, 
namely wall-lift force, which tends to move the bubble away from the wall. 
Antal et al. (1991) investigated the wall-lift force acting on a spherical 
bubble moving in a laminar flow analytically and numerically, and proposed 
the following fimctional form 

M - = ^ £ ^ '•d 

h 
^W\ "r ^Vfl 

^d 

y^w ) 

n^ (12-89) 

where v,, = (v^ - v^) - [n^ • (v^ - V/)]n^ , C^^ = -0.104 - 0.06 ;̂, and 
(7^2 = 0.147. Here, d^^ and n^^ are the distance between the bubble and 
the wall, and the unit outward normal vector on the surface of the wall, 
respectively. Equation (12-89) indicates that the direction of the wall-lift 
force is reversed at y^ = r^/{0J07+ OAOSv^), and does not take into 
account the effect of the bubble deformation near the wall. Further 
experimental and analytical works should be required to establish the wall-
lift force. 

1.3.3 Turbulent dispersion force 

The turbulent dispersion force ikTj is due to the bubble motion 
produced by the turbulent energy of the liquid phase (Lahey et al., 1993). 
This force was introduced to compensate for the fact that the averaged two-
phase continuity equations do not allow for a phasic diffusion effect. The 
turbulence dispersion force is driven by the void fraction gradient, and tends 
to flatten the void fraction distribution. On the analogy of the molecular 
dispersion force, the turbulent dispersion force is expressed by (Lahey et al., 
1993) 

Mj = -C^PfkfWa^ (12-90) 

where Cj, = OA and kf is the total turbulent kinetic energy of the liquid 
phase. The applicable flow range of Eq.(12-90) is not clearly given. 

1*4 Turbulence in multiparticle system 

In a single-phase flow analysis, turbulence structure has been studied 
extensively, and several turbulence models have been proposed. The 
turbulence model is commonly classified into zero-equation model, one-
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equation model, two-equation model, and stress equation model. The large 
eddy simulation and direct numerical simulation of the Navier-Stokes 
equation are also possible. However, in a two-phase flow analysis, limited 
studies have been performed for turbulence modeling due to the complex 
nature of the two-phase flow turbulence. In what follows, some preliminary 
turbulence models in bubbly flow regime are explained briefly. In the 
models, the turbulent kinetic energy of gas phases is commonly neglected 
due to the large density difference between gas and liquid phases. To 
emphasize the time-average, the overbar is applied to a symbol. This subject 
is also reviewed in Akiyama and Aritomi (2002). 

A. Zero-equation Model 
The zero-equation turbulence model is commonly expressed as a model 

with no differential equation to determine the Reynolds stress. In what 
follows, a model proposed by Sato et al. (1981) will be explained briefly as 
an example of the zero-equation turbulence model. 

Consider two-dimensional fully-developed bubbly flows such as a flow 
in a vertical pipe or between two parallel flat walls. The y - and z -axes are, 
respectively, normal and parallel to the main flow direction. This model 
assumes that (i) only liquid phase contributes to the momentum transfer, and 
(ii) there are two kinds of turbulences in the liquid phase independent of and 
dependent on bubble agitation. Then, the velocities in the y - and z -
directions, v^^y and v^,^ are expressed as 

Hy=<y+<y (12-91) 

^/,. = ^ + < . + < . (12-92) 

where v^^ and v^J are the liquid velocity fluctuations independent of and 
dependent on bubble agitation, respectively, vj^ is the time-averaged liquid 
velocity in the z -direction. The turbulent stress for liquid phase, r J , can 
be expressed as 

^J = -Pf<y<^ - Pf<y<^ (12-93) 

where y is the normal-directional distance measured from the channel wall. 
Here, the eddy diffusivities e^ and £:'' are defined by 



338 

- ^ / * < . = ^ '^^^•^ and 
dv. 

dy 

Chapter 12 

(12-94) 

Then, the turbulent stress, r'^j , is expressed as 

dVf 
r^=P,(e'^^")^. (12-95) 

Thus, the turbulent stress distribution can be calculated provided e^ and s^' 
are given. 

For fully developed turbulent bubbly flow, the eddy diffiisivity 
independent of bubble agitation, e^, may be determined empirically based 
on the Prandtl's mixing length theory and the damping factor in the region 
close to the smooth wall as 

^̂  = 0.4 1 - e x p 
16 

x^ 
1 1 / + ^ 111 r ^ 

R' + 
( + ^ 

R' 

. , . ^ 3 

+ R' 

(12-96) 

fV •fV' 

Here, y'^ = ?/'^//^/ ^^^ ^^ = RvJvj where v^ and R are, respectively, 
the friction velocity defined by Ir^/pf and the radius of a pipe or the half 

width of a channel with parallel flat walls. The eddy diffiisivity that is 
dependent on bubble agitation, e^^, may be determined empirically based on 
the virtual kinematic viscosity of a free turbulent flow (such as a wake 
behind a soKd body) and the damping factor in the region close to the 
smooth wall as 

1.2 1 — exp 
16 

a. 
ids' 
[2 

(12-97) 

where dg and v^^ are the mean diameter of the bubbles given by Eq.(12-
98) and the terminal velocity in the still liquid, respectively. 
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d. 

0 0 / xm< y < 20 /im 

dn 

(12-98) 

dJ2 <y<R 

where d^ is the cross-sectional mean diameter of the bubbles. The 
turbulent stress is computed from the above equations and boundary 
conditions. 

B. One-equation Model 
The one-equation turbulence model is commonly expressed as a model 

with only one differential equation of turbulent kinetic energy conservation 
and constitutive equations for mixing length and other turbulent source terms. 
In what follows, a model proposed by Kataoka and Serizawa (1995) will be 
explained briefly as an example of the one-equation turbulence model. 

Consider steady, fiilly developed adiabatic bubbly flows in a round tube. 
The y - and 2;-axes are, respectively, normal and parallel to the main flow 
direction. The turbulent stress, r j , is expressed in terms of the mixing 
length of two-phase flow, /^p, and the turbulent velocity, v^, as 

Tr = 
dv. 

dy 
(12-99) 

\V,'V, 
(12-100) 

where v'^ is the liquid velocity fluctuation vector. Thus, the turbulent stress 
distribution can be calculated provided lj,p and v^ are given. 

The mixing length of two-phase flow is assumed to be expressed by the 
linear superposition of the mixing length of the shear-induced turbulence in 
single-phase liquid flow, Igp, and the mixing length due to the bubble-
induced turbulence, L , as 

Imp — lap T" f "TP 'SP (12-101) 

The mixing length of the shear-induced turbulence in single-phase liquid 
flow is given by 
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(12-102) 
f)\ 

The mixing length of the bubble-induced turbulence is given based on the 
mechanistic model in which the same volume of liquid is exchanged 
accompanying the bubble turbulent motion through the control surface as 

1 , 

4/3 - [vlds] 

(4/3)(,/d,) 

-ds<y<R 

4 <v<-ds 

\% ^<y<dB 

(12-103) 

where dg is the bubble diameter. 
The turbulence velocity, v^ , is calculated from the equation of the 

turbulent kinetic energy for liquid phase given by 

_l d_ 

R-y dy 
(R-y)(l-a^)^^ + (3,^l,,^ 

dy 

<dv-^' 
+A>/fc/rp(i-«p) - ^ - 7 i ( i - « , ) 

W 3 

M 

'2^9 
dn 4d. 

g^^ D roo 

( 
1 —exp 

* ^ 

26u f) 

(12-104) 

—Vi 
id^] 
[ dy j 

0 

where k is the turbulent kinetic energy of liquid phase given by 

k = ̂ ^j2. A(=0.56) , /?2(=0.38) ,7 , = 0.18,/^^(^ 0.075), and 

K2{=1.0) are coefficients. In this model, the turbulent velocity is 
determined by Eq.(12-100) with the assumption of equilateral turbulence as 
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' (12-105) 

The significance of the various terms in the equation is as follows. The first, 
second, and third terms on the right-hand side represents the turbulence 
diffusion, turbulence generation due to shear, and the turbulence dissipation, 
respectively. The fourth and fifth terms represent the turbulence absorption 
due to small scale of interface and the turbulence generation due to bubble 
relative motion, respectively. The last term represents the compensation of 
numerical error very near to the wall. The turbulent stress is computed from 
the above equations and boundary conditions. 

C. Two-equation Model 
The two-equation turbulence model is commonly expressed as a model 

with two differential equations to determine the Reynolds stress. In what 
follows, k-£ model proposed by Lopez de Bertodano et al. (1994) will be 
explained briefly as an example of the two-equation turbulence model. 

Consider steady, fully developed adiabatic dilute bubbly flows. The 
turbulent stress tensor, %^ , is assumed to be expressed by the linear 
superposition of the shear-induced (SI) turbulent stress tensor, Sy , and the 
bubble-induced (BI) turbulent tensor, ^^^ , as 

^ ^ ^u;^^^ -\-w:^\ (12-106) 

The shear-induced turbulent stress is computed by 

^^^ = p^v, {Vi^ + (Vt^)""} - -Ap^k^^ (12-107) 

where v^, A and k^^ are the turbulent kinematic viscosity, the turbulence 
anisotropy tensor and the turbulent kinetic energy due to the shear-induced 
turbulence, respectively. For the isotropic turbulence, A = I, 

The bubble-induced turbulence is computed by 

r/^ = -a^Pj 
20 ^ ^ 20' '̂ • 

(12-108) 
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= -^9p!l^^vmW^ 

AjS 0 

0 3/5 

0 0 

0 

0 

3/5J 

where C^ is the virtual volume coefficient, and the value for potential flow 
around a sphere is 1/2. The value of 2.0 and 1.2 are recommended for the 
low and high void fraction cases, respectively. The turbulent kinetic energy 
due to the bubble-induced turbulence, k^^, can be obtained as 

k'' = <^,\cjv;\\ (12-109) 

Then, substituting Eqs.(12-108) and (12-107) into Eq.(12-106), yields 

f4/5 0 

'.SI 

-a^k BI 0 

0 

0 

3/5 0 

0 3/5J 

(12-110) 

Thus, the shear stress distribution can be calculated provided v^ and k are 
given. 

The turbulent kinematic viscosity is assumed to be expressed by the 
linear superposition of the turbulent kinematic viscosities due to the shear-
induced turbulence, v^ , and the bubble-induced turbulence, h'^ as 

-.=-f+-f. (12-111) 

The turbulent kinematic viscosities due to the shear-induced turbulence and 
the bubble-induced turbulence are given as Eqs.(12-112) and (12-113), 
respectively. 

/̂ : 
57 0.09-

LSI 

M (12-112) 
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where Sgj is the dissipation of the shear-induced turbulence. 

.f'=1.2|a.|5v| 

343 

(12-113) 

The turbulent kinetic energy and dissipation due to the shear-induced 
turbulence can be computed by the shear-induced turbulence kinetic energy 
transport equation given by Eq.(12-114) and the shear-induced turbulence 
dissipation rate transport equation given by Eq.(12-116). 

a. = V' 
^ Dt 

+ a , ( P ^ ^ - £ ^ ^ ) (12-114) 

where crj.(= 1.0) is a constant and P^^ is the production of the shear-
induced turbulence given by 

,s/ _ = u,\s/v^+[Vv;)'Y.VVf (12-115) 

a, = V 
/ 

•"f Dt 

OLfE 
SI 

+ -^(C,,P,,~C,,e'') (12-116) 

where a^ (= 1.3), C ĵ (= 1.44), and C^2 {— 1-92) are constants. The 
turbulent stress is computed from the above equations and boundary 
conditions. 
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DRIFT-FLUX MODEL 

The basic concept of the drift-flux model is to consider the mixture as a 
whole, rather than two phases separately. It is clear that the drift-flux model 
ft)rmulation will be simpler than the two-fluid model, however it requires 
some drastic constitutive assumptions causing some of the important 
characteristics of two-phase flow to be lost. However, it is exactly this 
simplicity of the drift-flux model that makes it very usefiil in many 
engineering applications. As it is the case with the analyses of two-phase 
flow system dynamics, information required in engineering problems is often 
the response of the total mixture and not of each constituent phase (Tong, 
1965). Furthermore, detailed analyses on the local behavior of each phase 
can be carried out with less difficulty, //these mixtures responses are known. 

Another important aspect of the drift-flux model is concerned with the 
scaling of systems that has direct applications in the planning and designing 
of two-phase flow experimental and engineering systems. The similarities of 
two different systems can be studied effectively by using the drift-flux model 
formulation and mixture properties. The most important aspect of the drift-
flux model is the reduction in the total number of field and constitutive 
equations required in the formulation in comparison with the two-fluid 
model. The drift-flux model is expressed in terms of four field equations: 
the mixture continuity; momentum; energy equations; and the gas continuity 
equation. 

It can be seen, therefore, that the drift-flux model follows the standard 
approach used to analyze the dynamics of a mixture of gases or of miscible 
liquids. It is generally accepted that the drift-flux model is appropriate to the 
mixture where the dynamics of two components are closely coupled. This 
suggests that the same argument may be used for the macroscopic two-phase 
flows. The usefiilness of the drift-flux model in many practical engineering 
systems comes from the fact that even two-phase mixtures that are weakly 
coupled locally can be considered, because the relatively large axial 
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dimension of the systems usually gives sufficient interaction times. The 
advantages of using the drift-flux model for the studies of system dynamics 
and instabilities caused by the low velocity wave propagation, namely, the 
void propagation, are demonstrated by Zuber (1967) and Ishii and Zuber 
(1970). However, there are some questions in applying the drift-flux model 
to the problems of acoustic wave propagations, choking phenomena and high 
fi-equency instabilities, as it has been discussed in detail by Boure and 
Reocreux (1972), Boure (1973) and Reocreux et al. (1973). 

In the drift-flux model formulation we have only four field equations and, 
thus, one energy and one momentum equation have been eliminated fi-om the 
original six field equations. Then, the relative motion and energy difference 
should be expressed by additional constitutive equations. In other words, the 
dynamic interaction relations are replaced by the constitutive laws. 
Furthermore, it is important to formulate the model based on the mixture 
center of mass in order to preserve the additive characteristic of the 
extensive variables, as explained in Chapter 4. 

In this chapter, we develop a general formulation of the mixture model 
(Ishii, 1975) then discuss various special cases (Ishii, 1977) that are 
important in practical applications. Since we have carried out the detailed 
analysis on the field and constitutive equations for two-fluid model in 
Chapter 9, we recall and use these results for the establishment of the drift-
flux model formulation whenever it is helpfixl. The following diagram 
summarizes the establishment of the drift-flux model formulation. Here we 
see the special importance of the kinematic, mechanical and thermal 
relations between the two phases. It is evident that the elimination of one of 
the two momentum equations from the formulation requires the kinematic 
relation between the phases, therefore, the relative velocity should be given 
by a constitutive law. Similarly, by using only the mixture energy equation 
for the balance of energies in a two-phase flow, thermal relation between the 
phases should be given. 

1.1 Drift-flux model fleld equations 

Formulation Based on the Center of Mass and Drift-flux Velocities 
The most general forms of the four basic field equations for the drift-flux 

model have been given in the Section 1.3 of Chapter 5. In this section, first 
we put these equations into more realistic form by using some of the analysis 
on the constitutive equations for the two-fluid model. Then we discuss some 
appropriate simplifications which are important for practical applications. 
Here, we formulate the model based on the mixture continuity, momentum 
and thermal energy equations plus the continuity equation for one of the 
phases. These equations can be reduced to the following forms 
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LOCAL INSTANT FORMULATION 
Phase 1 
Field Equations 
Constitutive Laws 

Interface 
Jump Conditions 
Interfacial B.C. 

I 

Phase 2 
Field Equations 
Constitutive Laws 

TIME AVERAGING 
I : 

INTRODUCTION OF MACROSCOPIC VARL\BLES 
(Mixture Variables) 

DRIFT-FLUX MODEL FORMULATION 

MDCTURE FIELD EQUATIONS 
Mixture Continuity Eq. 
Mixture Momentum Eq. 
Mixture Energy Eq. 
Drift-flux Equation 

[RELATION BETWEEN PHASES 
Kinematic State 
Mechanical State 
Thermal State 
Chemical State 

MACROSCOPIC MIXTURE 
CONSTITUTIVE LAWS 

The mixture continuity equation from Eq.(5-40) 

dprr 

dt 
+ V-(p^i;^) = 0 

The continuity equation for phase 2 from Eq.(5-41) 

da2P2 

dt 
+ V • (a^PiV,,) = A - V • (a^'p^^m) 

The mixture momentum equation from Eqs.(5-42) and (5-43) 

9p,n% 

dt 

+v-
k=l 

+ Pm9m + -^^ 

(13-1) 

(13-2) 

(13-3) 
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where we have from Eq.(9-127) 

(13-4) 

And in Eq.(13-3) the body force field has been taken as constant. The last 
term on the right-hand side of the mixture momentum equation represents 
the effects of the surface tension force on the mixture. 

There are considerable difficulties obtaining an appropriate thermal 
energy equation for the mixture as we have discussed in the Section 1.3 of 
Chapter 5. It has been shown there that we have two different methods to 
obtain the equation. By adding the thermal energy equation for each phase, 
we obtained Eq.(5-53). Consequently, from Eqs.(9-154) and (9-150), we 
have 

dprX 
dt + '^'{PJA) = -'^'{Q + Q^) 

Y^^kPkhVkm \ + T.^k " 7 ^ + I]^^^-Vi; , 

+ 

V k 

^= da D,a 

2 

y. 
k=\ 

Dt 

2 z 
k=l 

[ ' dT Dt 
— + E: 

(13-5) 

-E 
k=l 

( ^ 2 

n M,,-t5;: + Va,-^-t5^ 

From the definitions of the mixture properties and the interfacial momentum 
transfer condition, we have 

E«* ^ = ^ + E«*^*^ • V^ - 2^2, ^ ^ - (13-6) ,=, Dt Dt ,=, Dt Dt "^s Dt 

For simplicity we define three different effects as follows 

K^Y.^,%:^^. 
k=\ 

(13-7) 
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^'' =E^ IH. 21 + T, 
dT Dt 

(13-8) 

and 

c-E 
k=l 

-r. M,,-v;, + Wa,-&;,-v, (13-9) 

Then the thermal energy equation (13-5) reduces to 

dt 
+ V-(pJ^t;^) = - V . ( g + g )̂ 

( 2 

/ j^kPkVkm 
k=\ 

Dp„ 

Dt 
M^l" +$" J-^' 

(13-10) 

The drift-flux model with the mixture thermal energy equation faces 
considerable difficulties when the last three terms in the above equation 
cannot be neglected. These terms arise from the viscous dissipation, work 
due to surface tension forces and interfacial mechanical energy transfer. 
This is particularly true, if the term ^^ given by Eq.(13-9) has significant 
contributions to the thermal energy exchanges. It is evident that in this case 
the drift-flux model requires the constitutive equations for the relative 
velocity as well as for the interfacial mechanical energy transfer. 

The alternative form of the thermal energy equation can be obtained from 
Eq.(5-55) by substituting Eqs.(9-141) and (9-127), then using the 
approximation given by (9-145). These two different forms of the thermal 
energy equation do not give an identical drift-flux model formulation, as it 
has been discussed in the Section 1.3 of Chapter 5. However, we use the 
relation given by Eq.(13-10), which has been obtained by adding the thermal 
energy equations for each phase, because it has a relatively simpler form 
than the one based on Eq.(5-55). 

