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Introduction

1.1 Subject

The subject of this monograph is the fluid dynamics of liquid turbomachines,
particularly pumps. Rather than attempt a general treatise on turbomachines, we shall
focus attention on those special problems and design issues associated with the flow of
liquid through a rotating machine. There are two characteristics of a liquid that lead to
these special problems, and cause a significantly different set of concerns than would
occur in, say, a gas turbine. These are the potential for cavitation and the high density
of liquids that enhances the possibility of damaging unsteady flows and forces.

1.2 Cavitation

The word cavitation refers to the formation of vapor bubbles in regions of low pressure
within the flow field of a liquid. In some respects, cavitation is similar to boiling,
except that the latter is generally considered to occur as a result of an increase of
temperature rather than a decrease of pressure. This difference in the direction of the
state change in the phase diagram is more significant than might, at first sight, be
imagined. It is virtually impossible to cause any rapid uniform change in temperature
throughout a finite volume of liquid. Rather, temperature change most often occurs
by heat transfer through a solid boundary. Hence, the details of the boiling process
generally embrace the detailed interaction of vapor bubbles with a solid surface, and
the thermal boundary layer on that surface. On the other hand, a rapid, uniform change
in pressure in a liquid is commonplace and, therefore, the details of the cavitation
process may differ considerably from those that occur in boiling. Much more detail
on the process of cavitation is included in later sections.

It is sufficient at this juncture to observe that cavitation is generally a malevolent
process, and that the deleterious consequences can be divided into three categories.
First, cavitation can cause damage to the material surfaces close to the area where the
bubbles collapse when they are convected into regions of higher pressure. Cavitation
damage can be very expensive, and very difficult to eliminate. For most designers
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of hydraulic machinery, it is the preeminent problem associated with cavitation.
Frequently, one begins with the objective of eliminating cavitation completely. How-
ever, there are many circumstances in which this proves to be impossible, and the effort
must be redirected into minimizing the adverse consequences of the phenomenon.

The second adverse effect of cavitation is that the performance of the pump, or
other hydraulic device, may be significantly degraded. In the case of pumps, there is
generally a level of inlet pressure at which the performance will decline dramatically,
a phenomenon termed cavitation breakdown. This adverse effect has naturally given
rise to changes in the design of a pump so as to minimize the degradation of the
performance; or, to put it another way, to optimize the performance in the presence
of cavitation. One such design modification is the addition of a cavitating inducer
upstream of the inlet to a centrifugal or mixed flow pump impeller. Another example
is manifest in the blade profiles used for supercavitating propellers. These supercavi-
tating hydrofoil sections have a sharp leading edge, and are shaped like curved wedges
with a thick, blunt trailing edge.

The third adverse effect of cavitation is less well known, and is a consequence of
the fact that cavitation affects not only the steady state fluid flow, but also the unsteady
or dynamic response of the flow. This change in the dynamic performance leads to
instabilities in the flow that do not occur in the absence of cavitation. Examples of these
instabilities are “rotating cavitation,” which is somewhat similar to the phenomenon
of rotating stall in a compressor, and “auto-oscillation,” which is somewhat similar
to compressor surge. These instabilities can give rise to oscillating flow rates and
pressures that can threaten the structural integrity of the pump or its inlet or discharge
ducts. While a complete classification of the various types of unsteady flow arising
from cavitation has yet to be constructed, we can, nevertheless, identify a number of
specific types of instability, and these are reviewed in later chapters of this monograph.

1.3 Unsteady Flows

While it is true that cavitation introduces a special set of fluid-structure interaction
issues, it is also true that there are many such unsteady flow problems which can arise
even in the absence of cavitation. One reason these issues may be more critical in
a liquid turbomachine is that the large density of a liquid implies much larger fluid
dynamic forces. Typically, fluid dynamic forces scale like pQ% D* where p is the fluid
density, and 2 and D are the typical frequency of rotation and the typical length,
such as the span or chord of the impeller blades or the diameter of the impeller. These
forces are applied to blades whose typical thickness is denoted by t. It follows that
the typical structural stresses in the blades are given by pQ?D* /72, and, to minimize
structural problems, this quantity will have an upper bound which will depend on
the material. Clearly this limit will be more stringent when the density of the fluid
is larger. In many pumps and liquid turbines it requires thicker blades (larger 7) than
would be advisable from a purely hydrodynamic point of view.
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This monograph presents a number of different unsteady flow problems that are
of concern in the design of hydraulic pumps and turbines. For example, when a rotor
blade passes through the wake of a stator blade (or vice versa), it will encounter an
unsteady load which is endemic to all turbomachines. Recent investigations of these
loads will be reviewed. This rotor-stator interaction problem is an example of a local
unsteady flow phenomenon. There also exist global unsteady flow problems, such as
the auto-oscillation problem mentioned earlier. Other global unsteady flow problems
are caused by the fluid-induced radial loads on an impeller due to flow asymmetries, or
the fluid-induced rotordynamic loads that may increase or decrease the critical whirling
speeds of the shaft system. These last issues have only recently been addressed from
a fundamental research perspective, and a summary of the conclusions is included in
this monograph.

1.4 Trends in Hydraulic Turbomachinery

Though the constraints on a turbomachine design are as varied as the almost innu-
merable applications, there are a number of ubiquitous trends which allow us to draw
some fairly general conclusions. To do so we make use of the affinity laws that are
a consequence of dimensional analysis, and relate performance characteristics to the
density of the fluid, p, the typical rotational speed, €2, and the typical diameter, D,
of the pump. Thus the volume flow rate through the pump, Q, the total head rise
across the pump, H, the torque, 7', and the power absorbed by the pump, P, will scale
according to

0 x QD? (1.1)
H x Q*D? (1.2)
T x pD’Q? (1.3)
P x pD>Q3 (1.4)

These simple relations allow basic scaling predictions and initial design estimates.
Furthermore, they permit consideration of optimal characteristics, such as the power
density which, according to the above, should scale like p D?>Q3.

One typical consideration arising out of the affinity laws relates to optimizing the
design of a pump for a particular power level, P, and a particular fluid, p. This fixes the
value of D33, If one wished to make the pump as small as possible (small D) to reduce
weight (as is critical in the rocket engine context) or to reduce cost, this would dictate
not only a higher rotational speed, €2, but also a higher impeller tip speed, Q2D /2.
However, as we shall see in the next chapter, the propensity for cavitation increases
as a parameter called the cavitation number decreases, and the cavitation number
is inversely proportional to the square of the tip speed or 22D?/4. Consequently,
the increase in tip speed suggested above could lead to a cavitation problem. Often,
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therefore, one designs the smallest pump that will still operate without cavitation, and
this implies a particular size and speed for the device.

Furthermore, as previously mentioned, the typical fluid-induced stresses in the
structure will be given by pQ2D*/72, and, if D3Q? is fixed and if one maintains
the same geometry, D/7, then the stresses will increase like D~*/3 as the size, D,
is decreased. Consequently, fluid/structure interaction problems will increase. To
counteract this the blades are often made thicker (D/t is decreased), but this usually
leads to a decrease in the hydraulic performance of the turbomachine. Consequently an
optimal design often requires a balanced compromise between hydraulic and structural
requirements. Rarely does one encounter a design in which this compromise is optimal.

Of course, the design of a pump, compressor or turbine involves many factors
other than the technical issues discussed above. Many compromises and engineering
judgments must be made based on constraints such as cost, reliability and the expected
life of a machine. This book will not attempt to deal with such complex issues, but will
simply focus on the advances in the technical data base associated with cavitation and
unsteady flows. For a broader perspective on the design issues, the reader is referred
to engineering texts such as those listed at the end of this chapter.

1.5 Book Structure

The intention of this monograph is to present an account of both the cavitation issues
and the unsteady flow issues, in the hope that this will help in the design of more
effective liquid turbomachines. In chapter 2 we review some of the basic principles of
the fluid mechanical design of turbomachines for incompressible fluids, and follow
that, in chapter 3, with a discussion of the two-dimensional performance analyses
based on the flows through cascades of foils. A brief review of three-dimensional
effects and secondary flows follows in chapter 4. Then, in chapter 5, we introduce the
parameters which govern the phenomenon of cavitation, and describe the different
forms which cavitation can take. This is followed by a discussion of the factors which
influence the onset or inception of cavitation. Chapter 6 introduces concepts from
the analyses of bubble dynamics, and relates those ideas to two of the byproducts
of the phenomenon, cavitation damage and noise. The isssues associated with the
performance of a pump under cavitating conditions are addressed in chapter 7.

The last three chapters deal with unsteady flows and vibration in pumps. Chapter 8
presents a survey of some of the vibration problems in pumps. Chapter 9 provides
details of the two basic approaches to the analysis of instabilites and unsteady flow
problems in hydraulic systems, namely the methods of solution in the time domain and
in the frequency domain. Where possible, it includes a survey of the existing informa-
tion on the dynamic response of pumps under cavitating and non-cavitating conditions.
The final chapter 10 deals with the particular fluid/structure interactions associated
with rotordynamic shaft vibrations, and elucidates the fluid-induced rotordynamic
forces that can result from the flows through seals and through and around impellers.



Basic Principles

2.1 Geometric Notation

The geometry of a generalized turbomachine rotor is sketched in figure 2.1, and
consists of a set of rotor blades (number = Zg) attached to a hub and operating within
a static casing. The radii of the inlet blade tip, inlet blade hub, discharge blade tip,
and discharge blade hub are denoted by Rr1, Ry1, RT2, and Ry, respectively. The
discharge blade passage is inclined to the axis of rotation at an angle, ¢}, which would
be close to 90° in the case of a centrifugal pump, and much smaller in the case of an
axial flow machine. In practice, many pumps and turbines are of the “mixed flow”
type, in which the typical or mean discharge flow is at some intermediate angle,
0 <9 <90°.