The above four field equations (13-1), (13-2), (13-3) and (13-10) state the 
balance laws which govern the macroscopic mixture field. They have been 
obtained by the time averaging applied to the two-phase flow systems with 
interfacial discontinuities. We note that mixture continuity, momentum and 
energy equations are somewhat similar to those of a single-phase flow. 
Actually, the mixture continuity equation has exactly the same form as that 
for the continuum without internal discontinuities. This has been done by 
using the properly defined mixture properties. The mixture momentum 
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equation, however, has two additional terms that do not appear in a single-
phase equation. One is the capillary force that takes into account the surface 
tension effects and can be considered as momentum source or sink. The 
other is a diffusion stress term, shown as the third stress on the right-hand 
side of Eq.(13-3). This term expresses the momentum diffusion due to the 
relative motion between two phases in addition to the molecular and 
turbulent diffusions that has been taken into account by the stress group 

( r + r ^ ) . In the mixture thermal energy equation, we have three 
additional lerms that do not appear in the single-phase flow equation. The 
second term on the right-hand side of Eq.(13-10) is an energy diffusion due 
to the transport of energy by relative motions of the phases with respect to 
the mixture center of mass. Recalling Eqs.(13-8) and (13-9), the terms given 
by ^^ and ^ ^ represent the surface-tension effect and the contributions 
from the interfacial mechanical energy transfer, respectively. Under normal 
conditions, these two terms and energy dissipation term can be neglected 
almost always. 

The mixture momentum and thermal energy equations given by Eqs.(13-
3) and (13-10) describe the momentum and energy exchanges from the 
stationary observer. Thus, the convective fluxes with the mixture center of 
mass velocity and the additional diffusion fluxes defined with respect to the 
barycenter of mixture appear in the equations. These two equations can be 
transformed in terms of the convective derivative of Eq.(7-14) as follows 

Prr 
m -v;>̂  + v-(r + r )̂ 

/ j^kPjykmVk 
\k=\ 

km + Pm9m + •^, 

(13-11) 

and 

+^»+C +C-

/ j^kPkVkm 
U=i 

+ 
Dp. 

Dt (13-12) 

The above two equations described the transfers of momentum and energy as 
seen from the observer moving with the velocity v^ . Because of its special 
form, Eq.(13-11) is called the equation of motion. 

Field Equations in Several Coordinate Systems 
In view of practical importance, we express these four field equations in 
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two different coordinate systems. Since the derivatives are straightforward 
from the standard vector calculus (Aris, 1962; McConnell, 1957), we only 
list the results below. 

In rectangular coordinates (x^y^z) we have for the conservation of 
mass of mixture 

(13-13) 

for the drift-flux of mass of phase 2 

(«2P2) + ]^ («2P2^^) + ^ ( « 2 P 2 V ) 
dt dx 

^ ^ 

(13-14) 

for the conservation of mixture momentum 

X -component 

= Vo Q +M H [T +T +T ] 
rj ' rmJmx ' xm ^ r\ \ xx * xx * xx) 

y -component 

^(P™V) + ^(Pm^xmV) + ^ ( P « W ) 
dt dx 

dz dy 

(13-15) 
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4- — f r ~ 4 - T ^ -\-T^)-\-—(T~-]-T^ 4-T^' l 
dx ^ ^ ^ ^/ f^y\ yy yy yy J 

z -component 

d , s d j X d I \ 

+ -^{Pm'"^t^^) = - ^ + Pm9mz + ^ ^ 

for the mixture thermal energy balance 

-^{pmK) + -^{Prjm'^xm) + '^[pmL'^ym) + -^{pmL'^zm) 

d{ 
dx ix+QI-^^oikpkhy^ 

k=\ 

%+Qv +T.^kPkiVy ykm 

d_ 

dy 

f) ( 

k=l 

k=l 

2 

+ 

dz ^ 

(dp, 

dt "^ dx "^ dy '^ dz 

+$1' +^^ +^\ 

(13-16) 

If the flow is restricted to two dimensions, then it is called a plane flow. In 
this case the partial derivative with respect to x as well as the x -component 
of the momentum equation can be dropped from the formulation. 

Similarly in cylindrical coordinates (r^O^z) we have for the 
conservation of mass of mixture 
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for the drift-flux of mass of phase 2 

a / =x 1 a / = N 1 a / = \ 
a P ' r or^ ' r 06 

for the conservation of mixture momentum 

r-component 

d, X 1 9 / \ 1 a 
•{Pm'^nn) + " ^ (^Pm'^^nn^™ ) + -^{Pra'"na'"era) 

at 

9 -component 

+;^|; P (^+-:i+-°.)}+~(^+-i + -£) 

(13-17) 

+ ;^(«2Pr^^.2) = A - \j^-^[r(^2Wr2n) (13-18) 

r\ CJT) 
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+ £ ( ^ + ̂ I+̂ fe) 

2;-component 

d , X 1 a 1 d 

-\ IP V V ) — \-p a +M 

1 d 

for the mixture thermal energy balance 

5 / . ^ \ d I . \ \ d 

]_d_ 

r dr 

2^ 

Qr+Qr +^Oi,^PkhVr rkm 

+-rde 
Qe+Qe +J2^kPk{Vek,^ 

k=\ 

+ 

+ 

dz , 

(dp, 

QZ+QI +J2^kPkhVzlan 
*=1 

' m. ' m. ' rr ' tn ' m 

dt "" dr 
dPrn ^ Vera ^Vm + v 

(13-20) 

If the flow is axisymmetric, the partial derivative with respect to 9 drops 
from the equations. Furthermore if the flow is free from the circulatory 
motion around the z -axis, namely, the flow is restricted to two directions r 
and z, then v^^ is zero, thus the momentum equation for 6 direction can be 
eliminated. 
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1.2 Drift-flux (or mixture) model constitutive laws 

It is evident that the drift-flux model based on the four field equations is 
an approximate theory of the two-fluid model. In order to complete the 
drift-flux model it is necessary to supply several constitutive laws for 
mixtures. We can consider two distinct approaches to accomplish our 
purpose. The first method is to start our analysis on the constitutive 
equations fi-om the mixture field equations and the mixture entropy 
inequality, then to apply various constitutive axioms directly to the mixtures 
and independently of the two-fluid model. The second method is to obtain 
the necessary constitutive equations by the reduction fi*om the two-fluid 
model formulation. 

At first it seems to be more logical to follow the former approach, 
because it is a self-sufficient and independent formulation of the model for 
the mixtures. However, in reality it is confi-onted by great difficulties which 
cannot be overlooked lightly. The main problems arise from the fact that in 
general two phases are not in thermal equilibrium, thus it is not possible to 
introduce a mixture temperature. This suggests that we cannot expect the 
existence of a simple equation of state in terms of the macroscopic mixture 
properties. 

It can be seen that the thermal non-equilibrium condition and the 
structures of the interfaces are the governing factors of the changes of phases. 
Furthermore, the kinematic and mechanical state between two phases is 
greatly influenced by the interfacial properties and structures. In order to 
bring these important effects into the drift-flux model formulation, it is 
simpler and more realistic to use reductions firom the two-fluid model than 
the former approach. Consequently, in this section we develop our analysis 
on the mixture constitutive equations in parallel with the Section 1.2 of 
Chapter 9. 

Principle of Determinism 
The drift-flux model field equations have been given by Eqs.(13-1), (13-

2), (13-3) and (13-10) which are not sufficient to describe the system 
completely. From the principle of determinism, it is necessary to supply 
additional constitutive equations that specify the response characteristics of 
certain group of macroscopic two-phase mixtures. In order to keep the 
thermal non-equilibrium effects in the drift-flux (or mixture) model 
formulation, we introduce a fimdamental equation of state for each phase. 
Furthermore various mixture properties can be related to the properties of 
each phase through definitions of the Section 1.5 of Chapter 4. 

By taking into account the above considerations, we have following 
variables appearing in the drift-flux model formulation. 
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1. Equation of State: ^,, p,, T,, {, T,, a; 
2. Conservation of Mass: p .v \ 
3. Conservation of Momentum: p^,V^, r , r ^ , M^, a,; 
4. Conservation of Energy: i^, q, g^, ^^, ^ ; , ^ ; ; 
5. Drift-flux Equation: r^; 

where A: =1 and 2. Hence the total number of the variables is twenty seven. 
For a properly formulated drift-flux model we should have also the same 
number of equations. These can be classified into following groups. 

Equations Number of Equations 
1) Field equations 

mixture mass Eq.(13-1) 1 
mixture momentum Eq.(13-3) 1 
mixture energy Eq.(13-10) 1 
drift-flux Eq.(13-2) 1 

2) Axiom of continuity 
aj = 1 - 0̂ 2 Eq.(4-13) 1 

3) Equation of state for phase 
thermal equation of state Eq.(9-56) 2 
caloric equation of state Eq.(9-57) 2 
definition of p^ Eq.(4-66) 1 
definition of i^ Eq.(4-74) 1 
definition of p^ Eq.(4-72) 1 

4) Equationof state for interfaces 
a = ^[¥^ Eq.(9-130) 1 

5) Identity on the drift-flux velocities 

A ; = l 

6) Kinematic constitutive equation for Fim 1 

7) Mechanical state between two phases 
^ - p : = - 2 ^ a Eq.(9-128) 1 

8) Thermal state between two phases 
J\-T2=0 1 
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9) Phase change condition 

^ - p-' ( ^ ) = 1% a ^ ^ Eq.(9.163) 1 
^ ' Pi- Pi 

10) Mechanical constitutive equations 

viscous stress W 1 
turbulent stress S^^ 1 
mixture momentum source M^ 1 

11) Energetic constitutive equations 
conduction heat flux q 1 
turbulent heat flux q^ 1 
dissipation term $!^ 1 
surface tension effect ^ ^ 1 
mechanical energy effect ^ ^ 1 

12) Constitutive equation for phase change 
mass generation F^ 1 

This shows that we have also twenty seven equations, thus the present 
formulation is consistent. We note here that these field and constitutive 
equations are required from the principle of determinism, however they do 
not ensure the existence of a solution. It is very difficult to prove for our 
system that the problem is properly set, namely, the just setting (Truesdell 
and Toupin, 1960) because it concerns with the existence, uniqueness as well 
as the proper initial and boundary conditions. Usually, it can be checked 
only for very simplified classes of problems. Now we proceed to the 
detailed discussion of the above constitutive equations. 

Equations of State and Mixture Properties 
The axiom of continuity requires that an interface does not stay at a point 

for a finite time interval (see Section 1.4 of Chapter 5), thus we have 

Qj +0^2 = 1 - (13-21) 

The mixture density p^ is defined by 

Pm = « l A + ^ 2 P ^ (13-22) 

with the thermal equation of state for each phase given by 
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K = 7i(%Pi) (13-23) 

pr = p r ( ^ .P r ) - (13-24) 

And the mixture pressure is related to the phase pressures by 

Pm =« iA+^2P^- (13-25) 

The mixture density given by Eq.(13-22) with Eqs.(13-23) and (13-24) can 
be considered as the mixture thermal equation of state which has constraints 
imposed by the thermal, mechanical and the chemical relations between two 
phases. 

The mixture enthalpy is defined by 

Pm 
(13-26) 

with the caloric equation of state for each phase 

\ = {^,j) (13-27) 

h = 1[T,,P,). (13-28) 

By substituting Eqs.(13-27) and (13-28) into Eq.(13-26) we obtain the 
mixture caloric equation of state which shows the dependence of i^ on the 
temperatures, pressures and local void fractions. As in the case of mixture 
thermal equations of state, however, it has constraints imposed by the 
constitutive equations for the temperature difference and the pressure 
difference between two phases as well as by the phase change condition, 
Eq.(9-163). 

The thermal equation of state for the interfaces in the macroscopic field 
can be approximated by 

a = a ( ^ ) (13-29) 
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which can be considered as the fundamental equation of state for the 
interfaces without surface mass. 

Kinematic Constitutive Equation 
As it has been explained in the previous section, we should supply a 

constitutive equation for the relative motion of phases. Since in the drift-
flux model formulation we have eliminated one momentum equation, the 
kinematic constitutive equation stands as a relative equation of motion. It 
can be expected, however, that the dynamic interactions between two phases 
will be lost by replacing the momentum equation by a kinematic relation. 

The diffusion velocity of each phase is related by an identity 

^xWxm + ^iWlm = 0. (13-30) 

Thus, we should supply only one of the diffusion velocities by the kinematic 
constitutive equation. However, since the diffusion velocity Vj^ can be 
related to the relative velocity between phases or the drift velocities by the 
definitions in the Section 1.6 of Chapter 4 as 

^iPl Pm P. 
2j 

(13-31) 

^2Pm 

the constitutive equation can be given in terms of any of the above velocities. 
The relative velocity between two phases depends upon the drag force 

acting at the interfaces as well as the interfacial geometry. Thus it can be 
expected that relative velocity will vary whenever the interfacial structure of 
the mixture changes. It has been shown in the Section 1.4 of Chapter 9 that, 
in a dispersed two-phase flow, the drag correlation should be expressed in 
terms of the drift velocity {j — v^d) ^^^ ^^^ Reynolds number based on that 
velocity, Eqs.(9-223) and (9-224). This suggests that the kinematic 
constitutive equation on the relative motion between phases is best studied in 
terms of the drift velocity of the dispersed phase as it has been proposed by 
Zuber (1964b), Zuber et al. (1964) and Zuber and Staub (1966). 

In view of the results obtained in the above references, it can be said that 
the drift velocity is a function of a terminal velocity v^ of a single particle 
in an infinite medium and the void fi-action of a continuous phase. In order 
to take into account the drift effect due to the concentration gradient, we 
propose a linear constitutive law in the following form 
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Vdj = j-'^d = '^oo{^-^dT 
D: 
Oi, 

^Oi. 

Chapter 13 

(13-32) 

where D^ is the drift coefficient based on the void fraction a^. The first 
term on the right-hand side takes into account for the effect of gravity and 
forces which is usually the dominant part of the drift velocity, A detailed 
analysis on this term in the bubbly flow regime has been made in Zuber et al. 
(1964), and Ishii (1977) also demonstrated that the constitutive equation of 
the drift velocity can be derived from the two-fluid model for various flow 
regimes. In the absence of the wall and under a steady-state condition 
without phase change, the multiparticle system in an infinite medium 
essentially reduces to a gravity and drag dominated one-dimensional flow, 
since the averaged void and velocity profiles become flat. Solving the 
momentum equations for each phase yields the relative velocity law. Thus, 
we use the results for drag correlations in Chapter 12. 

For a viscous regime, the drift velocity can be given by 

K. - 10.8 l^c9^P 
1/3 (1-aj'VK) 

X 
^(r;r{i+^(r;)} 

(13-33) 

where 

Mm 
(13-34) 

and 

V(r;) = 0.55|(l + 0.08r;^f-Ip (13-35) 

for the viscous regime. The non-dimensional radius, r̂  , is defined by 

^d =^d 
{Pc9^P V/' 

I l^c ] 
(13-36) 
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For a Newton's regime fr̂  > 34.651, the drift velocity can be given by 

y.i = 2.43 
ng^p 

\l/2 

(i-^dr/K) 

X-
18.67 

(13-37) 

1 +17.67 { / K ) f 

For a distorted-fluid-particle regime, the drift velocity can be given by 

K,- - >/2 
A , 

X J ( l - « . ) ' 

( l - « . ) 

Mc » /̂ d 

2.25 /X̂  » /i^. 

(13-38) 

The above criterion is applicable for iV^ > 0.11 (1 + V'VV' where iV^ is 
the viscosity number given by Eq.( 12-28). 

For a chum-turbulent flow regime, the drift velocity can be given by 

^.i 

~ V2 

^/2 

or 1.57 

{(jgAp\ 

agAp 
xl/4 

Ap ( l - « d ) 
1/4 

I Pc 

(13-39) 

Pc- Pd 

Ap 

In the exact expression for V^^ , the proportionality constant v2 is 
applicable for bubbly flows and 1.57 for droplet flows. However, in view of 
the uncertainty in predicting the drag coefficient, this difference as well as 
the effect of the void fi*action may be neglected. 

For a slug flow regime, the drift velocity can be given by 

K. = 0.35 
',^pDr 

(13-40) 

where D is the diameter of the tube. 
Figure 13-1 compares the present analytical result, Eq.(13-37), with the 

empirical correlation for solid-particles flow systems (Richardson and Zaki, 
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Empirical Correlation 
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10"̂  ' ' 10" 
Void Fraction of Continuous Phase, (l-«^) [-] 

Figure 13-1. Comparison with experimental data for solid-particle system at high Reynolds 
number (Ishii, 1977) 

1954). An agreement at relatively high void fraction of continuous phase is 
excellent. At very high values of a^, Eq.(13-37) predicts much lower drift 
velocities than the Richardson-Zaki correlation. However, the original 
experimental data of Richardson and Zaki also indicate this trend, which is 
predicted by Eq.(13-37). Figure 13-2 shows the relative velocity in both the 
bubble and the droplet-liquid flow regimes. These data of Lackme (1973) 
clearly indicate the difference in the concentration dependence of the relative 
velocity between a bubbly flow and a droplet flow. These characteristics 
have been correctly predicted by the model. Figures 13-3 and 13-4 make 
further comparisons between the theoretical predictions and experimental 
data in both the batch and countercurrent bubbly flows and in a liquid-liquid 
dispersion system, respectively. The theoretical predictions agree with the 
data very well. Figure 13-5 compares the prediction for chum-turbulent 
flow and the experimental data of Yoshida and Akita (1965). The data were 
taken for an air-aqueous sodium sulfite solution system with various column 
diameters ranging from 7.7 to 60 cm. As can be seen from the figure, the 
theory underestimates the gas flux for smaller-column-diameter experiments. 
However, for larger column diameters, the agreement between the prediction 
and the data becomes increasingly satisfactory. This tendency can be easily 
explained by the two-dimensional effect due to the void and velocity profiles. 
The dispersed phase is locally transported with the local drift velocity with 
respect to local volumetric flux. Therefore, if more particles are 
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Lackme (1973) 
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Figure 13-2. Difference between bubble system and droplet-dispersion system in distorted-
particle regime (Ishii and Chawla, 1979) 
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Figure 13-3. Comparison of gas volumetric flux with distorted-bubble-regime data in a 
flowing system (Ishii and Chawla, 1979) 
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Figure 13-4. Comparison of predicted distorted-particle-regime drift velocity to data in a 
Kerosene-water system (Ishii and Chawla, 1979) 
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Figure 13-5. Comparison of predicted gas volumetric flux based on chum-flow-regime drift 
velocity to data (Ishii and Chawla, 1979) 
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concentrated in higher-flux regions, this will give a higher dispersed-phase 
flux than the case with uniform profiles. Then the mean gas volumetric flux 
should be somewhat higher than the prediction. For more detailed 
discussions on this point, see Zuber and Findlay (1965), Ishii (1977) and 
Werther(1974). 

Thermodynamic State between Two Phases 
As we have discussed in the preceding section it is necessary to specify 

the mechanical, thermal and chemical states between two phases. The 
simplified normal momentum jump condition gives the mechanical relation 
between two phases, thus we have 

^ - ^ = - 2 ^ a. (13-41) 

As we see from the above equation, the pressure difference can be important 
only if the mean curvature H2X is large, namely, for a bubbly or droplet flow 
with small fluid particle diameters. Consequently, in many practical 
engineering problems where the drift-flux model can be applied, the pressure 
difference between two phases can be neglected. Then we have 

Jx^Ti^ (13-42) 

The chemical state between phases decides the condition of phase changes 
and it is given from Eq.(9-163) as 

Pi -p-'[T,) = 2H,,a Pi (13-43) 

However, this can be approximated by 

^ ^ P " ' ( ^ ) (13-44) 

where Yg denotes the vapor phase pressure. If the mechanical equilibrium 
condition (13-42) can be applied, then we have 

7,=% = f''^)- (13-45) 

The constitutive equation for the thermal state between two phases is one 
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Figure 13-6. Axial temperature distribution (Ishii, 1975) 

of the difficult constitutive equations to obtain, since this specifies the 
degree of thermal non-equilibrium. First we note that it can be replaced by 
the relation for T^ - T. or T^-T^, And if both relations are given, then 
the constitutive equation for the mass transfer /'2 becomes redundant. It is 
very important to realize that in many practical problems one of the phases is 
approximately in thermal equilibrium with the interfaces thus 

T,-T, 0 for A; = 1 or 2 (13-46) 

For example in a boiling system we may assume that 

Tg = T.; for bubbly and mixed flow 

T)=Y.; for droplet flow 
(13-47) 

as shown in the Fig. 13-6. 

Mechanical Constitutive Equations: W and t!P 
The average viscous stress for each phase has been obtained in the 

Section 1.2 of Chapter 9, thus we have 

2 

(13-48) 
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where the first term on the right-hand side has the standard form of the 
viscous stress based on the deformation tensor. The second term takes into 
account the effects of the interfaces, and the interfacial extra deformation 
tensor D^ is defined by Eq.(9-73). By substituting the definition of the drift 
velocity we obtain 

_ ( 2 

, '^'_ ' ' (13-49) 

This shows that if the effects of the relative velocity and the interfacial 
2 

deformation are small then the mixture viscosity can be given by y2^klh ' 

For a dispersed two-phase flow, the interfacial extra deformation stress 
tensor can be put into a simple form, Eq.(9-76), if the mass transfer effects 
are not significant. In this case Eq.(13-48) can be reduced to the following 
form 

*=i (13-50) 

where j and V̂ ^ are the volumetric flux of the mixture and the drift 
velocity of the dispersed phase, respectively. Furthermore we note that j 
can be related to v^ and V^j by Eq.(4-93). The above result is important, 
since it shows that in a dispersed flow the mixture-deformation tensor should 
be based on the velocity of the volume center rather than that of the mass 
center. The mixture viscosity is then given by 

/̂ m ^^xlh+^iVv (13-51) 

As we can see from Eq.(13-50), the mixture viscous stress has an additional 
term from the relative motion. The kinematic constitutive equation for V^^ 
shows that, in many cases, this term can be expressed as a fiinction of the 
void fraction only. 

Now let us consider the mixture turbulent stress W^ which appears in 
the mixture momentum equation (13-3). It is evident from the definition that 
W'^ is the addition of the turbulent stresses for each phase o^Jl^. In the 
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Section 1.2 of Chapter 9 we applied the mixing-length theory to the two-
fluid model formulation, thus we obtained the constitutive equation for &^^, 
These expressions given by Eq.(9-89) are not appropriate for the drift-flux 
model formulation, however, since they are written in terms of the variables 
of each phase and not of the mixture. 

We can consider two methods to obtain the mixture turbulent flux W'^, 
namely the derivation of ^ from the ones for each phase by using the 
definitions of the mixture velocity and the drift velocity, or the establishment 
of the mixing length model in terms of the mixture properties in analogy 
with single-phase flows. If the two-phases are strongly coupled or the sizes 
of eddies are large in comparison with the characteristic dimension of a 
dispersed phase, the latter approach is justified. Then we have 

W = 2u^*p f llD :D D (13-52) 

where 

'%.+{^%)' (13-53) 

And the non-dimensional coefficient ili^) corresponds to a mixing length 
constant. 

For a dispersed flow, we may obtain a different expression for ^ ^ . If 
the dimension of a dispersed phase is comparative to that of turbulent eddies, 
the dominant part of the mixture stress is given by that of the continuous 
phase. Thus, we have 

r - ^ aM' = 2a,f,rpf^. (13-54) 

where we have used Eq.(9-89). The total deformation tensor of the 
continuous phase D^ is given by Eqs.(9-82), (9-74) and (9-76). Thus, we 
have 

l r „ . . . „ . + ! 1 
vj+(vjy a. 

1 a •d) 

V V , , + ( W , , ) 1 . (13-55) 

Here we used the definition (4-91) and the identity (4-95). For many 
practical cases the drift velocity of a dispersed phase can be taken as a 
fimction of a^ only, as we have discussed in connection with the kinematic 
constitutive equation. Further simpUfication can be made if we assume that 
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the drift velocity is constant and, then, by combining Eqs.(13-50) and (13-
54) the total mixture stress can be approximated by 

Y,a,^i, + a^fil'pf^flDjW\\Vj + {VJY] (13-56) 
k=\ ) 

'^drdy 

For a fiiUy developed pipe flow, we have 

\ Irz 

[2 dj. 

dr 

d3z_ 

dr 

(13-57) 

by 
The mixture momentum source M^ for a dispersed flow can be given 

M^^V[2H^aaA. (13-58) 

And for a transitional flow we may take 

M „ RiO. (13-59) 

Energetic Constitutive Equations 
The average conduction heat flux for each phase has been obtained in the 

Section 1.2 of Chapter 9, thus we have 

Q = -Y^^kKk 
k=l 

V T , + ^ ( T , - T , ) ( - V a , ) 
a. 

(13-60) 

where the first term on the right-hand side has the standard significance of 
the conduction heat transfer due to the temperature gradient. The second 
term takes into account the effects of the interfaces. By rearranging the 
terms, the above equation reduces to 
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Q = -
[k=\ ) k=l ^ • 

(13-61) 

This form of the average conduction heat flux suggests that the concept 

of the mixture temperature can be represented by T. with the mixture 
2 

conductivity given by S^^k^k' ^^^ second term on the right-hand side 
k=l 

represents the effect of thermal non-equilibrium. 
For many practical systems the effect of the pressure drop on the 

thermodynamic properties can be neglected, and as we have already 
discussed, the temperature of the dispersed phase can be approximated by 
the interfacial temperature. Thus by taking 

V T , ^ 0 

a t 

(13-62) 

the constitutive equation for the heat flux becomes 

q = -Ky OL. (T.~T,) (13-63) 

Furthermore, the turbulent heat flux can be developed in parallel with the 
turbulent stress tensor. However, a special care should be taken here 
because the mixture temperature is not well defined. In view of the 
constitutive equation for the turbulent energy transfer for each phase, Eq.(9-
92), we have 

Va, 
(13-64) 

where Kl is given by Eqs.(9-94) and (9-95). 
For a dispersed flow, we may use the approximation given by Eq.(13-62), 

then we have 

9" ̂  -KJV (TC-T,) a AT. (13-65) 

In view of Eq.(9-94) we obtain 
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KT ^ Kl 
y^cj'^iD^^ 

371 

(13-66) 

Consequently we get 

rT* 
Q' =-K:p:cJ\2n^:Dy c pc 7̂  C^. (Te-T,) (13-67) 

Here the non-dimensional coefficient ifj* corresponds to a thermal mixing-
length constant. We expect that it depends on the conductivity, surface area 
concentration, mean curvature and the void fraction as shown by Eq.(9-95). 

For the terms represented by ^ ^ , ^ ^ , and ^ ^ , we only note that if 
these effects due to the viscous dissipation, surface tension and mechanical 
energy interaction have to be included in the analyses, then they should be 
specified by three constitutive equations. It is evident from the definitions of 
these terms, Eqs.(13-7), (13-8) and (13-9), that such constitutive relations are 
expected to be quite compUcated. This means that most of the advantages of 
using the thermal energy equation diminishes if these effects cannot be 
neglected. 

Constitutive Equation for Phase Change 
The constitutive equation for the mass transfer at the interface has been 

given by Eq.(9-111). Furthermore, we have noted that for a drift-flux model 
it is necessary to supply information on the thermal state between two phases. 
In a simplified form it can be given by Eq.(13-47) which is useful for most 
of the practical problems. Thus for a dispersed flow regime we have 

r. = h r* (13-68) 

P* where non-dimensional coefficient b^ is expected to depend on the 
following groups. 

Pc. AT EiL 

Pd ^i 
(13-69) 

Geometrical Constitutive Equations ^^^^^^ 
If the effect of the mean curvature H^i and the surface area 
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concentration have to be included explicitly in the formulation, we should 
give two additional geometrical constitutive equations. In general these are 
given by Eqs.(9-137) and (9-138), however for a dispersed two-phase flow 
they can be simplified to Eqs.(9-213) and (9-215). 

1.3 Drift-flux (or mixture) model formulation 

The general case of the field and constitutive equations for the drift-flux 
model formulation has been discussed in the Sections 1.1 and 1.2 of Chapter 
13. We have noted the importance of the mixture center of mass velocity as 
well as of the drift velocities in the formulation. It may be appropriate to 
call our present model the drift-flux model in order to emphasize that the 
effects of relative motions between two phases are taken into account by the 
drift velocities VL.. 

1.3.1 Drift-flux model 

In view of the definitions for V^ and V ^ given by Eqs.(4-91) and (4-
89), respectively, the field equations for the drift-flux model can be given as 
follows: 

The mixture continuity equation fi*om Eq.(13-1) 

dPr, 

dt 
+ V - ( P A ) = O (13-70) 

The continuity equation for phase 2 from Eq.(13-2) 

daiPi 

dt 
+ V-(a2P2t;„) = r 2 - V . 

tt2Pl P2 
2] (13-71) 

The mixture momentum equation from Eq.(13-3) 

•PA + V • {p^vj = - Vp„ + V • (^ + r^) d_ 
dt 

- V ' 
CK, Pi P2 

l - « 2 Pn 
^Ij^lj + Pm9m + ^r, 

(13-72) 
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The mixture thermal energy equation from Eq.(13-10) 

^ P m « m + V • [pJra'Vm) = " V • ( ? + g ' ' ) 

- V ' a^ -^-^v^^[t,-{) 
Dp (13-73) 

Here we have formulated the model in terms of the mixture properties, void 
fraction a^ and the drift velocity V'2j • The model is most effective for a 
dispersed two-phase flow, since for this case the constitutive equations can 
be reduced to realistic forms as discussed in the Section 1.2 of Chapter 13. 

It should be emphasized again that the drift-flux model is usefiil for the 
two-phase flow system analyses. This is particularly true if the motions of 
two phases are strongly coupled. Because of its simplicity the model can be 
used to make realistic similarity analyses as well as to solve many important 
engineering problems. 

1.3.2 Scaling parameters 

Let us denote the reference parameters by the subscript o. The 
characteristic length scale is L^ and the time scale is taken as the ratio of L^ 
to the velocity scale. Then we define the non-dimensional parameters whose 
order of magnitude is considered to be 1 as follows: 

P V rmo mo 

* __P^ * __P2_ y* _ 
Pi ~ f Pz — 1 ^Ij ~ 

Pxo Plo 

i:=L^A^Ai*-J2i 

^2j p* _ A „* 
Tr ' -̂  2 p ^ym 
^2jo -' 2o 

- \ 

= Ly 

2 
rmo mo 

ho ho ho ho 
(13-74) 

P^mo^mo 

K^^TJL: - (/^.Ao/4)Ko/4) 
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(p̂  
^ ^ 

- ^^* = 
ip' 

^H^l^o^mo / ^ 0 ' " {Plo ~ Plo ) ^LVljo / k 

Substituting these new parameters into the field equations we obtain the 
following results: 

Non-dimensional mixture continuity equation 

Non-dimensional continuity equation for phase 2 

da2p2 

(13-75) 

df 
+ '^*-(c.2PK) = N^^r;-Ny 

( * * 
«2Pl P% 

I Pn 

Non-dimensional momentum equation for mixture 

O / * * \ ^—,* / * * * \ __,* * 
-^(Pm'"m) + V • [P„,VJ)^) ^ - V Prn 

V y:j. -r*^ j -r P™ | „ I 
'Re ^^ Fr iJ/ml iV. 

-N^N'y a^ 
I — a 1) 

^^v:y:UNM: 

Non-dimensional thermal energy equation for mixture 

dt 
N. 

•N^V*-\ 

N 

^iPl Pi -tr* A-* 

+N, 

{l-a2) + a2N^ 

Dp 1 , , 
— 4- ——$>'* + iV (?''*+1iV - 1 1 Nr.^'* Ec 

Dt N, Re 

(13-76) 

(13-77) 

(13-78) 

Here we have defined 
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Phase change number N^^,^ = A„4 
Zo 0 

PioK 

Drift number Nj, = ^^^^^^ 
rmo mo 

Plo Density ratio N 
Plo 

Reynolds number N^ = ^""''""^ ° 
r^mo 

Froude number Np^ = 
,^m I o 

Surface number N^ = -
p v^ 
rmo mo 

ir-v ^ . -• -. -r I mo mo lo 

Peclet number Np^ = K^AT^ mo 

2 V 
Eckert number N^^ = _ _ ^ (13-79) 

We note that these eight groups are the scaling parameters for the mixtures 
based on the drift-flux model formulation. These groups are analogous to 
the ones obtained for the one-dimensional, two-phase flow model in Ishii 
(1971). An exception is the Reynolds and Peclet numbers, however, since 
for the latter model they are replaced by the groups from the boundary 
conditions, namely, the friction and Stanton numbers. 

The distinction between the scaling parameters and the similarity groups 
should be clearly made, since they are not synonymous. The similarity 
groups are obtainable from the field equations and the boundary and the 
initial conditions with all the constitutive equations specified. Consequently, 
the similarity criteria cannot be discussed in detail unless the system and the 
problem are clearly defined. The scaling parameter enables us to make 
various assumptions and approximations, because they give the order of 
magnitude of various terms appearing in the field equations. 

The first three groups of Eq.(13-79), N^^f^ , iV^ , and N^ are the 
kinematic groups. If the phase change number iV̂ ^̂  is much larger than the 
drift number iV^ , the systems is controlled by the changes of phases. 
However, if N^, »N^^^ , then the system is controlled by the 
redistributions of phases. The number denoted by N^, N^^, and N^ are 
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dynamic groups, since they scale the various forces arisen in the mixture 
momentum equation, whereas the Peclet and Eckert numbers are the energy 
groups. We note the particular importance of the Eckert number N^^. It is 
evident that except for high speed flows, N^^ is small, thus the terms given 
by ^ ^ , ^^ and ^^ in the thermal energy equation can be neglected. As 
we have already discussed before, this is the single most important 
approximation which greatly simplifies the heat transfer problems. 

From Eqs.(13-76), (13-77) and (13-78), we set that the drift transport of 
mass, momentum and energy are not weighted by the same scaling 
parameter. The phase drift and the enthalpy transport due to the relative 
motion between phases has approximately the same order iV^, thus these 
two terms should be treated under the same condition. However, the 
momentum drift are weighted by N^N^ . Thus, depending on the 
magnitude of this scaling parameter, it is possible to neglect the drift-stress 
tensor independently of the other two effects. 

We note that in the scaling parameters, we have introduced the mixture 
viscosity and the conductivity given by //^ and K^. These parameters need 
not to be precisely defined as long as the scaling parameters are concerned, 
because only their order of magnitude is important. We may choose them as 
the larger viscosity and conductivity among ]I^ and Kj^ or defined them by 

2 2 _ _ _ 

yZ^koTh^ and Y^o^ko^ko ^^^^^ ^ko denotes the reference value of a^, for 
k=l k=l 

example at the system boundary. 
However, if the similarity groups are concerned, then the exact 

constitutive equations for the stress tensor and heat flux should be used. 
Thus, according to the forms and the variables appearing in the constitutive 
equations, the correct reference parameters should be chosen. Based on the 
order of magnitude analysis and the scaling parameters obtained above, we 
discuss some of the important special cases. 

1.3.3 Homogeneous flow model 

If the drift number iV^ is much smaller than the phase change number 
Np^fj^, then the system is reaction (phase change) controlled and the drift or 
diffiision of mass is negligible in view of the continuity equation for phase 2. 
Furthermore, if the drift number Nj^ is much smaller than unity, then all of 
the drift terms and the interfacial mechanical energy transfer effect ^ ^ can 
be neglected in the field equations. We may not drop the continuity equation 
for phase 2 fi-om the formulation, however, since it takes into account for the 
thermal non-equilibrium effect as discussed by Zuber and Dougherty (1967) 
in connection with the one-dimensional model. Thus, we have the following 
four field equations for the general homogeneous flow model: 



75, Drift-flux Model 

dp. 

• i l l 

dt 
da^'pl 

dt 
dpmV., 

dt 

+Pm9m + M, 

dpj, DPm 

(13-80) 

dt 
+ ^-{PJA) = -^-(Q + Q^) + Dt 

In this case, the mechanical constitutive equations for the dispersed two-
phase flow can be reduced to the simple forms. Thus, from Eq.(13-50), we 
have 

The turbulent stress is given by Eq.(13-52) as 

(13-81) 

(13-82) 

Furthermore, the constitutive equations for the heat fluxes are given by 

q = -Ky a. (T.-T,) (13-83) 

and 

q' = -KrVcCj'.j2^jD:V ^AT.-T, (13-84) 

where the dispersed phase has been assumed to be in thermal equilibrium 
with interfaces, namely, Eq.(13-62). If the Eckert number 7V̂ ^ and the 
surface number N^ are small, then the capillary force M^ in the mixture 
momentum equation, and the compressibility effect Dp^/Dt , the 
dissipation term ^ ^ , and the surface tension effect ^ ^ in the energy 
equation can be dropped. 
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1.3.4 Density propagation model 

For a number of systems of practical interest, particularly for systems at 
high-reduced pressures without large acoustic interactions, it is reasonable to 
assume that each phase is essentially incompressible. Then we have 

Pj^ = constant. (13-85) 

Furthermore, we consider the case when the drift velocity of phase 2 is 
approximately a function of 0̂ 2 ^̂ Ŷ* We recall that this is a valid 
assumption for many practical flow regimes as it has been discussed in the 
Section 1.3 of Chapter 7 and the Section 1.2 of Chapter 13. Thus we have 

VyM^ (13-86) 

For simplicity, we also assume that the surface number N^ and the Eckert 
number N^^ are small such that 

N^ « 1 and N^^ <<1. (13-87) 

Then we obtain from Eqs.(7-31), (7-38), (13-72) and (13-73) the following 
field equations: 

dp., 

dt 
+ C^-Vp„ 

Pi Pi 

Dv„ 

Dt 
( 

= -vp, + v-(r + r )̂ 
(13-88) 

- V 
a , A Pi 

l - « 2 Pv 
^2j *^2j + Pm9n 
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m 

lot 
= -V-(g + g^)-V' 

«2A P2 
V2j[h-{) 

where C^ and j are given by 

c. = i + ^ ( . , v , ) (13-89) 

and 

, "2(^1 - P 2 ) , , 
(13-90) 

The present density-wave propagation model is best suited for a dispersed 
(or mixed) two-phase flow regime. In this case, phase 2 should be taken as 
the dispersed phase. Then the constitutive equations for the stresses can be 
given by Eqs.(13-50) and (13-54), whereas the heat fluxes are given by 
Eqs.(13-63) and (13-67). 
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ONE-DIMENSIONAL DRIFT-FLUX MODEL 

Two-phase flow always involves some relative motion of one phase with 
respect to the other; therefore, a two-phase-flow problem should be 
formulated in terms of two velocity fields. A general transient two-phase-
flow problem can be formulated by using a two-fluid model or a drift-flux 
model, depending on the degree of the dynamic coupling between the phases. 
In the two-fluid model, each phase is considered separately; hence the model 
is formulated in terms of two sets of conservation equations governing the 
balance of mass, momentum, and energy of each phase. However, an 
introduction of two momentum equations in a formulation, as in the case of 
the two-fluid model, presents considerable difflculties due to mathematical 
complications and uncertainties in specifying interfacial interaction terms 
between two phases (Delhaye, 1968; Vernier and Delhaye, 1968; Boure and 
Reocruex, 1972; Ishii, 1975). Numerical instabilities caused by improper 
choice of interfacial-interaction terms in the phase-momentum equations are 
common. Therefore, careful studies on the interfacial constitutive equations 
are required in the formulation of the two-fluid model. For example, it has 
been suggested (Reocruex, 1974) that the interaction terms should include 
first-order time and spatial derivatives under certain conditions. 