The flow through a general rotor is normally visualized by developing a meridional
surface (figure 2.2), that can either correspond to an axisymmetric streamsurface, or be
some estimate thereof. On this meridional surface (see figure 2.2) the fluid velocity in
a non-rotating coordinate system is denoted by v(r) (with subscripts 1 and 2 denoting
particular values at inlet and discharge) and the corresponding velocity relative to the
rotating blades is denoted by w(r). The velocities, v and w, have components vy and
wy 1n the circumferential direction, and v,, and w,, in the meridional direction. Axial
and radial components are denoted by the subscripts a and r. The velocity of the blades
is Qr. As shown in figure 2.2, the flow angle B(r) is defined as the angle between
the relative velocity vector in the meridional plane and a plane perpendicular to the
axis of rotation. The blade angle 8, (r) is defined as the inclination of the tangent to
the blade in the meridional plane and the plane perpendicular to the axis of rotation.
If the flow is precisely parallel to the blades, 8 = B. Specific values of the blade
angle at the leading and trailing edges (1 and 2) and at the hub and tip (H and T) are
denoted by the corresponding suffices, so that, for example, Sp7> is the blade angle
at the discharge tip.

At the leading edge it is important to know the angle «(r) with which the flow
meets the blades, and, as defined in figure 2.3,

a(r) = Bp1(r) — P1(r). 2.1
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LEADING
EDGE
wo(r)
Bo(r)
3(r)
Boz(r) = DEVIATION
ANGLE
TRAILING
wi(n) EDGE

B1(r)
Bp1(r)

«(r) = INCIDENCE
ANGLE

Figure 2.3. Repeat of figure 2.2 showing the definitions of the incidence angle at the leading edge and
the deviation angle at the trailing edge.

This angle, «, is called the incidence angle, and, for simplicity, we shall denote the
values of the incidence angle at the tip, «(R71), and at the hub, «(Rg1), by a7 and oy,
respectively. Since the inlet flow can often be assumed to be purely axial (v (r) = vq1
and parallel with the axis of rotation), it follows that 81 (r) = tan~! (v, / Qr), and this
can be used in conjunction with equation 2.1 in evaluating the incidence angle for a
given flow rate.

The incidence angle should not be confused with the “angle of attack,” which is the
angle between the incoming relative flow direction and the chord line (the line joining
the leading edge to the trailing edge). Note, however, that, in an axial flow pump with
straight helicoidal blades, the angle of attack is equal to the incidence angle.

At the trailing edge, the difference between the flow angle and the blade angle is
again important. To a first approximation one often assumes that the flow is parallel
to the blades, so that B(r) = Bp2(r). A departure from this idealistic assumption is
denoted by the deviation angle, 6 (), where, as shown in figure 2.3:

8(r) = Bra(r) — Pa(r) (2.2)

This is normally a function of the ratio of the width of the passage between the blades
to the length of the same passage, a geometric parameter known as the solidity which is
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Vo d

Bz P2

Figure 2.4. Velocity vectors at discharge indicating the slip velocity, vg;.

defined more precisely below. Other angles, that are often used, are the angle through
which the flow is turned, known as the deflection angle, B, — B1, and the corresponding
angle through which the blades have turned, known as the camber angle and denoted
by 0c = B2 — Pp1-

Deviation angles in radial machines are traditionally represented by the slip veloc-
ity, vgs, which is the difference between the actual and ideal circumferential velocities
of the discharge flow, as shown in figure 2.4. It follows that

vos = Ry — vg2 — vr2 ot B (2.3)

This, in turn, is used to define a parameter known as the s/ip factor, Sf, where

Vos

Sf=1-—
f QR,

=1 — ¢y (cot B2 —cot Bp2) (2.4)

Other, slightly different “slip factors” have also been used in the literature; for
example, Stodola (1927), who originated the concept, defined the slip factor as
1 — vgs / QRy(1 — ¢y cot Bp2). However, the definition 2.4 is now widely used. It
follows that the deviation angle, §, and the slip factor, Sf, are related by

(1—Sf))
(05}

where the flow coefficient, ¢, is defined later in equation 2.17.

8 = Bpa —cot™! <cot Bro + (2.5)

2.2 Cascades

We now turn to some specific geometric features that occur frequently in discussions
of pumps and other turbomachines. In a purely axial flow machine, the development of
a cylindrical surface within the machine produces a linear cascade of the type shown
in figure 2.5(a). The centerplane of the blades can be created using a “generator,” say
z=2"(r), which is a line in the rz—plane. If this line is rotated through a helical path,
it describes a helicoidal surface of the form

h,0

=7 () + 2 (2.6)
27
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Figure 2.5. Schematics of (a) a linear cascade and (b) a radial cascade.

where £, is the “pitch” of the helix. Of course, in many machines, the pitch is also a
function of 8 so that the flow is turned by the blades. If, however, the pitch is constant,
the development of a cylindrical surface will yield a cascade with straight blades and
constant blade angle, 5. Moreover, the blade thickness is often neglected, and the
blades in figure 2.5(a) then become infinitely thin lines. Such a cascade of infinitely
thin, flat blades is referred to as a flat plate cascade.

It is convenient to use the term “simple” cascade to refer to those geometries for
which the blade angle, S5, is constant whether in an axial, radial, or mixed flow
machine. Clearly, the flat plate cascade is the axial flow version of a simple cascade.

Now compare the geometries of the cascades at different radii within an axial flow
machine. Later, we analyse the cavitating flow occurring at different radii (see figure
7.35). Often the pitch at a given axial position is the same at all radii. Then it follows
that the radial variation in the blade angle, 85 (r), must be given by

2.7)
p

By(r) = tan— ! |:RTta—n'BbT]

where S is the blade angle at the tip, » = R7.

In a centrifugal machine in which the flow is purely radial, a cross-section of the
flow would be as shown in figure 2.5(b), an array known as a radial cascade. In a
simple radial cascade, the angle, B, is uniform along the length of the blades. The
resulting blade geometry is known as a logarithmic spiral, since it follows that the
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coordinates of the blades are given by the equation
0—6y=Alnr (2.8)

where A = cot 8, and 6 are constants. Logarithmic spiral blades are therefore equiva-
lent to straight blades in a linear cascade. Note that a fluid particle in a flow of uniform
circulation and constant source strength at the origin will follow a logarithmic spiral
since all velocities will be of the form C /r where C is a uniform constant.

In any of type of pump, the ratio of the length of a blade passage to its width is
important in determining the degree to which the flow is guided by the blades. The
solidity, s, is the geometric parameter that is used as a measure of this geometric
characteristic, and s can be defined for any simple cascade as follows. If we identify
the difference between the 6 coordinates for the same point on adjacent blades (call
this Af4) and the difference between the 6 coordinates for the leading and trailing
edges of a blade (call this Afp), then the solidity for a simple cascade is defined by

AOp

§=— (2.9)
AB4 cos By
Applying this to the linear cascade of figure 2.5(a), we find the familiar
s=c/h (2.10)

In an axial flow pump this corresponds to s = Zrc /27w R71, where c is the chord of the
blade measured in the developed meridional plane of the blade tips. On the other hand,
for the radial cascade of figure 2.5(b), equation 2.9 yields the following expression
for the solidity:

s =Zgtn(Ry/R1) /27 sin By (2.11)

which is, therefore, geometrically equivalent to c/A in the linear cascade.

In practice, there exist many “mixed flow” pumps whose geometries lie between
that of an axial flow machine (¢ =0, figure 2.1) and that of aradial machine (¢ = 7 /2).
The most general analysis of such a pump would require a cascade geometry in which
figures 2.5(a) and 2.5(b) were projections of the geometry of a meridional surface
(figure 2.2) onto a cylindrical surface and onto a plane perpendicular to the axis,
respectively. (Note that the 8, marked in figure 2.5(b) is not appropriate when that
diagram is used as a projection). We shall not attempt such generality here; rather, we
observe that the meridional surface in many machines is close to conical. Denoting
the inclination of the cone to the axis by ¥, we can use equation 2.9 to obtain an
expression for the solidity of a simple cascade in this conical geometry,

s =Zgtn(Ry/R1) /27 sin By sin® (2.12)

Clearly, this includes the expressions 2.10 and 2.11 as special cases.
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2.3 Flow Notation

The flow variables that are important are, of course, the static pressure, p, the total
pressure, p!, and the volume flow rate, Q. Often the total pressure is defined by
the total head, p’/pg. Moreover, in most situations of interest in the context of
turbomachinery, the potential energy associated with the earth’s gravitational field is
negligible relative to the kinetic energy of the flow, so that, by definition

1

pi=p+pv (2.13)
1

P =p+50 (v +0j) (2.14)
1

pl :p—l—ip (w2+2er9 —erz) (2.15)

using the velocity triangle of figure 2.2. In an incompressible flow, the total pressure
represents the total mechanical energy per unit volume of fluid, and, therefore, the
change in total pressure across the pump, pzT — plT, is a fundamental measure of the
mechanical energy imparted to the fluid by the pump.