These difficulties associated with a two-fluid model can be significantly 
reduced by formulating two-phase problems in terms of the drift-flux model 
(Zuber, 1967). In this model, the motion of the whole mixture is expressed 
by the mixture-momentum equation and the relative motion between phases 
is taken into account by a kinematic constitutive equation. Therefore, the 
basic concept of the drift-flux model is to consider the mixture as a whole 
rather than as two separated phases. The formulation of the drift-flux model 
based on the mixture balance equations is simpler than the two-fluid model 
based on the separate balance equations for each phase. The most important 
assumption associated with the drift-flux model is that the dynamics of two 
phases can be expressed by the mixture-momentum equation with the 
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kinematic constitutive equation specifying the relative motion between 
phases. The use of the drift-flux model is appropriate when the motions of 
two phases are strongly coupled. 

In the drift-flux model, the velocity fields are expressed in terms of the 
mixture center-of-mass velocity and the drift velocity of the vapor phase, 
which is the vapor velocity with respect to the volume center of the mixture. 
The effects of thermal non-equilibrium are accommodated in the drift-flux 
model by a constitutive equation for phase change that specifies the rate of 
mass transfer per unit volume. Since the rates of mass and momentum 
transfer at the interfaces depend on the structure of interface, these 
constitutive equations for the drift velocity and the vapor generation are 
fimctions of flow regimes (Zuber and Dougherty, 1967; Ishii et al., 1975). 

The drift-flux model is an approximate formulation in comparison with 
the more rigorous two-fluid formulation. However, because of its simplicity 
and applicability to a wide range of two-phase-flow problems of practical 
interest, the drift-flux model is of considerable importance. Particularly, the 
one-dimensional drift-flux model obtained by averaging the local drift-flux 
formulation over the cross-sectional area is usefiil for complicated 
engineering problems involving fluid flow and heat transfer, since field 
equations can be reduced to quasi-one-dimensional forms. By area 
averaging, the information on changes of variables in the direction normal to 
the main flow within a channel is basically lost. Therefore, the transfer of 
momentum and energy between the wall and the fluid should be expressed 
by empirical correlations or by simpUfied models. In this chapter, we 
develop a general one-dimensional formulation of the drift-flux model, and 
discuss various special cases which are important in practical applications. 
For simplicity, mathematical symbols of time-averaging are dropped in the 
formulation in this chapter. The extensive review of this model is given by 
Ishii (1977). 

1.1 Area average of three-dimensional drift-flux model 

The three-dimensional form of the drift-flux model has been obtained by 
using the time or statistical averaging method. The result can be 
summarized as follows: 

The mixture continuity equation from Eq.(13-70) 

^ + ^-{PA) = ^ (14-1) 



14. One-dimensional Drift-flux Model 

The continuity equation for dispersed phase from Eq.(13-71) 

383 

dt 
+ v-(a,PA) = r , -V ' (^dPdPc Y 

\ Pn 
dj (14-2) 

The mixture momentum equation from Eq.(13-72) 

rm rr 

dt 
+ V-(p„v„v„) 

-Vp™+V' r + r^-,-^M^F,.v,, 
(14-3) 

l - « d P; 

The mixture enthalpy-energy equation from Eq.(13-73) 

+ Pm9 

^^<f + ^^'^{K-K)v, 

-t- V + 

Pm 

(^d{pc-Pd)-

(14-4) 

The rational approach to obtain a one-dimensional drift-flux model is to 
integrate the three-dimensional drift-flux model over a cross-sectional area 
and then to introduce proper mean values. A simple area average over the 
cross-sectional area, A, is defined by 

(F)^UjU (14-5) 

and the void-fraction-weighted mean value is given by 

m= 
(«*) 

(14-6) 

In the subsequent analysis, the density of each phase p^ and p^ within any 
cross-sectional area is considered to be uniform, so that p̂ . = Upf.)) • For 
most practical two-phase flow problems, this assumption is vahd since the 
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transverse pressure gradient within a channel is relatively small. The 
detailed analysis without this approximation appears in a reference (Ishii, 
1971). Under the above simplifying assumption, the average mixture 
density is given by 

(Pm) = (a . ) /><i+{l - (« . ) ) / ' c - (14-7) 

The axial component of the weighted mean velocity of phase k is 

((„,» = ( f ^ = M (14-8) 

where the scalar expression of the velocity corresponds to the axial 
component of the vector. Then the mixture velocity is defined by 

- _ ( P A ) _ Mpi (M) + (1 - M)pc (fa» ,.,g. 
[Pm) \Pm) 

and the volumetric flux is given by 

(i) - {h) + (i) - M{M) + (1 - («.))((^e))- (14-10) 

The mean mixture enthalpy also should be weighted by the density; thus, 

r- _ {PM _ MP^ (JK)) + (1 - M)Pc ((̂ c» ,^,^^, 
{Pm) \Pm) 

The appropriate mean drift velocity is defined by 

% - (("-)> - ii) = (1 - ( " - ) ) ( ({" .» - ( (« .»)• 04-12) 

The experimental determination of the drift velocity is possible if the volume 
flow rate of each phase, Q^, and the mean void fi-action (a^) are measured. 
This is because Eq.(14-12) can be transformed into 

'^ = #4-(tt> + fe)) (14-13) 
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where (j^) is given by (j^) = Qj^/A, Furthermore, the present definition 
of the drift velocity can also be used for annular two-phase flows. Under the 
definitions of various velocity fields we obtain several important relations, 
such as 

(14-14) 

F... 

and 

{Pm) 
(14-15) 

In the drift-flux formulation, a problem is solved for (a^) and v^ with a 
given constitutive relation for V^j. Thus, Eq.(14-14) can be used to recover 
a solution for the velocity of each phase after a problem is solved. 

By area-averaging Eqs.(14-l)-(14-4) and using the various mean values, 
we obtain 

Mixture Continuity Equation 

dt dz^^ ""' ™̂  
(14-16) 

Continuity Equation for Dispersed Phase 

^^+^((«>.q = (^.>- | (^^) dt dz 
(14-17) 

Mixture Momentum Equation 

d_ 
dz (Pm) 

(14-18) 
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f I V I I d 

2D^ "^' ' ' dz ( 1 - ( « . » ( P . > ' 

Mixture Enthalpy-energy Equation 

Qw^h 

dt dz 

d_Mp,Pc^^ ^_d_ 

dz 

MpdP, 

d HPm) 
5^ t=f ' dt 

+ ̂ r« + 
M{pc-Pd)Tr 

(Pm) 
'dj dz + K)^ 

(14-19) 

Here, r̂ ^ + r^^ denotes the normal components of the stress tensor in the 
axial direction and Ah^^ is the enthalpy difference between phases; thus, 
Z\/î ^ =/^ft^^\-/^/i^^\ . The covariance terms represent the difference 
between the average of a product and the product of the average of two 
variables such that GOV{a,p^^,v^) = (a.p,^, [v, - {{v,))))^ If the profile 
of either ipj^ or Vj^ is flat, then the covariance term reduces to zero. The 
term represented by f^{p^)v^\v^\/{2D) in Eq.(14-18) is the two-phase 
frictional pressure drop. We noie here that the effects of the mass, 
momentum, and energy diffusion associated with the relative motion 
between phases appear explicitly in the drift-flux formulation, since the 
convective terms on the left-hand side of the field equations are expressed in 
terms of the mixture velocity. These effects of diffusions in the present 
formulation are expressed in terms of the drift velocity of the dispersed 
phase V^j. This may be formulated in a functional form as 

^dj = V,j{{a,),{p^),g^,v^, etc.). (14-20) 

To take into account the mass transfer across the interfaces, a constitutive 
equation for (^F^) should also be given. In a functional form, this phase-
change constitutive equation may be written as 
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(̂ .) = (r.)L),(p^),^,^,etc.] (14-21) 

The above formulation can be extended to non-dispersed two-phase flows, 
such as an annular flow, provided a proper constitutive relation for a drift 
velocity of one of the phases is given. 

1.2 One-dimensional drift velocity 

1.2.1 Dispersed two-phase flow 

To obtain a kinematic constitutive equation for the one-dimensional drift-
flux model, we must average the local drift velocity over the channel cross 
section. The constitutive relation for the local drift velocity V^^ in a 
confined channel was developed in the Section 1.2 of Chapter 13. Now we 
relate this to the mean drift velocity V^. defined by Eq.(14-12). 

From Eqs.(14-6) and (14-12), 

% = i^^^-^ = {{V,))HC.-m (14-22) 

where 

( ( F , ) ) . < g l (14-23, 

and 

^ 0 ^ 7 ^ - (14-24) 

The second term on the right-hand side of Eq.( 14-22) is a covariance 
between the concentration profile and the volumetric flux profile; thus it can 
also be expressed as COV[aj)Ua^). The factor CQ, which has been used 
for bubbly or slug flows by several authors (Zuber and Findlay, 1965; 
Nicklin et al., 1962; Neal, 1963) is known as a distribution parameter. The 
inverse of this parameter was also used in the early work of Bankoff (1960). 
Physically, this effect arises fi'om the fact that the dispersed phase is locally 
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transported with the drift velocity V^^ with respect to local volumetric flux j 
and not to the average volumetric flux ( j ) . For example, if the dispersed 
phase is more concentrated in the higher-flux region, then the mean transport 
of the dispersed phase is promoted by higher local j . 

The value of C^ can be determined from assumed profiles of the void 
fraction a^ and total volumetric flux j (Zuber and Findlay, 1965), or from 
experimental data (Zuber et al., 1967). By assuming power-law profiles in a 
pipe for j and a^, we have 

= 1 
r 

Jo l ^ J 
( \^ 

r 

(14-25) 

[K] 

where j ^ , a^^, a^^, r, and R^ are, respectively, the value of j and a at 
the center, the void fraction at the wall, radial distance, and the radius of a 
pipe. By substituting these profiles into the definition of C^ given by 
Eq.(14-24), we obtain 

C, = \ + 
m + n + 2 

a dW 

M) 
(14-26) 

The distribution parameter based on the assumed profiles above is fiirther 
discussed in a reference (Zuber et al, 1967). 

Now Eq.(14-22) can be transformed to 

{M) = ^) = cM + {{v,)) (14-27) 

where Uv^)) and {j) are easily obtainable parameters in experiments, 
particularly under an adiabatic condition. Therefore, this equation suggests a 
plot of the mean velocity Uv^)) versus the average volumetric flux (jf). If 
the concentration profile is imiiorm across the channel, then the value of the 
distribution parameter is equal to unity. In addition, if the effect of the local 
drift (Iv^)) is negligibly small, then the flow becomes essentially 
homogeneous. In this case, the relation between the mean velocity and flux 
reduces to a straight line through the origin at an angle of 45°. The deviation 
of the experimental data from this homogeneous flow line shows the 
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magnitude of the drift of the dispersed phase with respect to the volume 
center of the mixture. 

An important characteristic of such a plot is that, for two-phase flow 
regimes with fiiUy developed void and velocity profiles, the data points 
cluster around a straight line (see Figs.14-1-14-3). This trend is particularly 
pronounced when the local drift velocity is constant or negligibly small. 
Hence, for a given flow regime, the value of the distribution parameter C^ 
may be obtained from the slope of these lines, whereas the intercept of this 
line with the mean velocity axis can be interpreted as the weighed mean 
local drift velocity, ((V^^)). The extensive study by Zuber et al. (1967) 
shows that C^ depenas on pressure, channel geometry, and perhaps flow 
rate. An important effect of subcooled boiling and developing void profile 
on the distribution parameter has also been noted by Hancox and NicoU 
(1972). Here, a simple correlation for the distribution parameter in bubbly-
flow regime is presented based on study by Ishii (1977). First, by 
considering a fixUy developed bubbly flow, we assumed that C^ depends on 
the density ratio p ip^ and on the Reynolds number based on liquid 
properties, GD//JL^ , where G , D , and /i^ are the total mass flow rate, 
hydraulic diameter, and the viscosity of the liquid, respectively. Hence, 

^ 0 — ^ 0 
Pp GD 

Pf t^f j 
(14-28) 

1 

I-
O 

J 
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Total Volumetric Flux, </> [m/s] 

Figure 14-1, Fully developed air-water flow data (Ishii, 1977) 
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Figure 14-2. Experimental data for cocurrent upflow and cocurrent downflow of steam-water 
system (Ishii, 1977) 
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Figure 14-3. Experimental data for cocurrent upflow and cocurrent downflow of heated 
Santowax-R system (Ishii, 1977) 
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A single-phase turbulent-flow profile and the ratio of the maximum 
velocity to mean velocity give a theoretical limiting value of CQ at a^ -^ 0 
and PgiPf -^ 0, since in this case all the bubbles should be concentrated at 
the central region. Thus from the experimental data of Nukuradse (1932) for 
a round tube, which gives the ratio of the maximum to mean velocity, we 
have 

^oo = l i n i T ^ = N / T = 1-393 - 0.0155 I n H 
(«d)(i> ("d)(i) i /̂ / J 

(14-29) 

as Q;̂  ̂  0 and Pglpf -^ 0 . Furthermore, as the density ratio approaches 
unity, the distribution parameter CQ should also become unity. Thus, 

Co -^ 1 (14-30) 

as p /p, ^ I. Based on these limits and various experimental data in a fully 

developed flow, the distribution parameter can be given approximately by 

Co = c ^ - ( c ^ - i ) ^ / p ; 7 ^ (14-31) 

where the density group scales the inertia effects of each phase in a 
transverse void distribution. Physically, Eq.(14-31) models the tendency of 
the lighter phase to migrate into a higher-velocity region, thus resulting in a 
higher void concentration in the central region (Bankoff, 1960). For a 
laminar flow, C^ is 2, but, due to the large velocity gradient, CQ is very 
sensitive to (a^) at low void fractions. 

Over a wide range of Reynolds number, GD/fjtj^ , Eq.(14-29) can be 
approximated by C^ = 1.2 for a flow in a round tube. Furthermore, for a 
rectangular channel, the experimental data show this value to be 
approximately 1.35. Thus, for a fully developed turbulent bubbly flow, 

Co = 
1.2 — 0.2 Ipg/Pf' round tube 

^ ' (14-32) 
1.35 — 0.35 Ipg/pf' rectangular channel. 

Figures 14-4 and 14-5 compare the above correlation with various 
experimental data. Each point in the figures represents anywhere from five 
to 150 data points. For example, the original experimental data of Smissaert 
(1963), shown in Fig.14-1, are presented by a single plot in Fig. 14-4. Each 
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Figure 14-4. Distribution parameter for fully developed flow in a round tube (Ishii, 1977) 

point in Fig. 14-1 can be used to obtain a corresponding value for C^ by 
using the existing correlation for the mean local drift velocity llVdj)) • 
However, in view of the strong linear relation between the mean velocity of 
the dispersed phase and the total flux, the average value of CQ obtained by 
linear fitting has been used in Figs. 14-4 and 14-5. 

In the velocity-flux plane (see Figs. 14-2 and 14-3), three operational 
modes can be easily identified. In the first quadrant, the flow is basically 
cocurrent upward; therefore both the liquid and vapor phases flow in an 
upward direction. In the second quadrant, the vapor phase is moving 
upward; however, there is a net downward flow of mixture. Consequently, 
the flow is countercurrent. The cocurrent downflow operation should appear 
in the third quadrant of the velocity-flux plane, as shown in Figs. 14-2 and 
14-3. These data indicate that the basic characteristic described by Eq.(14-
27) is valid for both cocurrent up and down flows with an identical value for 
the distribution parameter, CQ . This fact demonstrates the usefiihiess of 
correlating the drift velocity in terms of the mean local drift velocity ((V^)) 
and CQ . 

In two-phase systems with heat addition, the change of void profiles fi'om 
concave to convex can occur. The concave void-fi:action profile is caused by 
the wall nucleation and delayed transverse migration of bubbles toward the 
center of a chaimel. Under these conditions, most of the bubbles are initially 
located near the nucleating wall, although even in adiabatic flow, small 
bubbles tend to accumulate near the wall region at low void fi-action. The 
concave profile is particularly pronounced in the subcooled boiling regime. 
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Figure 14-5. Distribution parameter for fully developed flow in a rectangular channel (Ishii, 
1977) 

because here only the wall-boundary layer is heated above the saturation 
temperature and the core Hquid is subcooled. This temperature profile will 
induce collapses of migrating bubbles in the core region and resultant latent 
heat transport from the wall to the subcooled liquid. A similar concave 
profile can also be obtained by injecting gas into flowing liquid through a 
porous tube wall (Rose and Griffith, 1965). 

In the region in which voids are still concentrated close to the wall, the 
mean velocity of vapor can be less than the mean velocity of hquid because 
the bulk of liquid moves with the high core velocity. However, as more and 
more vapor is generated along the channel, the void-fraction profile changes 
from concave to convex and becomes fully developed. For a flow with 
generation of void at the wall due to either nucleation or gas injection, the 
distribution parameter C^ should have a near-zero value at the beginning of 
the two-phase flow region. This can be also seen from the definition of C^ 
in Eq.(14-24). Hence, we have 

lim Cn = lim 
(a,)->0 ^ 

= 0 for r^ > 0. (14-33) 

With the increase in the cross-sectional mean void fraction, the peak of the 
local void fraction moves from the near-wall region to the central region. 
This will lead to the increase in the value of CQ as the void profile develops. 
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Figure 14-6. Distribution parameter ia developing flow due to boiling (Data for the 
rectangular duct have been modified by a factor of 1.2/1.35 to obtain corresponding data for a 

round tube.) (Ishii, 1977) 

In view of the basic characteristic described above and various 
experimental data (Zuber et al., 1967; Maurer, 1956; Pierre, 1965; 
Marchaterre, 1956) the following simple correlation is proposed (Ishii, 1977) 

a c^-{G^-^)4p;ih l - e 
^18(a,) 

(14-34) 

This expression indicates the significance of the developing void profile in 
the region given by 0 < (a^) < 0.25; beyond this region, the value of CQ 
approaches rapidly to that for a fully developed flow (see Fig. 14-6). Hence, 
for Fg > 0, we obtain 

(l.2 - 0.2^/p;7;57)(l-e-''<"^)): round tube (14-35) 

.35 - 035^/p;/p7)(l-e-''<"^>): rectangular channel. 

For most droplet or particulate flows in the turbulent regime, the 
volumetric flux profile is quite flat due to the turbulent mixing and particle 
slips near the wall, which increases the volumetric flux. The concentration 
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of dispersed phase also tends to be uniform, except for weak peaking near 
the core of the flow. Because of these profiles for j and a^, the value of 
the distribution parameter CQ is expected to be close to unity 
(l .0 < CQ < 1.1) . Thus, by assuming that the covariance terms are 
negligibly small for droplet or particulate flows, we have 

t ^ = ((^*)) (14-36) 

in which case the local slip becomes important. 
The calculation of iiV^^) based on the local constitutive equations is the 

integral transformation, Eq.(14-23); thus, it will require additional 
information on the void profile (Ishii, 1976). Since this profile is not known 
in general, we make the following simplifying approximations. The average 
drift velocity ((F^J)) due to the local slip can be predicted by the same 
expression as tne local constitutive relations given in a reference (Ishii, 
1976), provided the local void fraction a^ and the non-dimensional 
difference of the stress gradient are replaced by average values. These 
approximations are good for flows with a relatively flat void-firaction profile; 
also, they can be considered acceptable from the overall simplicity of the 
one-dimensional model. 

For a fully developed vertical flow, the stress distribution in the fluid and 
in the dispersed phase should be similar; thus, the effect of shear gradient on 
the mean local drift velocity can be neglected. Under these conditions we 
obtain the following results. 

Undistorted-particle Regime 

Pc'd XH'ml 

X-
V'/ '( l + V) Pe-Prf (14-37) 

1 + ^ (t>('-<-»"^ 
6/7 Ap 

where ^ (r;) = 0.55 (l + 0.08r;^)' - 1 
.3x4/7 10-75 

for r;<34.65 and ^'(r;) =17.67 

for rl > 34.65. The limiting case of the undistorted-particle regime is the 
Stokes regime in which the mean drift velocity reduces to 
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V̂  = (C.-l)OH^r/^(l-K))=^^i-A (14-38) 

Distorted-particle Regime (1.75 <n< 2.25) 

V,j = {C,-l){j) + .f2 agAp 
N,l/4 

I Pc 
( ! - ( « . ) ) 

," Pc - Pd 

Ap 

Here the value of n depends on the viscosities as 

n = 1.75 

n = 2 

n = lis 

/̂ d « /̂ c 

f^d » /̂ c 

Chum-turbulent-flow Regime 

( A \^l* 
\agAp^ V,, = {C,-\){j) + ^ Pd 

Ap 

Here the mean mixture viscosity (Ishii, 1976) is given by 

I \ ( I \\-2.5Q:d;„(/Xd+0.4/Zc)/(Md+Mc' 

a dm 

(14-39) 

(14-40) 

(14-41) 

(14-42) 

The value of maximum packing, a^^ = 0.62, is recommended for soUd 
particle-fluid systems, although it can range from 0.5 to 0.74. However, for 
a bubbly flow, the theoretical value of a^^ can be much higher. If we 
consider the standard range of interest of void fraction in bubbly flow, a^^ 
may be approximated by a^^ = 1. Hence, for a bubbly flow, the mixture 
viscosity becomes 

(14-43) 

However, for a particulate flow with a low particle concentration, namely, 
(a^) « 1, (//„) can be approximated by 
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^ = ( l - ( - . ) r - (14-44) 

In a horizontal flow with a complete suspension of the dispersed phase, 
the transverse mixing, which keeps the particles suspended, can significantly 
influence the stress gradient of each phase; thus, the stress gradient effect 
may not be neglected. However, in view of the present state of the art, the 
assumption //7^A\ ^ 0 may be used as a first-order approximation, 

particularly in high-flux flows. As explained at the end of this chapter, the 
actual local drift velocity depends also upon the pressure gradient due to 
friction and, therefore, in strict sense it is not zero even in horizontal flow. 

For high-flux flows, the effect of the local drift ((V^ )) on the mean drift 
velocity is small in comparison with the covariance term (CQ — l) (j) . 
Thus, by neglecting the former, we have 

y- ^ ( < ^ 0 - l ) ( P ^ ) ^ .14 45. 

*• ( p „ ) - ( C ^ O - l ) ( « . ) ( / ^ e - P . ) ' ^ ^ 

For bubbly flows, the above equation imposes a condition on applicable 
void-fraction ranges; thus, we should have (p^) > [C^ -~^{o^d){Pd ~ Pc)-
Here, a simple criterion for the boundary between the high- and low-flux 
flow can be obtained by taking the ratio of the total volumetric flux and the 
terminal velocity. If this ratio is more than 10, the flow can be considered a 
high-flux flow. 

The other limiting case of the dispersed two-phase flow in a confined 
channel is slug flow. When the volume of a bubble is very large, the shape 
of the bubble is significantly deformed to fit the channel geometry. The 
diameters of the bubbles become approximately that of the pipe with a thin 
liquid film separating the bubbles from the wall. The bubbles have the bullet 
form with a cap-shaped nose. The motion of these bubbles in relatively 
inviscid fluids can be studied by using a potential flow analysis around a 
sphere (Dumitrescu, 1943), and the result is shown to agree with 
experimental data. Thus, 

K = 0.2 O H 035 gDA,^''' (14-46) 

which was originally proposed by Nicklin et al. (1962) and Neal (1963). 
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1,2.2 Annular two-phase flow 

In annular two-phase flow, the relative motions between phases are 
governed by the interfacial geometry, the body-force field, and the 
interfacial momentum transfer. The constitutive equation for the vapor-drift 
velocity in annular two-phase flow has been developed by taking into 
account those macroscopic effects of the structured two-phase flows (Ishii et 
al., 1976). Assuming steady-state adiabatic two-phase annular flow with 
constant single-phase properties, we have the following one-dimensional 
momentum equations for each phase. 

{dp„^ 

dz 
+ P,9. g^z 

T. .P. 

i-M 
(14-47) 

and 

(dp„ 
[ dz 

+ Pf9z 
^wf-^wf T.P, 

{l-{a,)]A (l-(a,))^ 
(14-48) 

where r . , r^^, i^, and P^j are the interfacial shear, wall shear, interfacial 
wetted perimeter, and wall wetted perimeter, respectively. The hydraulic 
diameter and the ratio of wetted perimeters are defined by D = 4A/P , and 
^ = PijP^f • By assuming that the fihn thickness 8 is small compared with 
D, we have Ad ID ^ 1 - (a \ . Furethermore, for an annular flow in a pipe, 
^ reduces to Ja~^ . 

The wall shear can be expressed through the friction factor with a 

gravity-correction term by r^/ =/,//>/((^/))|((^/))|/2 - Z\p5//3, where 

/̂ ^ can be given by the standard fiiction-factor correlation: /̂ ^ = 16/Re^ 
for laminar film flows and f, = 0.0791 J?e7̂ *̂ ^ for turbulent flows. Here the 
liquid-fihn Reynolds number is given by Re. = pAlj.\\DiJir. Similarly, 

the interfacial shear can be expressed as r. = f.p^^\v~l2 with the 

interfacial fiiction factor given by /. = O.OOsfl+ 7 5 ( l - ( a ))] for rough 
wavy films (WaUis, 1969). ' ^ \ ^ n 

By definition, the vapor-drift velocity is related to v^ , namely, 
"sT. ={\-(a \ ) ^ . Hence, by eliminating the pressure gradient fi-om the 
momentum equations, we obtain for a laminar film 
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V„, = ± 1 ^ t^fjjf) , ^P9.D(^'(%)J 
D 48 

1/2 

(14-49) 

and for a turbulent film 

|K>(i-K>r^ 
v, = ± 

pJii 

X 
0-005p,(i/>|(i/> 1 

D[^-{a,)) 3 
+ T^P^. 

1/2 (14-50) 

Here, the negative root is taken when the term within the absolute signs 
becomes negative. The drift velocity in the form expressed by Eqs.(14-49) 
and (14-50) is convenient for use in analyzing steady-state adiabatic or 
thermal-equilibrium flows since, in these cases, the value of ljj\ can be 
easily obtained. 

In a general drift-flux-model formulation, V̂ . should be expressed in 
terms of the mixture velocity ^ rather than lj^\, as ^ is the velocity 
used in the formulation. From the definition, we have 

te)=(>-K>K-%^5r. (14-51) 

By substituting Eq.( 14-51) into Eq.( 14-49), we obtain for a laminar fihn 

v. = ± {pr.)m 
-1 + 

_ Apg,D'[\-{a;j)' 
V^ + m ' 

48/i; 

1/2 (14-52) 

which is vaUd for the laminar range given by 
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{%)P9 
— 93 

(14-53) 

Here the laminar turbulent-transition volumetric flow is defined by /j,\ 
= 3200fiJpfD. The negative root of Eq.(14-52) applies when the terrn 
within the absolute signs becomes negative. It is easy to show that, for I^ 

< (l - ("„))(Pm)^/((" )p ) ' *̂® ̂ ° ^ ^̂  cocurrent upward, whereas, for 

V^ larger than the above limit, the liquid flow is downward. The solution 
for the case of turbulent film flow is somewhat more complicated. For 
convenience, let us introduce the following parameters. 

a = 
MPO 

0.005(a^)p,(l-(a^)) 

^^ MP9 

iPm)(^'M) 

omspf 

Then, for upward liquid flow, we have 

(14-54) 

V^ = 
(a-6^) 

if a - 6' 

Vm +C 

2blL 
if a - 6' 

0 

0 

(14-55) 

which applies under the condition ^r > Jcb^/a • However, in the transition 

regime given by -Vc <v^< jcb^/a , where the liquid film flow is 

downward with upward interfacial shear forces on the film, the vapor-drift 
velocity becomes 
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1/2 

a + 6' 

In the range of v^ given by tT < — Vc , 

(14-56) 

K. 
-ft'y^ fl'y^ (a-i^) . ^ / 1/2 

a-6^ 
(14-57) 

which applies to the cocurrent downward flow. 
The above solution can be applied only if the following turbulent-flow 

criterion is satisfied. 

y- < [^-{%)){PraW - {Pm){jf}, 

or 

K. > 
(^-M){Pn.K + {Pm){3f)^ 

(14-58) 

{%)' 

These results do not have a very simple form for a turbulent film. However, 
if the absolute value of the mixture velocity is large, so that the flow is 
essentially cocurrent and the gravity effect is small, then the turbulent 
solution can be approximated by the simple form 

v,= 
(^-Mh 

MPS 

(Pm) 
+ 

epJl + 75(l-(a,)) 

K)^/ 

1/2 • (14-59) 

Equation (14-59) for the drift velocity can be transformed to obtain the slip 
ratio v/Vf under the simplifying assumption that the average liquid 
velocity is much smaller than the vapor velocity. Then we have 
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^ / ^ > 
1 + 7 5 ( 1 - ( a , ) ) 

1/2 

(14-60) 

for an annular flow in a pipe for which ^ = Ma). The above expression 
for slip ratio is similar to that obtained by Fauske (1962), namely 

Uv ))/({'^f)) = IPf/P 9 which has no dependence on the void fraction. 

The factor that takes the void fraction into account in Eq.(14-60) varies 
roughly from 0.24 to 1 for the range 0.8 < (o;^) < 1. Therefore, for a 
turbulent film, the Fauske correlation should give reasonably accurate results 
at high void fractions. 

The drift-velocity correlation for the annular flow has been expressed in 
terms of the mixture velocity, since v^ is the basic variable in the 
formulation of the general drift-flux model. However, it is also interesting 
and important to resolve the expression for V̂ . in terms of the total 
volumetric flux (j), since (j) was the variable used to correlate F .̂ in 
dispersed two-phase flow regimes. 

By considering the turbulent film-flow regime and using the definition 
/j\ = ll~/a )]{j) -{a \ y~ , we can resolve Eq.(14-50) for the mean drift 

velocity TA. The result does not have a simple form; however, for most 
practical cases, it can be approximated by a linear fimction of (j). 

V ĉ  
gj — 

i-K) 

k) + 
1 +15(1-(a^))p^ 

/̂W pf 

1/2 (14-61) 

X U) + 
\^P9.D(l-M) 

omspf 

This expression may be further simplified for Pg/Pj « l as 

OH 
\^P9.D(\-{a^)) 

0.015/9^ 
(14-62) 
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From the comparison of Eq.(14-62) to Eq.(14-22), the apparent distribution 
parameter for annular flow becomes 

(14-63) 

This indicates that the apparent (7Q in annular flow should be close to unity. 

1.2.3 Annular mist flow 

As the gas velocity increases in the annular flow, the entrainment of 
liquid from the fibn to the gas-core flow takes place. Based on criteria 
developed for an onset of entrainment (Ishii and Grohnes, 1975), the critical 
gas velocity for a rough turbulent film flow can be given by 

where N^^ = fx^ 

0.1146 

1/2 
p^a^JaJgAp 

for N^^ < 

for N^f > 

15 

15 

(14-64) 

However, in general, the vapor flux is 

much larger than the liquid flux in the annular-mist-flow regime. Then, for a 
weakly viscous fluid such as water or sodium, the above correlation may be 
replaced by 

a)i-i(i)i> 
P, 

yv^-0.2 
^ ^ M / • 

(14-65) 

If Inequality (14-65) is satisfied, then the droplet entrainment into the gas-
core flow should be considered; otherwise the correlation for annular flow, 
Eq.( 14-62) can be applied. 

The correlation for V̂ . in annular mist flow can be readily developed by 
combining the previous results for a dispersed flow and pure annular flow. 
The area fraction of liquid entrained in the gas core from total liquid area at 
any cross section is denoted by E^, and the cross-sectional-area-averaged 
void fraction by la^ \. Then the film-area fraction is given by 
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_ liquid-film cross-sectional area 

total cross-sectional area (14-66) 

(1-(«,))(!-£,) 

and the mean liquid-droplet fraction in the gas core alone is given by 

cross-sectional area of drops 
cy — 

"̂""̂  cross-sectional area of core 

(i-K))^^ (14-67) 

1-(1-K))(1-^J' 

Consequently, a^^^^ should be used in the annular-flow correlation, Eq.(14-
62), to obtain the relative motion between the core and the film, whereas 
^drop should be used in the dispersed-flow correlation to obtain a slip 
between droplets and gas-core flow. 

By denoting the gas-core velocity, liquid-drop velocity, and fihn velocity 
by Vg^, Vj^, and v^, respectively, the total volumetric flux is given by 

( i ) = [^90 (l - "^drov ) + (^drov^fc \ ^core + % (l " ^core ) ' (14-68) 

Furthermore, by denoting the total volumetric flux in the core based on the 
core area by jf̂ ^̂ ,̂ we have from the annular correlation, Eq.( 14-62), 

i.e-U) = \ \Z\ J (14-69) 

X 
^.^^ Apg^D(l-{a^)){l-E,) 

O.OlSp^ 

From the dispersed-flow correlations, it can be shown that, for a distorted-
droplet or chiim-droplet flow regime, the drift velocity can be given 
approximately by 
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( ^ ) ) = V2 
(a , )+ E, ( ! -(«,)) • 

405 

(14-70) 

Here we have used an approximation based on [l -- /« \] < < 1. However, 
depending on the core-gas velocity, the dispersed-flow drift-velocity 
correlation for a much smaller particle should be used. When the droplets 
are generated by the entrainment of liquid film, the following approximate 
form is suggested for an undistorted-particle regime outside the Stokes 
regime (Ishii, 1976). 

( ( % ) ) - i o . a = 0 . 5 r , ioM" 
t^aP, S^S 

(14-71) 

where the particle radius may be approximated from the Weber-number 
criterion at the shearing-off wave crests. Thus, 

6(7 1 

pg U) 
•\2 • 

(14-72) 

The above relations apply only when the total volumetric flux is 
sufficiently high to induce fragmentations of the wave crests. Hence, 
Eq.( 14-71) should be used when 

|0-)|> 1.456 
agAp /^P 

P«^ ̂ (^/g^p 

1/12 

(14-73) 

By combining the above results, we obtain 

v,= 

X OH, 
\Apg,D(l-(a^)){l~E,) 

omspf 

(14-74) 
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X i 

V2 

or 

3a 

ogAp 
a/4 

[QM" 

i^aPa 

1/3 

•\2 (i) 

where the latter expression applies under the condition given by Eq.(14-73). 
If the radius of the particle is very small, then the essential contribution to 
the relative motion between phases comes from the first term of Eq.(14-74), 
and the core flow may be considered as a homogeneous dispersed flow. In 
such a case, Eq.(14-74) reduces to 

Jl-(c.))(l-fi) 
M+'^.jp^ 

X OH 
\Ap9,D(l-{a^)){l-E,) 

omsp^ 

(14-75) 

This expression shows a linear decrease of drift velocity in terms of 
entrained liquid fraction, which can be observed in various experimental data 
(Alia et al, 1965; Cravarolo et al., 1964). 

1.3 Covariance of convective flux 

In the one-dimensional drift-flux model, the momentum and energy 
convective fluxes have been divided into three terms: the mixture convective 
flux; the drift convective flux; and the covariance term, as can be seen from 
Eqs.(14-18) and (14-19). In other words, the convective flux of quantity ^ 
for the mixture can be written as 

dz 

dz 

=1 

lMpdp< 
u=i 

d 

[ (Pm) 

dz 
\rm im m) 

+ j-^i2C0V{a,p,^,v,) 
(14-76) 

k=i 
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where A^p,^ ^ {{,/;,)) - ((t/̂ ,)>and GOV{a,p,^|J,v,) ^ (a.p,^, (v, - {{v,)))). 

Therefore, for the momentum flux, we have ^^ = Vj^ and Z\̂ ^̂  
= V^J\\ — ioLg)]. For the enthalpy flux, we have 'ip^ = \ and Z\'0̂ ^ 

^ \{^d)) ~ \{K))' which is equivalent to the latent heat if phases are in 
thermal equilibrium. 