It follows that, in a pump with an incompressible fluid, the overall characteristics
that are important are the volume flow rate, O, and the total pressure rise, pgH,
where H = ( pzT — plT) /pg is the total head rise. These dimensional characteristics
are conveniently nondimensionalized by defining a head coefficient, ¥/,

v =(p] — pl)/pR},Q* = gH R}, (2.16)
and one of two alternative flow coefficients, ¢p; and ¢;:
$1=0Q/A R or ¢r=0/ART2Q (2.17)

where A and A» are the inlet and discharge areas, respectively. The discharge flow
coefficient is the nondimensional parameter most often used to describe the flow rate.
However, in discussions of cavitation, which occurs at the inlet to a pump impeller,
the inlet flow coefficient is a more sensible parameter. Note that, for a purely axial
inflow, the incidence angle is determined by the flow coefficient, ¢1:

a(r) = Bp1(r) —tan~ ' (¢17/R71) (2.18)

Furthermore, for a given deviation angle, specifying ¢, fixes the geometry of the
velocity triangle at discharge from the pump.

Frequently, the conditions at inlet and/or discharge are nonuniform and one must
subdivide the flow into annular streamtubes, as indicated in figure 2.2. Each stream-
tube must then be analysed separately, using the blade geometry pertinent at that
radius. The mass flow rate, m, through an individual streamtube is given by

m = 2mprv,dn (2.19)
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where n is a coordinate measured normal to the meridional surface, and, in the present
text, will be useful in describing the discharge geometry.

Conservation of mass requires that m have the same value at inlet and discharge.
This yields a relation between the inlet and discharge meridional velocities, that
involves the cross-sectional areas of the streamtube at these two locations. The
total volume flow rate through the turbomachine, Q, is then related to the velocity
distribution at any location by the integral

Q= f 2 rvy(r)dn (2.20)

The total head rise across the machine, H, is given by the integral of the total rate
of work done on the flow divided by the total mass flow rate:

T _ 5T
H— i/ (p; (r) — py (r))ZjTrvm(r)dl’l (2.21)
0 rg

These integral expressions for the flow rate and head rise will be used in later chapters.

2.4 Specific Speed

At the beginning of any pump design process, neither the size nor the shape of the
machine is known. The task the pump is required to perform is to use a shaft rotating
at a frequency, Q (in rad/s), to pump a certain flow rate, Q (in m?>/s) through a
head rise, H (in m). As in all fluid mechanical formulations, one should first seek
a nondimensional parameter (or parameters) which distinguishes the nature of this
task. In this case, there is one and only one nondimensional parametric group that is
appropriate and this is known as the “specific speed,” denoted by N. The form of the
specific speed is readily determined by dimensional analysis:

N = QQi
(gH)*

(2.22)

Though originally constructed to allow evaluation of the shaft speed needed to produce
aparticular head and flow, the name “specific speed” is slightly misleading, because N
is just as much a function of flow rate and head rise as it is of shaft speed. Perhaps amore
general name, like “the basic performance parameter,” would be more appropriate.
Note that the specific speed is a size-independent parameter, since the size of the
machine is not known at the beginning of the design process.

The above definition of the specific speed has employed a consistent set of units,
so that N is truly dimensionless. With these consistent units, the values of N for most
common turbomachines lie in the range between 0.1 and 4.0 (see below). Unfortu-
nately, it has been traditional in industry to use an inconsistent set of units in calculating
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N. In the USA, the g is dropped from the denominator, and values for the speed, flow
rate, and head in rpm, gpm, and ft are used in calculating N. This yields values that
are a factor of 2734.6 larger than the values of N obtained using consistent units. The
situation is even more confused since the Europeans use another set of inconsistent
units (rpm, m> /s, head in m, and no g) while the British employ a definition similar
to the United States, but with Imperial gallons rather than U.S. gallons. One can only
hope that the pump (and turbine) industries would cease the use of these inconsistent
measures that would be regarded with derision by any engineer outside of the industry.
In this monograph, we shall use the dimensionally consistent and, therefore, universal
definition of N.

Note that, since Q and gH were separately nondimensionalized in the definitions
2.16 and 2.17, N can be related to the corresponding flow and head coefficients by

11
T RZ * P2

N= |:cosz9 (1 B Rgz)j| _23 (2.23)
T2 Y4

In the case of a purely centrifugal discharge ( = 7 /2), the quantity within the square
brackets reduces to 2w By / Rr>.

Since turbomachines are designed for specific tasks, the subscripted Np will be
used to denote the design value of the specific speed for a given machine.

2.5 Pump Geometries

Since the task specifications for a pump (or turbine or compressor or other machine)
can be reduced to the single parameter, Np, it is not surprising that the overall or
global geometries of pumps, that have evolved over many decades, can be seen to
fit quite neatly into a single parameter family of shapes. This family is depicted in
figure 2.6. These geometries reflect the fact that an axial flow machine, whether a
pump, turbine, or compressor, is more efficient at high specific speeds (high flow rate,
low head) while a radial machine, that uses the centrifugal effect, is more efficient at
low specific speeds (low flow rate, high head). The same basic family of geometries is
presented quantitatively in figure 2.7, where the anticipated head and flow coefficients
are also plotted. While the existence of this parametric family of designs has emerged
almost exclusively as a result of trial and error, some useful perspectives can be
obtained from an approximate analysis of the effects of the pump geometry on the
hydraulic performance (see section 4.3).

Normally, turbomachines are designed to have their maximum efficiency at the
design specific speed, Np. Thus, in any graph of efficiency against specific speed,
each pump geometry will trace out a curve with a maximum at its optimum specific
speed, as illustrated by the individual curves in figure 2.8. Furthermore, Balje (1981)
has made note of another interesting feature of this family of curves in the graph of
efficiency against specific speed. First, he corrects the curves for the different viscous
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Figure 2.6. Ranges of specific speeds for typical turbomachines and typical pump geometries for different
design speeds (from Sabersky, Acosta and Hauptmann 1989).

effects which can occur in machines of different size and speed, by comparing the data
on efficiency at the same effective Reynolds number using the diagram reproduced as
figure 2.9. Then, as can be seen in figure 2.8, the family of curves for the efficiency
of different types of machines has an upper envelope with a maximum at a specific
speed of unity. Maximum possible efficiencies decline for values of Np greater or
less than unity. Thus the “ideal” pump would seem to be that with a design specific
speed of unity, and the maximum obtainable efficiency seems to be greatest at this
specific speed. Fortunately, from a design point of view, one of the specifications has
some flexibility, namely the shaft speed, 2. Though the desired flow rate and head
rise are usually fixed, it may be possible to choose the drive motor to turn at a speed,
2, which brings the design specific speed close to the optimum value of unity.

2.6 Energy Balance

The next step in the assessment of the performance of a turbomachine is to consider the
application of the first and second laws of thermodynamics to such devices. In doing so
we shall characterize the inlet and discharge flows by their pressure, velocity, enthalpy,
etc., assuming that these are uniform flows. It is understood that when the inlet and
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Figure 2.7. General design guidelines for pumps indicating the optimum ratio of inlet to discharge tip
radius, R71/R712, and discharge width ratio, By/R7,, for various design specific speeds, Np. Also
shown are approximate pump performance parameters, the design flow coefficient, ¢ p, and the design
head coefficient, ¥ p (adapted from Sabersky, Acosta and Hauptmann 1989).

discharge flows are non-uniform, the analysis actually applies to a single streamtube
and the complete energy balance requires integration over all of the streamtubes.

The basic thermodynamic measure of the energy stored in a unit mass of flowing
fluid is the total specific enthalpy (total enthalpy per unit mass) denoted by 47 and
defined by

1 I
hT=h+§|u|2+gz=e+%+§|u|2+gz (2.24)

where e is the specific internal energy, |u| is the magnitude of the fluid velocity, and z
is the vertical elevation. This expression omits any energy associated with additional
external forces (for example, those due to a magnetic field), and assumes that the
process is chemically inert.

Consider the steady state operation of a fluid machine in which the entering fluid
has a total specific enthalpy of 7, the discharging fluid has a total specific enthalpy
of h 2T , the mass flow rate is m, the net rate of heat addition to the machine is Q, and the
net rate of work done on the fluid in the machine by external means is W. It follows
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Figure 2.8. Compilation by Balje (1981) of maximum efficiencies for various kinds of pumps as a
function of design specific speed, Np. Since efficiency is also a function of Reynolds number the data
has been corrected to a Reynolds number, ZQR%2 /v, of 108.
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Figure 2.9. The dependence of hydraulic efficiency, 1 p, and shaft efficiency, 15, on Reynolds number,
2QR3., /v (from Balje 1981).

from the first law of thermodynamics that
mhl —nly=04+Ww (2.25)

Now consider incompressible, inviscid flow. It is a fundamental property of such a
flow that it contains no mechanism for an exchange of thermal and mechanical energy,
and, therefore, equation 2.25 divides into two parts, governing the mechanical and
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thermal components of the total enthalpy, as follows:

T _ T ;
P2 =P W5 )
m

1 1
(p/p+ 5|u|2 +g2)2—(p/p+ 5|u|2 +g2)1 =

er—e; = Q/m (2.27)

Thus, for incompressible inviscid flow, the fluid mechanical problem (for which
equation 2.26 represents the basic energy balance) can be decoupled from the heat
transfer problem (for which the heat balance is represented by equation 2.27).

It follows that, if T is the torque applied by the impeller to the fluid, then the rate
of work done on the fluid is W = T'2. Consequently, in the case of an ideal fluid
which is incompressible and inviscid, equation 2.26 yields a relation connecting the
total pressure rise across the pump, pZT — plT, the mass flow rate, m, and the torque:

T _ T
mp2 P
0

—TQ (2.28)

Furthermore, the second law of thermodynamics implies that, in the presence of
irreversible effects such as those caused by viscosity, the equality in equation 2.28
should be replaced by an inequality, namely a “less than” sign. Consequently, in a real
pump operating with an incompressible fluid, viscous effects will cause some of the
input energy to be converted to heat rather than to an increase in the stored energy in
the fluid. It follows that the right-hand side of equation 2.28 is the actual work done
on the fluid by the impeller, and the left-hand side is the fraction of that work which
ends up as mechanical energy stored in the fluid. It is, therefore, appropriate to define
a quantity, np, known as the pump hydraulic efficiency, to represent that fraction of
the work done on the fluid that ends up as an increase in the mechanical energy stored
in the fluid:

ne=m(pf —pl) /o7 (2.29)

Of course, additional mechanical losses may occur in a pump. These can cause
the rate of work transmitted through the external shaft of the pump to be greater
than the rate at which the impeller does work on the fluid. For example, losses may
occur in the bearings or as a result of the “disk friction” losses caused by the fluid
dynamic drag on other, non-active surfaces rotating with the shaft. Consequently, the
overall (or shaft) efficiency, ns, may be significantly smaller than n p. For approximate
evaluations of these additional losses, the reader is referred to the work of Balje (1981).

Despite all these loss mechanisms, pumps can be surprisingly efficient. A well
designed centrifugal pump should have an overall efficiency in the neighborhood of
85% and some very large pumps (for example, those in the Grand Coulee Dam) can
exceed 90%. Even centrifugal pumps with quite simple and crude geometries can
often be 60% efficient.
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2.7 Noncavitating Pump Performance

It is useful at this point to develop an approximate and idealized evaluation of the
hydraulic performance of a pump in the absence of cavitation. This will take the form
of an analytical expression for the head rise (or /) as a function of the flow rate (or ¢»).

To simplify this analysis it is assumed that the flow is incompressible, axisym-
metric and steady in the rotating framework of the impeller blades; that the blades
are infinitely thin; and that viscous losses can be neglected. Under these conditions
the flow in any streamtube, such as depicted in figure 2.2, will follow the Bernoulli
equation for a rotating system (see, for example, Sabersky, Acosta and Hauptmann
1989),

2ﬂ+w%—r%92=@+w§—r592 (2.30)

o P

This equation can be usefully interpreted as an energy equation as follows. The terms
p+ %,ow2 on either side are the total pressure or mechanical energy per unit volume
of fluid, and this quantity would be the same at inlet and discharge were it not for the
fact that “potential” energy is stored in the rotating fluid. The term ,o(r12 — 1*22)92 /2
represents the difference in this “potential” energy at inlet and discharge. Clearly,
when there are losses, equation 2.30 will no longer be true.

Using the definition of the total pressure (equation 2.13) and the relations between
the velocities derived from the velocity triangles of figure 2.2, equation 2.30 can be
manipulated to yield the following expression for the total pressure rise, ( pzT — plT),
for a given streamtube:

(v3 —v?) (2.31)

0
pf—p'fr=pz—p1+5

= p(Qraver — Qriver) (2.32)

In the absence of inlet swirl (vg; = 0), this leads to the nondimensional performance
characteristic

¥ =1—¢scot B (2.33)

using the definitions in equations 2.16 and 2.17. Here we have assumed that the inlet
and discharge conditions are uniform which, in effect, restricts the result to a turboma-
chine in which the widths, By and B, (figure 2.1), are such that B; < Rr1, B» < Rr2,
and in which the velocities of the flow and the impeller are uniform across both
the inlet and the discharge. Usually this is not the case, and the results given by
equations 2.32 and 2.33 then become applicable to each individual streamtube. Inte-
gration over all the streamtubes is necessary to obtain the performance characteristic
for the machine. An example of this integration was given in section 2.3. Even in these
nonuniform cases, the simple expression 2.33 is widely used in combination with
some mean or effective discharge blade angle, 8,7, to estimate the performance of
a pump.
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It is important to note that the above results can be connected with those of the
preceding section by applying the angular momentum theorem (Newton’s second law
of motion applied to rotational motion) to relate the torque, 7', to the net flux of angular
momentum out of the pump:

T =m(rpvgr —rivgl) (2.34)

where, as before, m is the mass flow rate. Note that this momentum equation 2.34
holds whether or not there are viscous losses. In the absence of viscous losses, a
second expression for the torque, 7', follows from equation 2.28. By equating the two
expressions, the result 2.32 for the performance in the absence of viscous losses is
obtained by an alternative method.

2.8 Several Specific Impellers and Pumps

Throughout this monograph, we shall make reference to experimental data on various
phenomena obtained with several specific impellers and pumps. It is appropriate at
this point to include a brief description of these components. The descriptions will
also serve as convenient examples of pump geometries.

Impeller X, which is shown in figure 2.10, is a 5-bladed centrifugal pump impeller
made by Byron Jackson Pump Division of Borg Warner International Products. It has
a discharge radius, R77 = 8.1 cm, a discharge blade angle, 8,72, of 23°, and a design

73° 7.95
437 358

16.19

65° 10.80
11.74

3.81
8.10

1.57

ALL DIMENSIONS
IN CENTIMETERS

Figure 2.10. A centrifugal pump impeller designated Impeller X.
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Figure 2.11. A vaneless spiral volute (designated Volute A) designed to be matched to Impeller X.

specific speed, Np, of 0.57. Impeller X was often tested in combination with Volute
A (figure 2.11), a single exit, spiral volute with a base circle of 18.3 ¢m and a spiral
angle of 4°. It is designed to match Impeller X at a flow coefficient of ¢, = 0.092.
This implies that the principles of fluid continuity and momentum have been utilized
in the design, so that the volute collects a circumferentially uniform discharge from
the impeller and channels it to the discharge line in such a way that the pressure in the
volute is circumferentially uniform, and in a way that minimizes the viscous losses in
the decelerating flow. For given volute and impeller geometries, these objectives can
only by met at one “design” flow coefficient, as described in section 4.4. We would
therefore expect that the hydraulic losses would increase, and the efficiency decrease,
at off-design conditions. It is valuable to emphasize that the performance of a pump
depends not only on the separate designs of the impeller and volute but also on the
matching of the two components.
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Figure 2.12. Two cavitating inducers for which performance data is presented. On the left a
7.58 cm diameter, 9° helical Impeller V (a 10.2 cm version is designated Impeller VII). On the right a
7.58 cm diameter scale model of the impeller in the SSME low pressure LOX turbopump, Impeller IV
(a 10.2 cm version is designated Impeller VI).

Two particular axial flow pumps or inducers, designed to function with cavitation,
will also be referred to frequently. These are shown in figure 2.12. In a number of
contexts, data for several simple 9° helical inducers (Bp71 = 9°) will be used for
illustrative purposes, and a typical geometry is shown on the left of figure 2.12. Two
7.58 cm diameter versions were deployed: Impeller III had straight, radial leading
edges and Impeller V, with swept leading edges, is shown in figure 2.12. A 10.2 c¢m
diameter version with swept leading edges is designated Impeller VII.

The second inducer geometry is pertinent to a somewhat lower specific speed.
Impellers IV (7.58 ¢m diameter) and VI (10.2 ¢m diameter) were scale models of the
low pressure liquid oxygen impeller in the Space Shuttle Main Engine (SSME). These
have a design flow coefficient of about 0.076; other dimensions are given in table 7.1.
Furthermore, some detailed data on blade angles, Bp1(r), and blade thickness are
given in figure 7.39.



Two-Dimensional Performance Analysis

3.1 Introduction

In this and the following chapter, we briefly survey the more detailed analyses of
the flow in axial and centrifugal pumps, and provide a survey of some of the mod-
els used to synthesize the noncavitating performance of these turbomachines. The
survey begins in this chapter with a summary of some of the results that emerge
from a more detailed analysis of the two-dimensional flow in the meridional plane
of the turbomachine, while neglecting most of the three-dimensional effects. In this
regard, sections 3.2 through 3.4 address the analyses of linear cascades for axial flow
machines, and section 3.5 summarizes the analyses of radial cascades for centrifugal
machines. Three-dimensional effects are addressed in the next chapter.

3.2 Linear Cascade Analyses

The fluid mechanics of a linear cascade will now be examined in more detail, so that
the role played by the geometry of the blades and information on the resulting forces
on individual blades may be used to supplement the analysis of section 2.7. Referring
to the periodic control volume indicated in figure 3.1, and applying the momentum
theorem to this control volume, the forces, F, and F, imposed by the fluid on each
blade (per unit depth normal to the sketch), are given by

Fy=—(p2—p1h (3.1
Fy = phv,, (wy cos B — w; cos B) 3.2)

where, as a result of continuity, v,1 = vu2 = vy. Note that F) is entirely consistent
with the expression 2.34 for the torque, 7.

To proceed, we define the vector mean of the relative velocities, w; and w», as
having a magnitude wj; and a direction S, where by simple geometry

cot By = %(cotﬂl + cot ) (3.3)

u)M=vm/sin,3M (3.4

22
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Figure 3.1. Schematic of a linear cascade showing the blade geometry, the periodic control volume and
the definition of the lift, L, and drag, D, forces on a blade.