To close the set of the governing equations, we must specify relations for 
these covariance terms. This can be done by introducing distribution 
parameters for the momentum and energy fluxes. If we define a distribution 
parameter for a flux as 

C # 
{o^kA%) 

Mm){M) 
(14-77) 

the covariance term becomes 

COV{p;,a^tp,v,) = p, (a^ip^ [v,^ - {M))) 
(14-78) 

For the momentum flux, the distribution parameter is defined by 

^vk = 

(«.>((".» 
(14-79) 

Physically, Ĉ ^ represents the effect of the void and momentum-flux 
profiles on the cross-sectional-area-averaged momentum flux of A: phase. A 
quantitative study of Ĉ ^ can be made by considering a symmetric flow in a 
circular duct and introducing the power-law expressions in parallel with the 
analysis of CQ in the Section 1.2.1 of Chapter 14. Hence we postulate that 

r 

i?., 
(14-80) 

and 

= 1 
( \"̂  r 

^A;0 V^^/ 
(14-81) 
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where the subscripts 0 and w refer to the value at the centerline and at the 
wall of a tube. 

For simplicity, it is assumed that the void and velocity profiles are 
similar; namely, n = m. This assumption is widely used in mass-transfer 
problems. It may also be reasonable for fully developed two-phase flows if 
one considers that the vapor flux and, hence, the void concentration greatly 
influence the velocity distributions. Under this assumption, it can be shown 
that 

^vk — 

n + 2 

n + l 
O^k.,, + ^OLu 

3n 

3n + 2j 
Ol^h,n + ^OLu 

n 
""kw 

n + 2) 

Oth,. + ^OLu 
n 

\2 

""kw 
n + lj 

(14-82) 

where Aa^ = a kO a kw • 

For a dispersed vapor phase, a < < Z \ a ; hence. 
gw 

^ 3n + 3 
(14-83) 

However, from Eq.( 14-26), the volumetric-flux-distribution parameter CQ 
becomes 

C,= n + 2 
n + \' 

(14-84) 

Therefore, in the standard range of n, the parameter C„̂  can be given 
approximately by 

C,, c. l + 0 .5(Co-l) . (14-85) 

For a liquid phase in a vapor-dispersed-flow regime, aj^ ~\ and 
a^Q < 1. Then fi'om Eq.(14-82) it can be shown that, for a standard range 
of a^Q in the bubbly- and chum-flow regimes, C^^ can be approximated by 

Q = l + 1.5((7o-l). (14-86) 

For an annular flow, the momentum covariance term can also be 
calculated by using the standard velocity profiles for the vapor and liquid 
flows. Thus we obtain 
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C, vk 

1.02 (turbulent flow) 

1.33 (laminar flow). 
(14-87) 

The above result for the individual phases can now be used to study the 
mixture covariance term. By defining the mixture-momentum-distribution 
parameter as 

{Pm) 

the covariance term becomes 

(14-88) 

ZCOV(a,p,vl) 

= {c^-i) 

2pcPdM(^ r \w-v~ 
\Pm) 

(14-89) 

In view of the above analysis, the order of magnitude of (C^̂  — C^^) is the 
same as that of {C^ — l) or less; therefore, the last term on the right-hand 
side of Eq.(14-89) can be neglected for almost all cases. This term may be 
important only in the near critical regime and ifv^'^V^j, However, in 
general, V^^ becomes insignificant as the density ratio approaches unity. 
Hence, under the above conditions, the convective term itself becomes 
relatively small. Consequently, even for this case, the term may be dropped. 
Thus we have 

ZCOV{a,p,vl) 
k=l 

(14-90) 

The value of C^ can be evaluated from Eq.(14-88) by using Eqs.(14-
85) and (14-86) or Eq.(14-87). In the bubbly- and chum-flow regimes of 
practical importance, C^ can be given approximately by 
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C ^ ^ l + 1.5(Co-l). (14-91) 

However, in the near critical regime, C^ depends also on the void fraction 
and the density ratio. Furthermore, at very low void fractions in a fully 
developed flow or in a developing flow, the value of C^ should be reduced 
to the one for the single-phase flow given by Eq.( 14-87). The effect of the 
development of the void profile into that given by the power law may be 
taken into account by a similar void-fraction correction term used in the 
correlation for C^ in Eq.( 14-34). By recalling that for a turbulent flow 
C^ =\,0 at a^ —> 0, we obtain for a round tube 

a vm ^^^ 1 +0.3(1-^/p;7p7)(l-e-''<"^>) (14-92) 

which may be used both for a fully developed flow and for a developing 
flow. 

For a turbulent-annular-flow regime, we have, from Eqs.(14-87) and (14-
88), C^ = 1.02 . For all practical purposes, this may be fiirther 
approximated by 

C^='^- (14-93) 

In reality, the transition from the value given by Eq.(14-92) to that given by 
Eq.(14-93) is a gradual one through the chum-annular (or slug-annular)-flow 
regime in which characteristics of chum and annular flows alternate. If a 
single correlation for C^ is preferred, regardless of the flow-regime 
transitions, then Eq.(14-92) may be safely extrapolated into higher-void-
fraction regime by a simple modification given by 

C7^ - 1 + 0.3(1 -^p;ip^)[l-e-^«<"^)H"^))}. (14-94) 

A similar analysis can be carried out for the enthalpy-covariance term by 
assuming the void, velocity, and enthalpy profiles. In general. 

Y.cov{a,p,\v,) = [c,^^\){p:)hjr„ 
fc=l 

^ ^ | - K - l ) ( ( / . , » + (C„-l)((ft,»]V^ 
\Pml 

(14-95) 
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where 

C^^{»Av,)/(M{i^)){{v,))). 

For a thermal-equilibrium flow, /î  = hg^ and /î  = h^^, where /î ^ and 
hf^ are the saturation enthalpies of vapor and liquid. Since, in this case, the 
enthalpy profile is completely that for each phase, the distribution 
parameters become unity; namely, C^^^g = Cf^j^ = Cf^^ = 1 . It is also 
evident that if one of the phases is in the saturated condition, then C^^j^ for 
that phase becomes unity. 

In the single-phase region, the distribution parameter can be calculated 
from the assumed profiles for the velocity and enthalpy. Using the standard 

power-law profiiles for a turbulent flow, namely, V/VQ = iy/Rj] ^^^ 

(^ - ^^Vl'̂ o -K) = [y/^w) ' "̂̂ ^̂ ^ y ^^ ^̂® distance from the wall, we 
can show that the covariance term is negligibly small both for developing 
and fiiUy developed flows. 

From the above two limiting cases, we can conclude that the enthalpy 
covariant term may become important only in highly non-equilibrium flow. 
Even in that case, the energy associated with phase change is considerably 
larger than that associated with changes in transverse temperature profiles. 
Therefore, except for highly transient cases, the enthalpy covariance can be 
neglected. Hence, 

-^i2COV{a,p,Kv,)^0 (14-97) 

1.4 One-dimensional drift-flux correlations for various 
flow conditions 

In this section, constitutive equations of the one-dimensional drift-flux 
model for various flow conditions, which are of practically importance, are 
summarized. 



412 Chapter 14 

1.4.1 Constitutive equations for upward bubbly flow 

The constitutive equation of the distribution parameter of upward 
adiabatic bubbly flow in a round tube, Eq.(14-32), has been improved by 
considering the bubble lateral migration characteristics as (Hibiki and Ishii, 
2002b; 2003b) 

Co=2.0e 
-0.000584i?e 

/ . -0.000584i?e. 

x ( l - e ^ 

^^+1.2(l-e-''<'^^-V'^ 

^ ^ -0.000584/^6/ 

2.0e ^ (14-98) 

- ( 
+1.2 l - e -22{Ds,:)lD\l^_^-0.m5URej 

the bubble d 
The bubble diameter D^^ in Eq.(14-where Re^ is defined by 

98) can be predicted by the bubble diameter correlation (Hibiki and Ishii, 
2002a). As can be seen from Eq.(14-98), as the liquid Rejniolds number 
increases, the distribution parameter predicted by Eq.(14-98) asymptotically 
approaches Eq.(14-32). The constitutive equation of the drift-velocity in 
gas-liquid bubbly flow is given by 

xl/4 

m=M^\ ('-(".r (̂ «''/)- ĉ '') 
Pf 

1.4.2 Constitutive equations for upward adiabatic annulus and 
internally heated annulus 

The applicability of Eqs.(14-98) and (14-99) has been confirmed by 
upward air-water turbulent bubbly flow data taken in a vertical concentric 
annulus at atmospheric pressure (Hibiki et al, 2003b). The constitutive 
equation of the distribution parameter of boiling bubbly flow in an internally 
heated annulus has been derived from Eq.(14-35) by considering the channel 
geometry difference as (Hibiki et al, 2003a) 

a l-e 
-3.12 a„ 

(14-100) 
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The drift-flux model with Eqs.(14-99) and (14-100) can predict the data 
taken in an internally heated annulus well (Hibiki et al, 2003a). 

1.4.3 Constitutive equations for downward two-phase flow 

The constitutive equation of the distribution parameter of downward two-
phase flow for all flow regimes is given by (Goda et al, 2003) 

C o = ( - 0 . 0 2 1 4 ( / ) + 0.772) + (o .0214( / ) + 0.228) \^ 

for - 2 0 < ( / ) < 0 , 

Co = 
0.00848 (/)+20 

0.2e ^̂  / ^+1.0 0.2e 
0.00848[(/)+20] [p^ 

\Pf 

for ( / ) < - 2 0 

(14-101) 

where 
downward 

/ / \ = {j)/{{V •)) • ^^^ constitutive equation of the drift velocity of 
^ara two-pnase flow for all flow regimes is approximated by 

( C ^ . ) } " ^ 
Apga 

Pf 

(14-102) 

These constitutive equations for distribution parameter and drift velocity 
were developed by one-dimensional data, and they have not been validated 
separately by detailed local flow data. Thus, they should not be used 
individually. 

1.4.4 Constitutive equations for bubbling or boiling pool systems 

In bubbling or pool boiling systems, the ratio of the vessel diameter to the 
length is often large in comparison with forced convection systems. It is 
noted that a recirculation flow pattern may develop in a large vessel at low 
flow. This may significantly affect the transverse velocity and void fi-action 
profiles. The constitutive equation of the drift velocity for bubbling or 
boiling pool systems (/j^\ = 0) is given by (Kataoka and Ishii, 1987) 
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Low viscous case: N^j < 2.25 x 10^^ 

F ; ) ) = 0.00191)7'°' 
/ ^-0.157 

P9 

[pf) 
N-J-''^ forl>;<30 

Fj-)) = 0.030 

(14-103) 

[Pf) 
N-J-'"' forZ);>30 

Higher viscous case: N^^ > 2.25x10 ^ 

for D* > 30 

V/ 

x-0.157 

VI 0.92 
[Pf) 

(14-104) 

"^^^'^ {{K)) = {{V,))/h'^p/pfT ^^^ D;=Djf/{^). The 
constitutive equation of the distribution parameter in bubbling or pool 
boiling system is given in terms of chaonel geometry as Eq.(14-32). 

1.4.5 Constitutiye equations for large diameter pipe systems 

In a large diameter channel (D^ > 40 ja/{gAp)), slug bubbles cannot be 

sustained due to the interfacial instability and they disintegrate to cap 
bubbles. A recirculation flow pattern may develop in a large diameter 
channel at a low-flow rate. A flow regime at a test section inlet and a flow 
regime transition in a developing flow may also have an influence on the 
liquid recirculation pattern. The liquid recirculation, inlet flow regime and 
flow regime transition may affect the transverse velocity and the void 
fraction profile significantly. The constitutive equation of the drift velocity 
for upward bubbly flow in large diameter pipe systems is approximated by 
(Hibiki and Ishii, 2003a) 

v-)) = v:.B 
-1.396^ 

+ n. l -< 
- i -39(j ; 

(14-105) 

where ((Vt^)) and ( ( F % ) \ are, respectively, given by Eq.(14-102) and 

Eqs.(14-103) and (14-104), and lj+\ = (^jU(agAp/p^ff'^. The constitutive 
equation of the distribution parameter for upward bubbly flow in large 
diameter pipe systems is given by 
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Case for inlet flow regime as uniformly distributed bubbly flow 

0-475((j / ) / ( i+\ ' ' ' 

415 

(7„=e 
^0.475((;-)/(,-))-

1 

for0<(i;)/(r}<0.9 

a -2.88 + 4.08 

for0.9<(j;)/(r)<l 

-2.88 m\ m\ + 3.08 

(4-106) 

where ( r ) = ( i ) / ( a 5 V / ' ; f . 

Case for inlet flow regime as cap bubbly or slug flow 

Co=1.2e 
o.iio(j+\ 

1.2e 
0.110/j+\ 

f o r O < ( j + ) < 1 . 8 

C.= 0.6e ^^ ' ^+1.2 0.6e 
-1.2((,-)-1.8) 

+ 0.2 

(4-107) 

forl.8<(r} 

These constitutive equations for distribution parameter and drift velocity 
were developed by one-dimensional data, and they have not been validated 
separately by detailed local flow data. Thus, they should not be used 
individually. In slug, chum, and annular flow regime, the distribution 
parameter effect is dominant over the local slip effect, namely, 
V^ «CQ (j'^). Thus, the constitutive equations detailed in the Section 1.2 
of Chapter 14 can be applicable to such flow regimes. 

1.4.6 Constitutive equations at reduced gravity conditions 

To extend the applicability range of the drift-flux model to reduced 
gravity conditions, the constitutive equations of the drift velocity detailed in 
the Section 1.2 of Chapter 14 have been reformulated by considering the 
fiictional pressure loss in addition to the gravitational pressure loss as 
(Hibiki et al., 2004) 
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Bubbly Flow Regime {Distorted-fluid-particle Regime) 

,1/4 

m-^ 
. . / ^ m 

(Apg^+M,J)a 
Pf 

(^-MMM)] 
18.67 

(14-108) 

^, l + 17.67{f ( ( a , ) ) f 

The fiictional pressure gradients in single-particle system, Mp^ , and in 
multi-particle system, Mp, are defined by 

M . ^.,(.;)'=^P,te;andM,.|-f[ (.4 109) 

where / is the wall friction factor. The function, FUagj), is defined by 

HM)- ^P9, + M, Foo 

111 

\r^m ) 

(14-110) 

Equation (14-108) holds for iV̂ ^ > 0.1l{l +t/;(r;)}/{v(rj*)}'^' . The 
parameter, -0 ir* \, is given by 

^p(n) = o.55\(i + omr;f -if (14-111) 

where r/ = r, [p^{Apg^ + M^^)/p'^] . 

Slug Flow Regime 

( (^ . •» = 0-35 
(Apg,+M,^)D 

Pf 

1/2 

X 
{Apg^(l-{a^)) + M,] 

lV2 

{Apg^+M,^)(l~(a^)) 

(14-112) 
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Churn Flow Regime 

417 

y.))-^ 
( Z i p f t + M , , ) , T 

P] 

1/4 

x j 
^P9.[^-{%))-^MF 

^P9.+M, Foo 

1/4 (14-113) 

Annular Flow Regime 
In separated flows, local relative velocity between two phases cannot be 

defined (Hibiki and Ishii, 2003b). If small liquid droplets are entrained in 
the gas core or small gas bubbles are entrained in the liquid film, local 
relative velocity may be approximated to be zero due to large gas and liquid 
velocity, resulting in liy S) ^ 0. This approximation may be acceptable in 
annular flows where tne entrainment of liquid from the fihn to the gas-core 
flow is negligibly small. 

The constitutive equations of the distribution parameter have been 
improved by considering the gravity effect on the void distribution (Hibiki et 
al, 2004) as 

Bubbly Flow Regime 

C/n = 2.0e ^ + 
-5.55 

1.2e 9N\ 

+ L 2 1 - e 
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^ ^ -0.000584i?e. , , 

z.Oe ^ + i 
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1.2e 9N] 
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1 - e [9N] 
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(14-114) 
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where Qf^ is the normal gravitational acceleration (=9.8 m/s^). 

Slug Flow Regime 

Cn = 1 . 2 - 0 . 2 (14-115) 

Chum Flow Regime 

C„ = 1 . 2 - 0 . 2 (14-116) 

Annular Flow Regime 

K « _L1 — . Co ^ 7 ^ + 1 1-K> 

K> + 
l + 75(l-(a,)) p̂  

^/(^> ^̂  

1/2 

X 
O.OlSp^ 

(i> 
+1 

(14-117) 
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ONE-DIMENSIONAL TWO-FLUID MODEL 

The two-fluid model is the most detailed aad accurate macroscopic 
formulation of the thermo-fluid dynamics of two-phase systems. In the two-
fluid model, the field equations are expressed by the six conservation 
equations consisting of mass, momentum and energy equations for each 
phase. Since these field equations are obtained fi-om an appropriate 
averaging of local instantaneous balance equations, the phasic interaction 
term appears in each of the averaged balance equations. These terms 
represent the mass, momentum and energy transfers through the interface 
between the phases. The existence of the interfacial transfer terms is one of 
the most important characteristics of the two-fluid model formulation. These 
terms determine the rate of phase changes and the degree of mechanical and 
thermal non-equilibrium between phases, thus they are the essential closure 
relations that should be modeled accurately. However, because of 
considerable difficulties in terms of measurements and modeling, reliable 
and accurate closure relations for the interfacial transfer terms are not fully 
developed. In spite of these shortcomings of two-fluid models, there is, 
however, no substitute available for modeling accurately two-phase 
phenomena where two phases are weakly coupled. Examples of these are: 

• Sudden mixing of two phases; 
• Transient flooding and flow reversal; 
• Transient countercurrent flow; 
• Two-phase flow with sudden acceleration. 

A three-dimensional, two-fluid model has been obtained by using 
temporal or statistical averaging. In view of practical engineering problems, 
a one-dimensional, two-fluid model obtained by averaging local two-fluid 
formulation over the cross-sectional area is useful for complicated 
engineering problems involving fluid flow and heat transfer. This is due to 
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the fact that field equations can be reduced to quasi-one-dimensional forms. 
By area averaging, the information on changes of variables in the direction 
normal to the main flow within a channel is basically lost. Therefore, the 
transfer of momentum and energy between the wall and the fluid should be 
expressed by empirical correlations or by simplified models. In this chapter, 
we develop a general one-dimensional formulation of the two-fluid model, 
and discuss various special cases that are important in practical appUcations. 
For simplicity, mathematical symbols of time-averaging in one-dimensional 
formulation are dropped in the formulation in this chapter. 

1.1 Area average of three-dimensional two-fluid model 

The three-dimensional form of the two-fluid model has been obtained by 
the temporal or statistical averaging method. For most practical applications, 
the model developed by Ishii (1975) can be simplified to the following 
forms: 

Continuity equation 

^ + V-(«,^i5;) = n (15-1) 

Momentum equation 

+v «J^ + ̂ '"̂  + (^kPk9k+'v^r,+M^ (15-2) 

Enthalpy energy equation 

dt (15-3) 

Here F^., M^ > %i > Qu ^nd ^^ are the mass generation, generalized 
interfacial drag, interfacial shear stress, interfacial heat flux and dissipation. 
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respectively. The subscript k denotes ^-phase and i stands for the value at 
the interface. \ja^ denotes the length scale at the interface and a^ has the 
physical meaning of the interfacial area per unit volume (Ishii, 1975; Ishii 
and Mishima, 1981). Thus, 

interfacial area ,. ^ .̂  
(^i = —r- ] • (15-4) 

mixture volume 

From the above field equations it can be seen that several interfacial 
transfer terms appear on the right-hand side of the equations. Since these 
interfacial transfer terms also should obey the balance laws at the interface, 
interfacial transfer conditions could be obtained from an average of the local 
jump conditions (Ishii, 1975). They are given by 

E ^ i * = 0 (15-5) 
k=l 

k=l 

Therefore, constitutive equations for M^j^, a.ĝ ^ and a^g^ are necessary for 
the interfacial transfer terms. The enthalpy interfacial transfer condition 
indicates that specifying the heat flux at the interface for both phases is 
equivalent to the constitutive relation for Fj^ if the mechanical energy 
transfer terms can be neglected (Ishii, 1975). This aspect greatly simpUfies 
the development of the constitutive relations for interfacial transfer terms. 