It is conventional and appropriate (as discussed below) to define the lift, L, and the
drag, D, components of the total force on a blade, (sz + F yz)%, as the components
normal and tangential to the vector mean velocity, wjs. More specifically, as shown
in figure 3.1,

L =—FycosBy + FysinBy 3.5
D = Fysin By + Fycos By (3.6)

where L and D are forces per unit depth normal to the sketch. Nondimensional lift
and drag coefficients are defined as

1 1
CL=L/§,0w%,,c; CD=D/§,0w%,,c (3.7
The list of fundamental relations is complete if we write the expression for the pressure

difference across the cascade as

0
P1 —p2=APZ+§(w%—w§) (3.8)
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where A pz denotes the total pressure loss across the cascade caused by viscous
effects. In frictionless flow, A pz = 0, and the relation 3.8 becomes the Bernoulli
equation in rotating coordinates (equation 2.30 with r; = r, as is appropriate here).
A nondimensional loss coefficient, f, is defined as:

1
f=AapL/5owk (3.9)

Equations 3.1 through 3.9 can be manipulated to obtain expressions for the lift and
drag coefficients as follows:

Cp=2fsinfy/s (3.10)
cL:%[ﬂsinﬁMJrf(d’_C(_’sﬂMsmﬁM)] (3.11)
s|l¢ sin By

where s = c¢/h is the solidity, ¥ is the head coefficient, (pzT - plT) / pQ%2R?, and
¢ is the flow coefficient, v, / QR. Note that in frictionless flow Cp =0 and Cp =
24 sin By / ¢s; then the total force (lift) on the foil is perpendicular to the direction
defined by the 8;s of equation 3.3. This provides confirmation that the directions we
chose in defining L and D (see figure 3.1) were appropriate for, in frictionless flow,
Cp must indeed be zero.

Also note that equations 3.1 through 3.9 yield the head/flow characteristic given by

¥ = ¢ (cot B —cot o) — f¢* (1+cot?® Bur) (3.12)

which, when there is no inlet swirl or prerotation so that tan 1 = ¢, becomes

1//:1—¢cot/32—f|:¢2+%(1+¢>cot,32)2] (3.13)

In frictionless flow, when the discharge is parallel with the blades (8> = 8p2), this, of
course, reduces to the characteristic equation 2.33. Note that the use of the relation
3.13 allows us to write the expression 3.11 for the lift coefficient as

CL= %[2sin,3M(cotﬂ1 —cotBuy) — fcosBul (3.14)

Figure 3.2 presents examples of typical head/flow characteristics resulting from
equation 3.13 for some chosen values of 8, and the friction coefficient, f. It should be
noted that, in any real turbomachine, f will not be constant but will vary substantially
with the flow coefficient, ¢, which determines the angle of incidence and other flow
characteristics. More realistic cases are presented a little later in figure 3.3.
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Figure 3.2. Calculated head/flow characteristics for some linear cascades.
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figure 3.2.
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Figure 3.4. The performance parameter, 1, as a function of solidity, s, for flat plate cascades with
different blade angles, fj,. Adapted by Wislicensus (1947) (see also Sabersky, Acosta and Hauptmann
1989) from the potential flow theory of Konig (1922).

The observant reader will have noted that all of the preceding equations of this
section involve only the inclinations of the flow and not of the blades, which have
existed only as ill-defined objects that achieve the turning of the flow. In order to
progress further, it is necessary to obtain a detailed solution of the flow, one result of
which will be the connection between the flow angles (854, 82) and the geometry of the
blades, including the blade angles (8p, Bp1, Bp2). A large literature exists describing
methods for the solutions of these flows, but such detail is beyond the scope of
this text. As in most high Reynolds number flows, one begins with potential flow
solutions, for which the reader should consult a modern text, such as that by Horlock
(1973), or the valuable review by Roudebush (1965). Konig (1922) produced one
of the earliest potential flow solutions, namely that for a simple flat plate cascade
of infinitely thin blades. This was used to generate figure 3.4. Such potential flow
methods must be supplemented by viscous analyses of the boundary layers on the
blades and the associated wakes in the discharge flow. Leiblein (1965) provided an
excellent review of these viscous flow methods, and some of his basic methodology
will be introduced later.

To begin with, however, one can obtain some useful insights by employing our
basic knowledge and understanding of lift and drag coefficients obtained from tests,
both those on single blades (airfoils, hydrofoils) and those on cascades of blades. One
such observation is that the lift coefficient, Cy, is proportional to the sine of the angle
of attack, where the angle of attack is defined as the angle between the mean flow
direction, s, and a mean blade angle, Bp5s. Thus

Cp=mypsin(Bpm — Bm) (3.15)
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where m is a constant, a property of the blade or cascade geometry. In the case of
frictionless flow (f = 0), the expression 3.15 may be substituted into equation 3.14,
resulting in an expression for 8j;. When this is used with equation 3.13, the following
head/flow characteristic results:

. 2my.ssin Bpy |:1—¢(cotﬂbM+Z£>] (3.16)

4+mLSSin,3bM ml

where, for convenience, the first factor on the right-hand side is denoted by

Yo

2my s sin Bpy _[1 cotﬂz—cotﬁbz]_l (3.17)

C A4mpssinfpy cot B1 —cot 2

The factor, g, is known as the frictionless shut-off head coefficient, since it is
equal to the head coefficient at zero flow rate. The second expression for 1 fol-
lows from the preceding equations, and will be used later. Note that, unlike equation
3.13, the head/flow characteristic of equation 3.16 is given in terms of m 7 and practical
quantities, such as the blade angle, S, and the inlet swirl or prerotation, vy / Uml.

It is also useful to consider the drag coefficient, Cp, for it clearly defines f and
the viscous losses in the cascade. Instead of being linear with angle of attack, Cp will
be an even function so an appropriate empirical result corresponding to equation 3.15
would be

Cp = Cpo+mpsin® (Byyr — Bur) (3.13)

where Cpo and mp are constants. Some head/flow characteristics resulting from
typical values of Cpg and m p are shown in figure 3.3. Note that these performance
curves have a shape that is closer to practical performance curves than the constant
friction factor results of figure 3.2.

3.3 Deviation Angle

While the simple, empirical approach of the last section has practical and educational
value, it is also valuable to consider the structure of the flow in more detail, and to
examine how higher level solutions to the flow might be used to predict the perfor-
mance of a cascade of a particular geometry. In doing so, it is important to distinguish
between performance characteristics that are the result of idealized inviscid flow and
those that are caused by viscous effects. Consider, first, the inviscid flow effects.
Konig (1922) was the first to solve the potential flow through a linear cascade, in
particular for a simple cascade of infinitely thin, straight blades. The solution leads to
values of the deviation, §, that, in turn, allow evaluation of the shut-off head coeffi-
cient, ¥, through equation 3.17. This is shown as a function of solidity in figure 3.4.
Note that for solidities greater than about unity, the idealized, potential flow exits the
blade passages parallel to the blades, and hence g — 1.
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Another approach to the same issue of relating the flow angle, S8, to the blade
angles, is to employ an empirical rule for the deviation angle, § = B3> — 82 (equation
2.2), in terms of other geometric properties of the cascade. One early empirical relation
suggested by Constant (1939) (see Horlock 1973) relates the deviation to the camber
angle, 6., and the solidity, s, through

Sn=C 0,/ (3.19)

where the subscript N refers to nominal conditions, somewhat arbitrarily defined as
the operating condition at which the deflection (8> — f1) has a value that is 80% of
that at which stall would occur. Constant suggested a value of 0.26 for the constant, C.
Note that 8, can then be evaluated and the head rise obtained from the characteristic
3.12. Later investigators explored the variations in the deviation angle with other flow
parameters (see, for example, Howell 1942), and devised more complex correlations
for use in the design of axial flow rotors (Horlock 1973). However, the basic studies of
Leiblein on the boundary layers in linear cascades, and the role which these viscous
effects play in determining the deviation and the losses, superceded much of this
empirical work.

3.4 Viscous Effects in Linear Cascades

It is also of value to examine in more detail the mechanism of viscous loss in a
cascade. Even in two-dimensional cascade flow, the growth of the boundary layers on
the pressure and suction surfaces of the blades, and the wakes they form downstream
of the blades (see figure 3.5), are complex, and not amenable to simple analysis.
However, as the reviews by Roudebush and Lieblein (1965) and Lieblein (1965)
demonstrate, it is nevertheless possible to provide some qualitative guidelines for the
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Figure 3.5. Sketch of the boundary layers on the surfaces of a cascade and the resulting blade wakes.
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Figure 3.6. Correlation of the ratio of the momentum thickness of the blade wakes, 6%, to the chord, c,
with the diffusion factor, Df, for cascades of blades with three different profiles: NACA 65 — (A1¢)
10 series (o) and two British C.4 parabolic arc profiles (O and <). The maximum thickness of the blades
is 0.1¢ and the Reynolds number is 2.5 x 10°. Adapted from Lieblein (1965).

resulting viscous effects on cascade performance. In this respect, the diffusion factor,
introduced by Lieblein et al. (1953), is a useful concept that is based on the following
approximations. First, we note that under normal operating conditions, the boundary
layer on the suction surface will be much thicker than that on the pressure surface of the
foil, so that, to a first approximation, we may neglect the latter. Then, the thickness
of the wake (and therefore the total pressure loss) will be primarily determined by
that fraction of the suction surface over which the velocity gradient is adverse, since
that is where the majority of the boundary layer growth occurs. Therefore, Lieblein
et al. argued, the momentum thickness of the wake, 6*, should correlate with a
parameter they termed the diffusion factor, given by (Wax — W2)/Wmax, Where wy,qx
is the maximum velocity on the suction surface. One should visualize deceleration or
diffusion of the flow from wy,,, to wy, and that this diffusion is the primary factor
in determining the wake thickness. However, since wy,,, is not easily determined,
Lieblein ef al. suggest an approximation to the diffusion factor that is denoted Df,
and given by

Df =1 Y2, Y=L
wi 2SU)]
_y_sinp1  sinpi(cot By —cot ) (3.20)
sin 8y 2s

Figure 3.6 shows the correlation of the momentum thickness of the wake (normalized
by the chord) with this diffusion factor, Df, for three foil profiles. Such correlations
are now commonly used to determine the viscous loss due to blade boundary layers
and wakes. Note that, once 6*/c has been determined from such a correlation, the
drag coefficient, Cp, and the friction or loss coefficient follow from equations 3.7,
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3.9, and 3.10 and the fact that D = pw%@*:

2sin? By 0* s sin By 6*
Cp= ) 5 f= ) (321)
sin“f8, ¢ sin“ 8, ¢

The data shown in figure 3.6 were for a specific Reynolds number, Re, and the
correlations must, therefore, be supplemented by a statement on the variation of the
loss coefficient with Re. A number of correlations of this type exist (Roudebush
and Lieblein 1965), and exhibit the expected decrease in the loss coefficient with
increasing Re. For more detail on viscous losses in a cascade, the reader should
consult the aforementioned papers by Lieblein.

In an actual turbomachine, there are several additional viscous loss mechanisms
that were not included in the cascade analyses discussed above. Most obviously, there
are additional viscous layers on the inner and outer surfaces that bound the flow, the
hub and the shroud (or casing). These often give rise to complex, three-dimensional
secondary flows that lead to additional viscous losses (Horlock and Lakshminarayana
1973). Moreover, the rotation of other, “non-active” surfaces of the impeller will lead
to viscous shear stresses, and thence to losses known as “disk friction losses” in the
terminology of turbomachines. Also, leakage flows from the discharge back to the
suction, or from one stage back to a preceding stage in a multistage pump, constitute
effective losses that must be included in any realistic evaluation of the losses in an
actual turbomachine (Balje 1981).

3.5 Radial Cascade Analyses

Two-dimensional models for centrifugal or radial turbomachines begin with analyses
of the flow in a radial cascade (section 2.2 and figure 3.7), the counterpart of the
linear cascade for axial flow machines. More specifically, the counterpart of the
linear flat plate cascade is the logarithmic spiral cascade, defined in section 2.2, and
shown in more detail in figure 3.7. There exist simple conformal mappings that allow
potential flow solutions for the linear cascade to be converted into solutions for the
corresponding radial cascade flow, though the proper interpretation of these solutions
requires special care. The resulting head/flow characteristic for frictionless flow in a
radial cascade of infinitely thin logarithmic spiral blades is given in a classic paper by
Busemann (1928), and takes the form

Vv =Sfp— Yoo (COt,Bb + ﬂ) (3.22)

Um1
The terms Sfp and 1o result from quite separate and distinct fluid mechanical effects.
The term involving v is a consequence of the frictionless, potential flow head rise
through any simple, nonrotating cascade whether of axial, radial, or mixed flow
geometry. Therefore, v is identical to the quantity, vy, defined by equation 3.17 in
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Figure 3.7. Schematic of the radial cascade corresponding to the linear cascade of figure 3.1.

the context of a linear cascade. The values for ¥ for a simple cascade of infinitely
thin blades, whether linear, radial or mixed flow, are given in figure 3.4. The vy term
can be thought of as the “through flow” effect, and, as demonstrated by figure 3.4,
the value of vy rapidly approaches unity when the solidity increases to a value a little
greater than one.

However, it is important to recognize that the vy term is the result of a frictionless,
potential flow solution in which the vorticity is zero. This solution would be directly
applicable to a static or nonrotating radial cascade in which the flow entering the
cacade has no component of the vorticity vector in the axial direction. This would be
the case for a nonswirling axial flow that is deflected to enter a nonrotating, radial
cascade in which the axial velocity is zero. But, relative to a rotating radial cascade
(or centrifugal pump impeller), such an inlet flow does have vorticity, specifically a
vorticity with magnitude 22 and a direction of rotation opposite to the direction of
rotation of the impeller. Consequently, the frictionless flow through the impeller is
not irrotational, but has a constant and uniform vorticity of —2£2.

In inviscid fluid mechanics, one frequently obtains solutions for these kinds of
rotational flows in the following way. First, one obtains the solution for the irrotational
flow, which is represented by ¥ in the current problem. Mathematically, this is the
complementary solution. Then one adds to this a particular solution that satisfies all the
same boundary conditions, but has a uniform vorticity, —2€2. In the present context,
this particular, or rotational, solution leads to the term, Sfp, which, therefore, has a
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Figure 3.8. A sketch of the displacement component of the inviscid flow through a rotating radial
cascade.

quite different origin from the irrotational term, 9. The division into the rotational
solution and the irrotational solution is such that all the net volumetric flow through the
impeller is included in the irrotational (or 1) component. The rotational solution has
no through flow, but simply consists of a rotation of the fluid within each blade passage,
as sketched in figure 3.8. Busemann (1928) called this the displacement flow; other
authors refer to its rotating cells as relative eddies (Balje 1980, Dixon 1978). In his
pioneering work on the fluid mechanics of turbomachines, Stodola (1927) was among
the first to recognize the importance of this rotational component of the solution.
Busemann (1928) first calculated its effect upon the head/flow characteristic for the
case of infinitely thin, logarithmic spiral blades, in other words the simple cascade in
the radial configuration. For reasons which will become clear shortly, the function,
Sfp, is known as the Busemann slip factor, and Busemann’s solutions lead to the
values presented in figure 3.9 when the solidity, s > 1.1. Note that the values of Sfp
are invariably less than or equal to unity, and, therefore, the effect of the displacement
flow is to cause a decrease in the head. This deficiency can, however, be minimized
by using a large number of blades. As the number of blades gets larger, Sfp tends to
unity as the rotational flow within an individual blade passage increasingly weakens.
In practice, however, the frictional losses will increase with the number of blades.
Consequently, there is an important compromise that must be made in choosing the
number of blades. As figure 3.9 shows, this compromise will depend on the blade angle.
Furthermore, the compromise must also take into account the structural requirements
for the blades. Thus, radial machines for use with liquids usually have a smaller number
of blades than those used for gases. The reason for this is that a liquid turbomachine
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Figure 3.9. The Busemann slip factor, Sfp, plotted against the blade angle, S, for various numbers of
blades, Zg. The results shown are for radial cascades of infinitely thin logarithmic spiral blades with
solidities, s > 1.1. Adapted by Sabersky, Acosta and Hauptmann (1989) and Wislicenus (1947) from
Busemann’s (1928) theory.

requires much thicker blades, and, therefore, each blade creates much more flow
blockage than in the case of a gas turbomachine. Consequently, liquid machines tend
to have a smaller number of blades, typically eight for the range of specific speeds for
which radial machines are designed (Np < 1.5) (Stepanoff 1948, Anderson). Another
popular engineering criterion (Stepanoff 1948) is that Zr should be one third of the
discharge blade angle, §;, (in degrees).

The decrease in the head induced by the displacement flow is due to the nonuni-
formity in the discharge flow; this nonuniformity results in a mean angle of discharge
(denoted by B7) that is different from the discharge blade angle, f,, and, there-
fore, implies an effective deviation angle or s/ip, Sf (see section 2.1). In fact, it is
clear that the relations 2.16, 2.32, 3.22, and 2.4 imply that Sf = Sfp, and, hence,
the terminology used above. Stodola (1927) recognized that slip would be a conse-
quence of the displacement flow, and estimated the magnitude of the slip velocity,
vgs, in the following approximate way. He argued that the slip velocity could be
roughly estimated as Q2d/2, where d/2 is the radius of the blade discharge circle
shown in figure 3.8. He visualized this as representative of the rotating cell of fluid
in a blade passage, and that the rotation of this cell at & would lead to the afore-
mentioned vg,. Then, provide Zg is not too small, d &~ 27 R, sin 3, and it follows
that

vos = TQRysinBpr/ZR (3.23)

and, from equation 2.4, that the estimated slip factor, Sfs, is

Sfg =1 TSP (3.24)
ZR
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Numerical comparisons with the more exact results of Busemann presented in
figure 3.9, show that equation 3.24 gives a reasonable first approximation. For exam-
ple, an impeller with four blades, a blade angle of 25°, and a solidity greater than
unity, has a Stodola slip factor of Sfs = 0.668 compared to the value of Sfp = 0.712
from Busemann’s more exact theory.

There is a substantial literature on slip factors for centrifugal pumps. Some of
this focuses on the calculation of slip factors for inviscid flow in radial cascades with
blades that are more complex than the infinitely thin, logarithmic spiral blades used by
Busemann. Useful reviews of some of this work can be found, for example, in the work
of Wislicenus (1947), Stanitz (1952), and Ferguson (1963). Other researchers attempt
to find slip factors that provide the best fit to experimental data. In doing so, they also
attempt to account for viscous effects in addition to the inviscid effect for which the
slip factor was originally devised. As an example of this approach, the reader may
consult Wiesner (1967), who reviews the existing, empirical slip factors, and suggests
one that seems to yield the best comparison with the experimental measurements.

3.6 Viscous Effects in Radial Flows

We now turn to a discussion of the viscous effects in centrifugal pumps. Clearly a
radial cascade will experience viscous boundary layers on the blades that are similar
to those discussed earlier for axial flow machines (see section 3.4). However, two
complicating factors tend to generate loss mechanisms that are considerably more
complicated. These two factors are flow separation and secondary flow.