The rational approach to obtain a one-dimensional model is to integrate 
the three-dimensional model over a cross-sectional area and then to 
introduce proper mean values. A simple area average over the cross-
sectional area A is defined by Eq.(14-5) and the void-fraction-weighted 
mean value is given by Eq.(14-6). In the subsequent analysis, the density of 
each phase within any cross-sectional area is considered to be uniform so 
that pj^ = Upj,)) . For most practical two-phase flow problems this 
assumption is valid since the transverse pressure gradient within a channel is 
relatively small. The axial component of the weighted mean velocity of 
phase k is 
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((„.)> = ( ^ = M (.5-6) 

where the scalar expression of the velocity corresponds to the axial 
component of the vector. By area averaging Eqs.(15-1) to (15-3), and 
making some simplifications which are applicable to most practical 
problems, the following field equations can be obtained 

Continuity equation 

^ ^ + | ( " . > f t ( K » = (A) (15-7) 

Momentum equation 

-MPk ({%)) + ^C^k H)ft {{%)f 

-^^-k>p.p.+(n)((%»+K) 
(15-8) 

^{[Pu-V.f-§^) 

where a^^ and r ^ are the mean void fi-action at the wall and wall shear 
stress, respectively. The pressure difference and void gradient term can be 
important for horizontal stratified flow. Except for this case, this term may 
be neglected. (M^\ is the total interfacial shear force given by 

{Mt) = {M^-Va,-T,)^. (15-9) 

The first term on the right-hand side is the generalized particle drag which is 
important for a dispersed flow. The second term is the effect of the 
interfacial shear and the void gradient. This term is particularly important 
for a separated flow. In the convective term, the distribution parameter for 
the ^-phase momentum, C^̂  , appears due to the difference between the 
average of a product of variables and the product of averaged variables. 
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Enthalpy energy equation 

= -^A-M{^. + <il))^M^M)) (15-10) 
dz' " ' \ ^ ' ""' ' "'Dt 

A 
+^^JL + {r,){{K)) + K'> + (̂ .> 

where ^^ and q'l^ are the heated perimeter and wall heat flux, respectively. 
C^^ is the distribution parameter for the A:-phase enthalpy. From the 
macroscopic jump conditions at the interface the following relations between 
the interfacial transfer terms hold, 

E{n)=o 
k=\ 

E(Mt) = Y.{M,, - Va, . r,l = 0 (15-11) 
k=l k=l 

1.2 Special consideration for one-dimensional 
constitutive relations 

1.2.1 Covariance effect in field equations 

In a one-dimensional model, a very careful examination of transverse 
distributions of various variables and their effects on the balance and 
constitutive equations is essential. If this is not done properly, the resulting 
two-phase flow formulation can be inconsistent. Improper modeling, or 
disregard of the distribution effects, may lead not only to a grossly 
inaccurate model, but also to various numerical instabilities. The 
distribution effects can be divided into two groups. The first one is the 
covariance effect which directly affects the form of the convective term in 
the field equation. The second effect appears in the averaging of the various 
local constitutive relations. These two effects are discussed separately below. 

The covariance of the convective terms is defined by 
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COV[p^a^il^^v^) = (a^p.il^, [v, - {{v, 

Chapter 15 

(15-12) 

To close the set of the governing equations we must specify relations for 
these covariance terms. This can be done by introducing distribution 
parameters for the momentum and energy fluxes. If we define a distribution 
parameter for a flux as 

^ # — 
i^k^k^k) 

Mm){M) 
(15-13) 

the covariance term becomes 

For the momentum flux, the distribution parameter is defined by 

(15-14) 

a vk K>((%>r 
(15-15) 

Physically, C^̂  represents the effect of the void and momentum-flux 
profiles on the cross-sectional-area-averaged momentum flux of A:-phase. A 
quantitative study of C^̂  can be made by considering a symmetric flow in a 
circular duct and introducing the power-law expressions in parallel with the 
analysis of the drift-flux modeling (Zuber and Findlay, 1965; Ishii, 1977). 
The following is the summary obtained by Ishii (1977). 

Hence, for bubbly, slug and chum-turbulent flow, it is postulated that 

(^k -^kw = 1 -
r 

a kO a kw R,n 
(15-16) 

and 

""k _ = 1 
r 

^fcO it!., 
(15-17) 
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where the subscripts 0 and w refer to the value at the centerline and at the 
wall of a tube. For simplicity it is assumed that the void and velocity 
profiles are similar; namely, n = m, This assumption is widely used in 
mass-transfer problems, and it may not be unreasonable for fully developed 
two-phase flows if one considers that the vapor flux and, hence, the void 
concentration greatly influence the velocity distributions. Under this 
assumption, it can be shown that 

C,,i. — 

n + 2( 3n 

n + l[ 3n + 2J 
O^hn + ^OL, 

n 
n + 2) 

vk 

a. + Aa, n 
\2 (15-18) 

""kw 
n + lj 

where Aa^^ = Q̂ Q̂ - a^. The volumetric-flux-distribution parameter CQ of 
the drift-flux model is given by 

^ 0 - ^ (15-19) 

where CQ can be given by the following empirical correlation (Ishii, 1977) 

C,=h2-02^J^ (15-20) 

for a fully developed flow in a round tube. For a subcooled boiling or flow 
in a rectangular channel, see Eq.(14-35) or Eq.(14-32), respectively. 
Therefore, in the standard range of n , the parameter C^g can be given 
approximately by 

C,^:^l + 0.5(Co-l) . (15-21) 

For a liquid phase in a vapor-dispersed-flow regime, ôŷ  — 1 and 
âQ < 1. Then from Eq.(15-18) it can be shown that, for a standard range of 
a^Q in the bubbly- and chum-flow regimes, (7̂ ^ can be approximated by 

C , , = l + 1.5(Co-l). (15-22) 

For an annular flow, the momentum covariance term can also be 
calculated by using the standard velocity profiles for the vapor and liquid 
flows. Thus we obtain 
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[1.02 (turbulent flow) 

1.33 (laminar flow). Vk = 

Similarly, the distribution parameter for the enthalpy flux can be defined 
by 

For a thermal-equilibrium flow, h = h and h. — h. , where h and i/". 
^ ^ 9 gs J js ^ gs js 

are the saturation enthalpies of vapor and liquid. Since, in this case, the 
enthalpy profile is completely flat for each phase, the distribution parameters 
become unity; namely, Ĉ ^ = C;,̂  = 1. It is also evident that if one of the 
phases is in the saturated condition, then (7^ for that phase becomes unity. 

In the single-phase region, the distribution parameter can be calculated 
fi-om the assumed profiles for the velocity and enthalpy. Using the standard 
power-law profiles for a turbulent flow; namely, V/VQ = iy/R) ^^^ 

(^ ~ K)KK ~K) = {y/^) ' where y is the distance fi-om the wall, we 

can show that the covariance term is negligibly small both for developing 
and fiiUy developed flows under normal conditions. Then 

C,,-l.O. (15-25) 

Therefore, except for highly transient cases, the enthalpy covariance may be 
neglected. 

1.2.2 Effect of phase distributioii on constitutive relations 

The greatest shortcoming of the conventional two-fluid model is in the 
modeling of the constitutive equation for the interfacial shear (M^\ defined 
by Eq.(15-9). This is particularly true when the two-fluid model was applied 
to other than a separated flow. The problem is twofold: 

1. Modeling of the averaged drag {M^j^) ; 
2. Modeling of the effect of interfacial shear (~Va^ • r . ) . 

These will be discussed separately below. 
For a dispersed two-phase flow the averaged interfacial drag term could 

be given approximately by 
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{MA^~\^MPM)\M[ (15-26) 

Here, only the steady-state drag force part of M.j^ is considered because it is 
the most important term. The above approximate form is obtained based on 
the experimental observation that the local relative velocity v^ is 
comparatively uniform across a flow channel (Serizawa et al., 1975; Hibiki 
and Ishii, 1999; Hibiki et al, 2001a) and the fact that the local relative 
velocity is much smaller than the phase velocities in most two-phase flow. 

The important point, however, is that the averaged drag force should be 
related to the averaged local relative velocity {y^) given by 

{'"r) = \i'^M (15-27) 

and not to the difference between the area averaged mean velocities of 
phases given by 

"^r ={{%))-{{%))• (15-28) 

In general, 

M ^ ^ . (15-29) 

The difference between these two relative velocities can be very large. The 
reason is that in one-dimensional formulation, the slip, v~, between two 
phases is caused by two completely different effects; namely, the local 
relative motion and integral effect of the phase and velocity distributions. 
The existence of these two effects is already well-known (Zuber and Findlay, 
1965; Ishii, 1977; Bankoff, 1960). The first effect is the true relative motion 
between two phases at a local point and does not require any further 
explanation. The second effect of the distribution arises due to the area 
averaging. For example, if the dispersed phase is more concentrated in the 
high velocity core region, then the mean velocity of the dispersed phase 
should be much higher than that of the continuous phase which is 
concentrated near the low velocity wall region. This is true even when the 
two phases are locally moving with the same velocity. 

Based on the drift-flux model formulation it can be shown that the 
approximate expression for (v^^ is given by 
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for bubbly, slug and chum turbulent flow. Therefore, from the flow regime 
criterion (Ishii and Mishima, 1981; Ishii, 1977), it is applicable under the 
following conditions. 

(15-31) 

This criterion is valid when the tube diameter is relatively small. For more 
general conditions, see Ishii and Mishima (1981). The constitutive equation 
for CQ for a simple case is given by Eq.( 15-20). 

The expression for the drag force given by Eq.(15-26) with Eq.(15-30) 
compensates for the slip due to the distributions of phases and velocities. 
This difference between ^ and (y^") has never been taken into account in 
the conventional two-fluid model. In most two-phase flow systems, the slip 
due to the distribution of phases is much greater than the local slip between 
phases. Therefore, neglecting the above-mentioned effect will lead to large 
errors in predictions of the void fraction and velocities in bubbly, slug and 
chum turbulent flow regimes. As a result, even the steady-state predictions 
from two-fluid model were not as good as those from a drift-flux model in 
these flow regimes. This was one of the most significant shortcomings of 
the conventional two-fluid model and it should be corrected in all ftiture 
analyses. 

1.2.3 Interfacial shear term 

The total interfacial shear force denoted by {MI\ has two sources; 
namely, the generalized drag {M.^) and the contnbution of the interfacial 
shear and void gradient (-Va^ • r.) as shown in Eq.(15-9). In a separated 
flow, the second term is the dominant one. For example, for an annular flow 
in a tube it can be shown that 
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(15-32) 

—-T.l ixrdr = — - T . 

where ^̂  is the wetted perimeter of the gas core. 
The constitutive relation for r^ in this case can be given in terms of the 

standard interfacial friction factor as 

T 
fi ^^ p V \V 9^ ^ f^g r rr (15-33) 

where v^ = (Iv )) - {(vf)) - There are a number of correlations for the 

interfacial friction factor /^. The Wallis correlation is given by 

/, = 0.005[l + 7 5 ( l - ( a ^ ) ) (15-34) 

which is applicable to the case with rough wavy films. 
For annular flow, this interfacial shear term has been correctly taken into 

account in the conventional two-fluid model. However, the effect of this 
term in the bubbly, slug and chum turbulent flows has been generally 
neglected. The inclusion of this term is important for the proper modeling of 
the interfacial momentum coupling between phases. In order to obtain a 
constitutive relation for this interfacial shear term, several assumptions are 
necessary since it requires information on the void and shear stress 
distributions. For this purpose the following power-law distribution is 
assumed 

r 
T, ^ r„, 

it!.. 
(15-35) 

From this and the void profile of Eq.(15-16), it can be shown that 

4r,,. / \ n + 2 
-i^^r^il D •{".) n + l + m 

(15-36) 

where a^ is the void fraction of dispersed phase. By introducing the 
distribution parameter C^ given by 



430 Chapter 15 

0 , = ^ ^ (15-37) 
n + l + m 

the interfacial shear term for a dispersed two-phase flow becomes 

- ( V « . - ^ . ) , = - % ^ h ) < : ^ . (15-38) 

where C^ is expected to be very close to one. In a horizontal channel this 
term will contribute to the slip between phases even under a steady state 
condition. The inclusion of this term does not alter the overall momentum 
balance of a two-phase mixture because of the macroscopic momentum 
jump condition. However, it indicates that the momentum interaction 
between phases is affected by the wall shear stress through the interfacial 
shear and void gradient distributions. 
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Nomenclature 

Latin 

A surface of a volume 
A frontal area of bubble 
A^^ surface metric tensor (Aris, 1962) 
A turbulence anisotropy tensor 
A^ projected area of a typical particle 
Ai mathematical surface between A^ and A^ 
Ai surface area 
Aj^ surface bounding the interfacial region and adjacent to 

phase k 
A^ surface of fixed mass volume 
Ap projected area of a particle 

a cross sectional radius of cap or slug bubble 
al mobility of the fluid at the interface 
a^ interfacial area concentration 
a^j^, a^j^ isentropic and isothermal sound velocities based on the 

average thermodynamic properties 
B^ volume of a typical particle 
Bg balance at an interface 
By balance in each phase 
6f, b^, 6f Transport coefficients associated with interfacial 
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transfer of mass, momentum and energy 

c 
c 
Cn 
^Doc 

c, 
^hk 

^hm 

c, 
CK 

^LW 

^M 

(^rp 

^vk 

^rni 

^vm 

a 
^ # 

C 
Co 

c^ 
c^ 
Cfc 

^ p * ' ^vk 

D 
D* 
A 
Ac 
D: 
Dc^as 

crit 

d,max 

wave velocity 
constant 
drag coefficient 
ideal drag coefficient 

variable defined by llgApjpj 

distribution parameter 
mixture-enthalpy-distribution parameter 
closed curve on an interface 
kinematic wave velocity 
coefficient of lift force caused by slanted wake 
virtual mass constant 
adjustable parameter 
distribution parameter 
virtual volume coefficient 
mixture-momentum-distribution parameter 
distribution parameter 
distribution parameter for flux 

shape factor 
distribution parameter 
propagation velocity 
asymptotic value of distribution parameter 
mass concentration of phase k 
specific heat at constant pressure and density based on 

averaged properties 
hydraulic-equivalent diameter 
length scale ratio 
bubble diameter 
critical bubble size 

ratio of D^^ to D^^, 
maximum diameter of stable bubble 

volume-equivalent diameter of a bubble at boundary 

between groups 1 and 2 
maximum distorted bubble limit 
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D^ ratio of bubble diameter to bubble diameter at distorted 

bubble limit 
D^ volume-equivalent diameter of a fluid particle 

jDg eddy diameter 

D^ effective diameter of mixture volume that contains one 

bubble 
Djj hydraulic-equivalent diameter 

Djj non-dimensional hydraulic-equivalent diameter 

D^ diffusion coefficient 

Dj^ total deformation tensor of phase k 

Dj^^ bulk deformation tensor 

Dj^ interfacial extra deformation tensor 

D^ drift coefficient 

Dg^ Sauter mean diameter 

D^ surface-equivalent diameter of a fluid particle 

d^ bubble diameter 

d^ cross-sectional mean diameter of bubbles 

EQ average energy required for bubble breakup 

E^ area fraction of liquid entrained in gas core from total 

liquid area at any cross section 
E^ average energy of a single eddy 

Ey. total energy gain through interfaces for phase k 

E^ mixture total energy source from interfaces 

E^ mixture energy gain due to changes in mean curvature 

Eo Eotvos number 
e^, e^ weighted mean virtual internal energy (with turbulent 

kinetic energy included) at the bulk phase and at the 

interfaces 

F [Xj t) general fiinction 

F^ Basset force 

F^ standard drag force 

F^ lift force 

F turbulent dispersion force 

F^ virtual mass force 
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F^ wall lift force 
Fj) drag force 

Fj^, i^ general function associated with phase k 

/ {x^ t) function for interface position 

/ {x, t, ^) molecular density function 

/ coUision frequency 

/ friction factor 

/ correction factor for drag coefficient 

^ interfacial friction factor 

/^ Helmholtz potential 

fj^ (x^ t, ^) particle density frinction of the n^-kind particles 

fj,^ two-phase friction factor 

G mass velocity 
G cap bubble thickness 
G^ non-dimensional velocity gradient 
g gravity field 
g^ body force field 

9k^ Tk^ 9ki Gibbs free energy: local instant, bulk mean and 

interfacial mean values 
Qi^ space metric tensor (Aris, 1962) 

Qj^ normal gravitational acceleration 

H21, H21 local instant and averaged mean curvature (H21 > 0 if 

phase 2 is the dispersed phase) 
h bubble height 
]\, /I2 average thickness of upper (1) and lower (2) fluid 

layers 

\ , hj^ weighted mean virtual enthalpy (with turbulent kinetic 

energy included) at the bulk phase and at the interfaces 
h^ mixture virtual enthalpy 

/ unit tensor 
/^ interfacial source term in the balance equations for 

phase k 
I^ interfacial source term for mixture balance equations 

ha' ^ma iutcrfacial source terms in the shock conditions for 
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h'h 

% 

L 
i 
J 
r 
Ja 

Jk 

J!,J^ 

'^k'^m 

JkJ 
.* 

3 
f 
K 
K, 
K, 

Kl 
KT 
k 
e 
K 
L 
h 
im 
\ih 

phase k and for mixture 

local instant and mean enthalpies 

mean enthalpy of phase k at interfaces 
mixture enthalpy 
local instant surface enthalpy per area 

flux 

drift flux 
line flux for interface 

surface flux for phase k 

turbulent fluxes 

Jacobians based on macroscopic field 

volumetric fluxes of phase k and mixture 

non-dimensional mixture volumetric flux 

non-dimensional mixture volumetric flux 

constant 
thermal conductivity 

thermal conductivity tensor 

turbulent conductivity 

thermal mixing length coefficient 

wave number 

turbulent kinetic energy due to shear-induce turublence 
wave number of eddy 

pitch of slug unit 
cylindrical bubble length 

area concentration ofy^-interface 

total area concentration 

Lj, mean traveling distance between two bubbles for one 

collision 
L^ effective wake length 

/ mixing length 
IQ mixing length due to bubble-induced turbulence 

Igp mixing length of single-phase flow 

lj,p mixing length of two-phase flow 

m^ mass per a single eddy 
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rhj^, m^ local instant and mean mass transfer rates per unit area 

(mass loss) 
M Morton number 
Mp frictional pressure gradient in multi-particle system 

Mp^ frictional pressure gradient in single particle system 

M^^ generalized interfacial drag 

M^, M^ state density functions for phase k and interface 

Mj^, M^ momentum sources for phase k and mixture 

M^ force due to changes in mean curvature 

M^, Ml, Ml form, skin and total drag forces 

M^^ force associated with mixture transverse stress gradient 

N unit normal vector to a curve on an interface 
N number of samples 
N^ number of bubbles 