Normally, the flow in a centrifugal pump separates from the suction surface near
the leading edge, and produces a substantial wake on the suction surfaces of each of
the blades. Fischer and Thoma (1932) first identified this phenomenon, and observed
that the wake can occur even at design flow. Normally, it extends all the way to the
impeller discharge. Consequently, the discharge flow consists of a low velocity zone
or wake next to the suction surface, and, necessarily, a flow of increased velocity in
the rest of the blade passage. This “jet-wake structure” of the discharge is sketched
in figure 3.10. Note that this viscous effect tends to counteract the displacement flow
of figure 3.8. Since the work of Fischer and Thoma, many others have studied this
aspect of flows in centrifugal pumps and compressors (see, for example, Acosta and
Bowerman 1957, Johnston and Dean 1966, Eckardt 1976), and it is now recognized
as essential to take these features into account in constructing any model of the flow
in radial turbomachines. Modern analyses of the flow in radial turbomachines usually
incorporate the basic features of the jet-wake structure in the blade passages (for
example, Sturge and Cumpsty 1975, Howard and Osborne 1977). Sturge and Cumpsty
have calculated the shape of the wake in a typical, two-dimensional radial cascade,
using numerical methods to solve a free streamline problem similar to those discussed
in chapter 7.
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Figure 3.10. A sketch of actual discharge flow from a centrifugal pump or compressor including the
alternating pattern of jets and wakes resulting from flow separation from the suction surfaces.

At design flow, the wake or boundary layer on the suction surface may be quite
thin, but as the flow coefficient, ¢, is decreased, the increased incidence leads to larger
wakes (Fischer and Thoma 1932, Johnston and Dean 1966). Clearly, the nonuniformity
of the discharge flow implies an “effective” slip due to these viscous effects. This slip
will not only depend on the geometry of the blades but will also be a function of
the flow coefficient and the Reynolds number. The change with flow coefficient is
particularly interesting. As ¢ is decreased below the design value and the wake grows
in width, an increasing fraction of the flow is concentrated in the jet. Johnston and
Dean (1966) showed that this results in a flow that more closely follows the geometry
of the pressure surface, and, therefore, to a decrease in the slip. This can be a major
effect in radial compressors. Johnston and Dean made measurements in an 18-bladed
radial compressor impeller with a 90° discharge blade angle (for which Sfs = 0.825),
and found that the effective slip factor increased monotonically from a value of about
0.8 at ¢ = 0.5 to a value of 1.0 at ¢ = 0.15. However, this increase in the slip factor
did not produce an increase in the head rise, because the increase in the viscous losses
was greater than the potential gain from the decrease in the slip.

Finally, it is important to recognize that secondary flows can also have a substantial
effect on the development of the blade wakes, and, therefore, on the jet-wake structure.
Moreover, the geometric differences between the typical radial compressor and the typ-
ical centrifugal pump can lead to significant differences in the secondary flows, the loss
mechanisms, and the jet-wake structure. The typical centrifugal pump geometry was
illustrated in figure 2.7, to which we should append the typical number of blades,
Zr = 8. A typical example is the geometry at Np = 0.6, namely R7;/Rry ~ 0.5
and By ~ 0.2R7,. Assuming Zg = 8 and a typical blade angle at discharge of 25°, it
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follows that the blade passage flow at discharge has cross-sectional dimensions nor-
mal to the relative velocity vector of 0.2R7> x 0.3 R7;, while the length of the blade
passage is approximately 1.2 R7>. Thus the blade passage is fairly wide relative to its
length. In contrast, the typical radial compressor has a much smaller value of B>/ R72,
and a much larger number of blades. As a result, not only is the blade passage much
narrower relative to its length, but also the typical cross-section of the discharge flow
is far from square, being significantly narrower in the axial direction. The viscous
boundary layers on the suction and pressure surfaces of the blades, and on the hub and
shroud (or casing), will have a greater effect the smaller the cross-sectional dimen-
sions of the blade passage are relative to its length. Moreover, the secondary flows
that occur in the corners of this passage amplify these viscous effects. Consequently,
the flow that discharges from a blade passage of a typical radial compressor is more
radically altered by these viscous effects than the flow discharging from a typical
centrifugal pump.



Other Flow Features

4.1 Introduction

In this chapter we briefly survey some of the other important features of the flows
through turbomachines. We begin with a section on the three-dimensional character-
istics of flows, and a discussion of some of the difficulties encountered in adapting the
cascade analyses of the last chapter to the complex geometry of most turbomachines.

4.2 Three-Dimensional Flow Effects

The preceding chapter included a description of some of the characteristics of two-
dimensional cascade flows in both the axial and radial geometries. It was assumed that
the flow in the meridional plane was essentially two-dimensional, and that the effects
of the velocities (and the gradients in the velocity or pressure) normal to the merid-
ional surface were neglible. Moreover, it was tacitly assumed that the flow in a real
turbomachine could be synthesized using a series of these two-dimensional solutions
for each meridional annulus. In doing so it is implicitly assumed that each annulus
corresponds to a streamtube such as depicted in figure 4.1 and that the geometric rela-
tions between the inlet location, r1, and thickness, drq, and the discharge thickness,
dn, and location, r,, are known a priori. In practice this is not the case and quasi-
three-dimensional methods have been developed in order to determine the geometrical
relation, 75 (r1). These methods continue to assume that the streamsurfaces are axisym-
metric, and, therefore, neglect the more complicated three-dimensional aspects of the
flow exemplified by the secondary flows discussed below (section 4.6). Nevertheless,
these methods allow the calculation of useful turbomachine performance character-
istics, particularly under circumstances in which the complex secondary flows are
of less importance, such as close to the design condition. When the turbomachine is
operating far from the design condition, the flow within a blade passage may have
streamsurfaces that are far from axisymmetric.

In the context of axial flow machines, several approximate methods have been
employed in order to determine r,(r) as a part of a quasi-three-dimensional solution

37
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Figure 4.1. Geometry of a meridional streamtube in a pump impeller.

to the flow. Most of these are based on some application of the condition of radial
equilibrium. In its simplest form, the radial equilibrium condition assumes that all
of the terms in the equation of motion normal to the axisymmetric streamsurface are
negligible, except for the pressure gradient and the centrifugal acceleration terms,
so that
2
ldp _v% @.1)
pdr r
(The equivalent assumption in a radial machine would be that the axial pressure gra-
dient is zero.) This assumption is differently embedded in several approaches to the
solution of the flow. All of these use a condition like equation 4.1 (or some more
accurate version) to relate the pressures in the different streamtubes upstream of the
rotor (or stator), and a similar condition to connect the pressures in the streamtubes
downstream of the rotor (or stator). When these relations are combined with the nor-
mal continuity and energy equations for each streamtube (that connect the conditions
upstream with those at the downstream location), a complete set of equations is gener-
ated, and a solution to the flow can be obtained. In this class of meridional streamtube
methods, the velocities normal to meridional streamsurfaces are largely neglected,
but the cross-sectional areas of the streamtubes are adjusted to satisfy a condition
based on the equation of motion normal to the meridional surface. Notable examples
of this class of quasi-three-dimensional solutions are those devised at NASA Lewis
by Katsanis and his co-workers (see Stockman and Kramer 1963, Katsanis 1964,
Katsanis and McNally 1977).
The following example will illustrate one use of the “radial equilibrium” condition.
We shall assume that the inlet flow is in radial equilibrium. This inlet flow is then
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divided into axisymmetric streamtubes, each with a specific radial location, r;. Some
initial estimate is made of the radial location of each of the streamtubes at discharge
(in other words an estimate of the function r, (r1)). Then an iterative numerical method
is employed, in which the total pressure rise through each streamtube is evaluated.
Hence, the pressure distribution at discharge can be obtained. Then the width of
each tube at discharge is adjusted (r(r1) is adjusted) in order to obtain the required
radial pressure gradient between each pair of adjacent streamtubes. Subsequently,
the process is repeated until a converged solution is reached. In some simple cases,
analytical rather than numerical results can be obtained; an example is given in the
next section.

More generally, it should be noted that quasi-three-dimensional analyses of this
kind are often used for the design of axial turbomachines. A common objective is to
achieve a design in which the total pressure is increasing (or decreasing) with axial
position at the same rate at all radii, and, therefore, should be invariant with radial
position. Combining this with the condition for radial equilibrium, leads to

d 1 d
o)+ - () =0 4.2)

If, in addition, we stipulate that the axial velocity, v,,, must be constant with radius,
then equation 4.2 implies that the circumferential velocity, vg, must vary like 1/r. Such
an objective is termed a “free vortex” design. Another basic approach is the “forced
vortex” design in which the circumferential velocity, vg, is proportional to the radius,
r; then, according to the above equations, the axial velocity must decrease with r.
More general designs in which vp = ar 4+ b/r (a and b being constants) are utilized
in practice for the design of axial compressors and turbines, with the objective of
producing relatively uniform head rise and velocity at different radii (Horlock 1973).
However, in the context of pumps, most of the designs are of the “forced vortex”
type; Stepanoff (1948) lists a number of reasons for this historical development. Note
that a forced vortex design with a uniform axial velocity would imply helical blades
satisfying equation 2.7; thus many pumps have radial distributions of blade angle
close to the form of that equation.