Nj^ drift number 

Ndrag ^rag uumbcr 

iVg number of eddies of wave number k^ per volume of 

fluid 

Np^ Eckert number 

Np^ Euler number 

Np^ Froude number 

iV. converted enthalpy ratio 

Njj^ Jakob number 

N^^^ phase change number 

iV^^^ interfacial phase change effect number 

iVpg Peclet number 

iVj^^ turbulent Prandtl number 

N^ interface heating number 

iV^g Rejmolds number 

iV^g interfacial Reynolds number 

Ngi Strouhal number 

N^^ Weber number 

N^ surface tension number 
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Np^ Prandtl number 
N^ number of bubbles inside effective volume 
N^ viscosity number 

N^ density ratio 

n fluid particle number per unit mixture volume 
n unit normal vector 
n^ bubble number density 
rig number of eddies of wave number per volume of two-

phase mixture 
n^ outward unit normal vector for phase k 
P^^ production of shear-induced turbulence 
PQ probability for a bubble to move toward neighboring 

bubble 
/^ partial pressure tensor 
P^ interfacial wetted perimeter 
P^j wall wetted perimeter 

p pressure 
p^ critical pressure 

P k ^ ^ ^IPH partial, bulk mean and interfacial mean pressure 
p ^ mixture pressure 
q heat flux 

q^ diffusion (drift) heat flux 

qj^, q^ mean conduction and turbulent heat fluxes 

q, ql mixture conduction and turbulent heat fluxes 
Qj^ local instant body heating 

qj^ average heat transfer pert interfacial area (energy gain) 

q^ mean conduction heat flux 
R ideal gas constant 
R radius of a pipe 
R radius of curvature 
R^ variable defined by RvJv^ 

R^ mean radius of fluid particles 
R. particle number source and sink rate 
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R^ tube radius 

Re Reynolds number 
(i?e)^ particle Reynolds number 

r radial coordinate 

r^ non-dimensional radius 

SQ , S(. surface available to collision 

Sj particle source and sink rates per unit mixture volume 

due toy-th particle interactions such as disintegration 
or coalescence 

Spf^ particle source and sink rates per unit mixture volume 

due to phase change 
s entropy 
s^ surface entropy per area 

5̂  , % weighted mean entropy at bulk phase and at interfaces 

s^ mixture entropy 
T temperature 

T^, T^ instant and mean interface temperature 

Tj^, T^ mean temperature at bulk phase and at interface 

T^ stress tensor 

t time 
tfj time required for bubble coalescence 

t^ time when they^-interface passes the point 

C (̂ ^ K) hybrid tensor of interface, see Aris (1962) 

U velocity of shock in mixture 

UQ velocity of stream 

^B > ^c volume available to collision 

u internal energy 

u^ surface energy per area 

u^ mean fluctuation velocity 

UQ, UQ bubble velocity 

u^ eddy velocity 

u^^, % weighted mean internal energy at bulk phase and at 
interfaces 

u^ mixture internal energy 
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u^^^ averaged relative velocity between leading bubble and 

bubble in wake region 
u^ root-mean-square approaching velocity of two bubbles 

\cnt critical fluctuation velocity 

V volume 

V time derivative of volume V 
V^ critical bubble volume 

V^ non-dimensional drift velocity 

V^ interfacial region 

Vj^ drift velocity 

Vj^ diffusion velocity 

V^ fixed mass volume 

Vs ^atio of V^^^, to V^^^^ 

V^ effective wake volume 
Fj^ peak bubble volume in group 1 

V velocity 
v^^ liquid velocity fluctuation independent of bubble 

agitation 
'ŷ ' liquid velocity fluctuation dependent on bubble 

agitation 

v^ fi-iction velocity 

v^ average center-of-volume velocity of dispersed phase 

v^ velocity of interface 

v^, v^ weighted mean velocity at bulk phase and at interfaces 

\y[ j /2 mean turbulent kinetic energy 

v^ mixture center of mass velocity 
v^^ average local particle velocity weighted by particle 

number 
v^ relative velocity 

\ difference between area averaged mean velocities of 

phases 
v^^ relative velocity of a single particle in an infinite 

medium 
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V. 

w;i 
We 

X 
X 

X 

y 

y' 

Z 

velocity of interfacial particles 

work due to fluctuations in drag forces 

Weber number 
critical Weber number 

convective coordinates 
spatial coordinates 
spatial coordinate 
spatial coordinate 

variable defined by yvJv^ 

spatial coordinate 

Greek 

a. 
Oi„ 

a. 
OL. drop 

a g,cnt 

a 'g,Tnax 

(3 

r 

7 

7k 

A 
A 

At 
At. 

void fraction in slug bubble section 
ratio of liquid-film cross-sectional area to total cross-
sectional area 
average overall void fi-action 
ratio of cross-sectional area of drops to cross-sectional 

area of core 
critical void fraction when center bubble caimot pass 

through fi-ee space among neighboring bubbles 
maximum void fraction 

time (void) firaction of phase k 

ratio of mixing length and width of wake 

variable to take account of overlap of excluded volume 

thermal expansivity based on averaged properties 

constant 
mass generation for phase k 

constant 

ratio of specific heats 

interfacial entropy generation per area 

entropy generation for phase k 

inter-group mass transfer rates fi'om group 1 to group 2 

time interval of averaging 
time interval to drive daughter bubble apart with 
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At^ 
At„At^ 
At^ 

6 
8 
6' 

^crit 

init 

hk 
Sfx 

e 
2s{or2e^) 

e'' 
e',e" 
Vph 

Vo 

0 

e 
^» 

i^fi-

^Sk ' ^Tk 

A 

A 
A 

K 
>^c 

\ 

\ 

/̂  

K^ f^I 

characteristic length of D^ 

time interval for one collision 

time intervals associated with phase k and interfaces 

average time interval for a bubble in wake region to 

catch up with preceding bubble 
thickness of interface 
film thickness 
collective parameter 
critical film thickness where rapture occurs 

initial fihn thickness 

pressure deviation from saturation pressure 

volume element in /i space 

energy dissipation rate per unit mass 
time associated with they^-interface 

dissipation of shear-induced turbulence 
eddy diffusivity 
rate of volume generated by nucleation source per unit 

mixture volume 
amplitude 

contact angle 
angle in cylindrical coordinates 
wake angle 

variable defined by 1 — expl—Cf^/ D' j 

isentropic and isothermal compressibilities of phase k 

interfacial thermal energy transfer term in the averaged 

equation 
wavelength 
constant 
breakup efficiency 

coalescence efficiency 

critical wavelength 

bulk viscosity 

viscosity 

mean molecular and turbulent viscosities 
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T* 

/Jij^ mixing length coefficient 
fi^ mixture viscosity 
u kinematic viscosity 
jy^ turbulent kinematic viscosity 

^ particle (phase) velocity in Boltzmann statistical 

average 
^ ratio of V^^ to V^ 

^ variable defined by 2 (l - 02S94D*J f 

^ variable defined by P^IP^f 

p density 

p^ surface mass per area 

"p^, ~p^ partial and mean densities 

PI modified density defined by /^^coth (/c/i^) 

p ^ mixture density 
a surface tension 
W viscous stress tensor 

W^ diffusion (or drift) stress tensor 

^^^ bubble-induced turbulent stress tensor 

^"^^ shear-induced turbulent stress tensor 

^ , W^ mixture viscous and turbulent stress tensors 

^ , ̂ ^ average viscous and turbulent stress tensor 

Sl^^ average viscous stress 

^ , ^ interfacial shear stress 
r ^ contact time for two bubbles 
r . interfacial shear stress 
r^ reference time constant 

' ^ t k ' '^nk tangential and normal stresses at interface 
T^f wall shear 

^ velocity potential 

^ J turbulent work effect in enthalpy energy equation 

^^ interfacial mechanical energy exchange effect in the 
mixture thermal energy equation 

^^ viscous dissipation 
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m 

m 

0 
0a 

0.-
0. 
X 

^ 

^ 

^.A 
A 
Q 

mixture viscous dissipation 

surface tension effect in the mixture thermal energy 

equation 
source term 

interfacial source per area 

source and sink rate for interfacial area concentration 

velocity potential 
coefficient accounting for contribution from inter-

group transfer 
property of extensive characteristics 

shape factor 

mass weighted mean values for mixture and phase k 

property per interfacial area 

potential function 

Subscripts and Superscripts 

a 
c 
d 
f 
9 
i 
3 
k 
ki 

7Y} 
III 

n 
0 

RC 

sat 

Q 
o 

surface (property per area) 
continuous phase 
dispersed phase 
liquid phase 
vapor phase 

interface 
7*-interface 

each phase : (^=1 & 2), ( ^ c & d), (A=f & g) 
A:̂ -phase at interfaces 
[mixture (in macroscopic formulation) 

[fixed mass (in local instant formulation) 

normal to interface 
reference 
random collision 
c 
s 
ylindrical coordinate 
aturation 
surface (surface property per mass) 

solid phase 
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SI surface instability 
SO shearing off 
TI turbulent impact 
WE wake entrainment 
t tangential to interface 
w wall 
x,y ,z rectangular coordinate 
+ , - + and - side of shock in macroscopic field 

1,2 phase 1 and phase 2 

Symbols and Operators 

A tensor 

A vector 
A scalar 
A- B dot product 
AB dyadic product of two vectors (=tensor) 
A:B double dot product of two tensors (=scalar) 
V • divergence operator 
V gradient operator 
V^ • surface divergence operator (Aris, 1962) 
{AY transposed tensor 

Dt 
D_ 
Dt 
A. 
Dt 

Dt 

dt 
F time average 

=w 

dt 
_ d 
~ dt 
_ d 
~ dt 
_ ^ 
~ dt 

+ '"k' 

+ Vm 

+ c, 

+ v^-

V 

surface convective derivative with v^ (Aris, 1962) 

JF weighted mean value 
F * A:̂ -phase weighted mean value 

F phase average 
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V̂^ ^^-phase mass weighted mean value 

ip mixture mass weighted mean value 

Fl fluctuating component with respect to mean value 

F^ fluctuation component with respect to surface mean 

value 

F(^.^, F^ surface average 

F^ mass flux weighted mean value at interfaces 

( ),/5 surface covariant derivative (Aris, 1962) 

[At\^ with (^T,S,1,2); sets of time intervals 

y ^ summation on both phases 
k 

y ^ summation on the interfaces passing in At at x 



Index 

Angular momentum (Conservation of in single-phase flow), 16 
Area averaging, 63-65 
Area concentration (Surface), 108-109,192-195 
Averaged fields (Kinematics of), 129-141 
Averaging (Area), 62-65 
Averaging (Botlzmann), 58-61,120-128 
Averaging (Ensemble cell), 66 
Averaging (Eulerian), 5 8-61 
Averaging (Lagrangian), 5 8-61 
Averaging (Statistical), 58-61, 65-66,119-128 
Averaging (Time), 64-65 
Averaging (Various in connection with two-phase flow analysis), 61-66 
Averaging (Various methods of), 55-66 
Averaging (Volumetric), 62-63 

Balance equation (Single-phase flow general), 13-15 
Balance equation (Surface), 30 
Balance equation (Time averaged), 93-117 
Basset force, 256, 302-308 
Boltzmann averaging, 58-61,120-128 

Center of mass velocity, 86 
Change (Phase boundary condition), 37-38 
Chemical boundary condition, 37-38 
Chum-turbulent-flow regune, 6-8, 228,281,290, 307-308, 315, 325-327 

330, 361, 396,404-405,417-418 
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Classification of two-phase flows, 5 
Clausius-Clapeyron equation, 40 
Concentration, 82-86 
Concentration (Surface area), 108-109,192-195 
Conservation equation (Single-phase), 13-24 
Constitutive axioms, 18 
Constitutive laws (Drift-flux model), 355-372 
Constitutive laws (Two-fluid model), 169-197 
Constitutive laws or equations, 12,18-24 
Contact angle, 43-46 
Continuity equation (Single-phase), 15 
Convective coordinates, 129-132 
Convective derivatives, 129-132 
Coordinates (Convective), 129-132 
Covariance, 406-411,423-426 
Creeping flow, 46 

D 

Density propagation equation, 138 
Density propagation model, 378-379 
Derivatives (Convective), 129-132 
Derivatives (Time average of), 78-82 
Diffusion flux, 90 
Dilatation, 140 
Discontinuities (Shock), 110-112 
Dispersed flows, 5-7 
Displacement velocity, 80 
Distorted-fluid-particle regime, 323-325, 361 
Distribution parameter, 257, 328, 387-395,403,408,412-418,425 
Distribution parameter ( for a flux), 407,424 
Distribution parameter ( for enthalpy flux), 426 
Distribution parameter ( for A:-phase enthalpy), 423 
Distribution parameter ( for ^-phase momentum), 422 
Distribution parameter (Mixture-momentum ), 409 
Drag force in multiparticle system, 308-329 
Drag force acting on a spherical particle in a very slow stream, 46-48 
Drag force (Interfacial), 189-191 
Drift-flux model, 62, 345-379 
Drift-flux model constitutive laws, 345-372 
Drift-flux model field equations, 103-108, 346-354 
Drift-flux model formulation, 372-379 
Drift velocity, 88,136-137, 372 

Energy (Conservation of in single-phase flow), 16-17 
Enthalpy equation (Single-phase flow), 18 
Entropy inequality (Interfacial), 34-35 
Entropy inequality (Single-phase flow), 18-20 
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Eulerian averaging, 58-61 
Eulerian statistical average, 119-120 
External boundary condition, 43 
Extra deformation tensor (Interfacial), 179 

Field equations, 12 
Field equations (Diffusion model), 103-108, 346-354 
Field equations (Two-fluid model), 98-103,156-169 
Field equations (Two-phase based on time average), 55-128 
Fields (Kinematics of averaged), 129-141 
Fluctuating component, 78 
Flux (Diffusion), 90 
Flux (Volumetric), 87,135-136 
Fundamental identity, 89-92 

Green's theorem, 14 

Green's theorem (Surface), 28 

H 

Heat flux (Interfacial), 191-192 

Homogeneous flow model, 376-378 

I 

Identity (Fundamental), 89-91 

Instant (Local formulation), 11 -46 
Interface (Quasi-stationary), 108-110 
Interfacial area transport equation, 10,195,217-299 
Interfacial area transport equation (One-group ), 227-228,257-276 
Interfacial area transport equation (Two-group ), 228-242,246-248,276-299 
Interfacial boundary condition, 13,32-38 
Interfacial conditions, 12 
Interfacial drag force, 190-191 
Interfacial energy balance, 32 
Interfacial energy source, 196-197 
Interfacial energy transfer, 149-154 
Interfacial entropy inequality, 34-36 
Interfacial extra deformation tensor, 179 
Interfacial heat flux, 191-192 
Interfacial mass balance, 31 
Interfacial mass transfer, 143-144,188-190 
Interfacial momentum balance, 32 
Interfacial momentum source, 192-195 
Interfacial momentum transfer, 145-149 
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Interfacial shear term, 428-430 
Interfacial structure, 3 
Interfacial transfer condition, 95 
Interfacial transport, 143-145 
Internal energy equation (Single-phase flow), 18 

J 

Jump conditions, 13,24-32 

Jump conditions (Macroscopic), 110-113 

K 

A:-̂  model, 341-343 

Kelvin-Hehnholtz instability, 48-52, 313 
Kinematic shock wave, 13 8-140 
Kinematic wave, 136-138 
Kinematics of averaged fields, 129-141 

Lagrangian averaging, 58-61 
Leibnitz rule, 14 
Lift force, 331-335 
Local instant formulation, 11 -46 

M 

Mass weighted mean values, 75-76 
Material derivative (Transformation on), 17 
Mean values (Mass weighted), 75-76 
Mean values (Weighted), 73-77 
Mechanical energy equation (Single-phase flow), 17 
Mixed flows, 4-6 
Mixture properties, 82-86 
Mixture viscosity, 303, 316-320, 367, 376, 396 
Momentum equation (Single-phase), 15 
Momentum source (Interfacial), 192-195 
Motion (Equation of in single-phase flow), 17 

N 

Newton's regime, 315, 320-323 
Normal vector, 80 
Number transport equation, 219-220,229-230 

One-dimensional drift-flux model, 381-418 
One-dimensional two-fluid model, 419-430 
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One-equation model, 339-341 

P 

Phase average, 75 

Phase change boundary condition, 37-38 
Propagation (Density equation), 138 
Propagation (Density model), 378-379 
Propagation (Void equation), 136-138 

R 

Rayleigh-Taylor instability, 52-53 
Reynolds transport theorem, 14 

Scaling parameters, 375 
Scaling parameters (Drift-flux model), 373-376 
Scaling parameters (Two-fluid model), 205-210 
Second law of thermodynamics (Single-phase systems), 19 
Separated flows, 3-6 
Shock (Kinematic — wave), 13 8-140 
Shock discontinuities, 110-112 
Similarity groups, 375-376 
Single-phase flow conservation equations, 13-24 
Slip (No condition), 36 
Slug-flow reghne, 315, 327-330, 361 
Source and sink terms in one-group interfacial area transport equation, 257-276 
Source and sink terms in two-group interfacial area transport equation, 276-299 
State (Equation of), 20-22 
Stationary (Quasi interface), 108-110 
Statistical averaging, 58-61, 65-66,119-128 
Streamline, 132-133 
Structure (Interfacial), 3 
Surface area concentration, 108-109,192-195 

Thermal boundary condition, 36 
Three-dimensional model based on time-averaged, 129-216, 345-379 
Time average, 73-77 
Time average (Three-dimensional model based on), 129-216, 345-379 
Time average (Two-phase field equations based on), 55-128 
Time average of derivatives, 78-82 
Time averaged balance equation, 93-117 
Time averaging, 64-65 
Time fraction (Local), 72-73 
Transfer condition (Interfacial), 95 
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Transitional flow, 
Transport (Interfacial), 
Transport theorem, 
Transport theorem (Surface), 
Turbulence in multiparticle system, 
Turbulent dispersion force, 
Two-equation model. 
Two-fluid model. 
Two-fluid model (Modified ), 
Two-fluid model constitutive laws. 
Two-fluid model field equations. 
Two-fluid model formulation. 
Two-group void fraction transport equation. 

5-7 
143-154 

14 
28 

336-343 
336 

341-343 
62,155-216 

245-257 
169-197 

98-103,156-169 
198-205 

230-234,246 

Velocity (Center of mass). 
Velocity (Diffusion), 
Velocity (Displacement), 
Velocity (Drift), 
Velocity field. 
Virtual mass force, 
Viscous regime. 
Void fraction (Local), 
Void propagation equation, 
Volume transport equation. 
Volumetric averaging. 
Volumetric flux, 

87 
80 

136-137, 372 
86-89 

256, 302-308 
310-311, 315-320, 322, 330, 360 

72-73 
136-138 
220-222 

62 
87,135-136 

W 

Wall lift force, 
Wave (Kinematic), 
Weighted mean values. 

302, 335-336 
136-138 

73-77 

Zero-equation model. 337-339 