Radial equilibrium of the discharge flow may be an accurate assumption in some
machines but not in others. When the blade passage is narrow (in both directions) rela-
tive to its length, the flow has adequate opportunity to adjust within the impeller or rotor
passage, and the condition of radial equilibrium at discharge is usually reasonable.
This is approximately the case in all pumps except propeller pumps of low solidity.
However, in many compressors and turbines, the blade height is large compared with
the chord and a radial equilibrium assumption at discharge is not appropriate. Under
these circumstances, a very different approach utilizing an “actuator disc” has been
successfully employed. The flows far upstream and downstream of the blade row are
assumed to be in radial equilibrium, and the focus is on the adjustment of the flow
between these locations and the blade row (see figure 4.2). The flow through the blade
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Figure 4.2. Actuator disc model of an axial blade row with a generic meridional streamtube.

row itself is assumed to be so short that the streamsurfaces emerge at the same radial
locations at which they entered; thus the blade row is modeled by an infinitesmally
thin “actuator disc.” In some respects, the actuator disc approach is the opposite of the
radial equilibrium method; in the former, all the streamline adjustment is assumed to
occur external to the blade passages whereas, in many radial equilibrium applications,
the adjustment all occurs internally.

Since actuator disc methods are rarely applied in the context of pumps we shall
not extend the discussion of them further. More detail can be found in texts such
as Horlock (1973). We shall, however, provide an example of a radial equilibrium
analysis since the results will prove useful in a later chapter.

4.3 Radial Equilibrium Solution: An Example

For the purposes of this example of a radial equilibrium solution, the flow through
the pump impeller is subdivided into streamtubes, as shown in figure 4.1. We choose
to examine one generic streamtube with an inlet radius, r, and thickness, dri. Both
the position, n, and the thickness, dn, of the streamtube at discharge are not known
a priori, and must be determined as a part of the solution. Conservation of mass
requires that

Un1r1dr1 = vp2(n)(Ry2 +ncost)dn 4.3)

where n is a coordinate measured normal to the streamlines at discharge and n = 0 at
the hub so that v, = Ry +ncosv.
Applying the radial equilibrium assumption, the pressure distribution over the exit
plane is given by
10 v2, cos Y
29P _  UptOSV (4.4)
p on Ry> +ncost
It is also necessary to specify the variation of the discharge blade angle, Bp2(n),
with position, and, for the reasons described in section 4.2, we choose the helical



4.3 Radial Equilibrium Solution: An Example 41

distribution given by equation 2.7. Note that this implies helical blades in the case of
an axial flow pump with ¥ = 0, and a constant S, in the case of a centrifugal pump
with % = 90°. Moreover, we shall assume that the flow at discharge is parallel with
the blades so that 8y (n) = Bpa(n).

The formulation of the problem is now complete, and it is a relatively straightfor-
ward matter to eliminate p,(n) from equations 2.30 and 4.4, and then use the velocity
triangles and the continuity equation 4.3 to develop a single differential equation
for v,,;2(n). Assuming that the inlet is free of swirl, and that v, is a constant, this
equation for v,,2(n) can then be integrated to obtain the velocity and pressure dis-
tributions over the exit. It remains to evaluate the total energy added to the flow by
summing the energies added to each of the streamtubes according to equation 2.21:

1 (TP (pI —pT)

H=—
O Juus rg

27 ryUydn 4.5)

Nondimensionalizing the result, we finally obtain the following analytical expression
for the performance:

Y =21+ oo+ X3/ (4.6)

where X1, X5, and X3 are geometric quantities defined by

I' cot I sin? cos?
5, = Bvr2 [1 n Bbr2 ﬁbT2:|

Lnl'* I'*¢nl"*
2 cos4ﬁ;,72
¥ = tan’ |- T2 47
3=tan ﬂhrz[ T (on)2 } 4.7)
) = —X3cotBpra — Lo tan Bpra
where I' and I'™* are given by
Ruo 2 2
F:l—(—) ; T*=1-Tcos” By (4.8)
)

Thus the geometric quantities, X1, ¥», and X3, are functions only of I" and Bp75.

Examples of these analytical performance curves are given later in figures 7.13
and 7.15. Note that this idealized hydraulic performance is a function only of the
geometric variables, I and Bp77, of the discharge. Moreover, it is readily shown that
in the centrifugal limit of ' — 0 then ¥; — 1, ¥ — —cotfBpr2, X3 — 0, and the
earlier result of equation 2.33 is recovered.

It is of interest to explore some optimizations based on the hydraulic performance,
given by equation 4.6. Though the arguments presented here are quite heuristic, the
results are interesting. We begin with the observation that two particular geomet-
ric factors are important in determining the viscous losses in many internal flows.
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If the cross-sectional area of the flow increases at more than a marginal rate, the
deceleration-induced boundary layer separation and turbulence can lead to large vis-
cous losses that might not otherwise occur. Consequently, the mean value of wj/w
is an important design parameter, as implied earlier in section 3.4. In the present anal-
ysis, the mean value of this parameter is given by the area ratio, Ar*, where, from
geometric considerations,

["sin Bp12

Art = 5 :
cos® (Rr1/Rr2)*sin {tan~! (¢2Ar R72/R71)}

(4.9)

We shall also use the ratio, Ar, of the area of the axisymmetric discharge surface to
the area of the inlet surface given by

Ar =T/ cos® (Rr1/R72)? (4.10)

In this example it is assumed that Ry =0; non-zero values can readily be
accommodated, but do not alter the qualitative nature of the results obtained.

Many centrifugal pumps are designed with Ar* values somewhat greater than
unity because the flow must subsequently be decelerated in the diffuser and volute,
and smaller values of Ar* would imply larger diffusion losses in those nonrotating
components. But, from the point of view of minimizing losses in the impeller alone,
one justifiable optimization would require Ar* ~

The second geometric factor that can influence the magnitude of the viscous losses
in an internal flow is the amount of turning imposed on the flow. In the present analysis,
we shall make use of an angle, €, describing the “angle of turn” of the flow as it proceeds
through the turbomachine. It is defined as the angle of the discharge relative velocity
vector to the conical discharge surface minus the angle of the inlet relative velocity
vector to the inlet surface:

€ = Bpra —tan" ' {¢p2 A, Rr2/Rr1) (4.11)

Note that, in purely axial flow, the angle of turn, ¢, is zero for the case of a flow with
zero incidence through a set of helical blades of constant pitch. Also note that, in purely
radial flow, the angle of turn, €, is zero for the case of a flow with zero incidence through
a set of logarithmic spiral blades. Therefore, using somewhat heuristic interpolation,
one might argue that € may be useful in the general case to describe the degree of
turning applied to the flow by a combination of a nonzero incidence at inlet and the
curvature of the blade passages.

For the purposes of this example, we now postulate that the major hydraulic losses
encountered in the flow through the pump are minimized when € is minimized. Let
us assume that this minimum value of € can be approximated by zero. Referring to
this maximum efficiency point of operation as the “design point” (where conditions
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are denoted by the suffix, D), it follows from equation 4.11 that

Rt tan Bpr2
= 4.12
¢2p Rra  Ar (4.12)

and hence that

VYp = X1+ Xodap + X3/P2p (4.13)

Thus the specific speed for which the pump is designed, Np, is given by

=

2

7 tan Bpr2 ( - %)
Np= = (4.14)

3
2 2
o R _|_22tanﬂbrz R + ¥3Ar  ( Rp 3
Rt Ar RT1 tan Bpr2 \ R71

and is a function only of the geometric quantities Rr1/Rr2, Ry1/Rr1, RE2/R12, U,
and Bpr2.

Examine now the variation of Np with these geometric variables, as manifest by
equation 4.14, bearing in mind that the practical design problem involves the reverse
procedure of choosing the geometry best suited to a known specific speed. The number
of geometric variables will be reduced to four by assuming Ry = 0. Note also that,
at the design point given by equation 4.12, it follows that Ar* = Ar and it is more
convenient to use this area ratio in place of the variable Ry, /R7>. Thus we consider
the variations of Np with ¢, Bp72, RT1/RT2, and Ar*.

Calculations of Np from equation 4.14 show that, for specific speeds less than unity,
for sensible values of Ar* of the order of unity, and for blade angles 8,72 which are
less than about 70° (which is the case in well-designed pumps), the results are virtually
independent of the angle ¥, a feature that simplifies the parametric variations in the
results. For convenience, we choose an arbitrary value of ¥ = 50°. Then typical results
for Ar* = 1.0 are presented in figure 4.3, which shows the “optimum” R7/R7> for
various design specific speeds, Np, at various discharge blade angles, 8572. Consider-
ing the heuristic nature of some of the assumptions that were used in this optimization,
the agreement between the results and the conventional recommendation (reproduced
from figure 2.7) is remarkable. It suggests that the evolution of pump designs has been
driven by processes minimizing the viscous losses, and that this minimization involves
the optimization of some simple geometric variables. The values of {p and ¢p, that
correspond to the results of figure 4.3, are plotted in figure 4.4. Again, the comparison
of the traditional expectation and the present analysis is good, except perhaps at low
specific speeds where the discrepancy may be due to the large values of Ar* which are
used in practice. Finally, we observe that one can construct sets of curves, such as those
of figure 4.3, for other values of the area ratio, Ar*. However, for reasonable values
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Figure 4.3. Comparison of the results of equation 4.14 with the conventional recommendation from
figure 2.7 for the optimum ratio of inlet to discharge tip radius as a function of design specific
speed, Np.

of Bpra like 20°, the curves for 0.8 < Ar* < 2.0 do not differ greatly from those for
Ar*=1.0.

The foregoing analysis is intended only as an example of the application of the
radial equilibrium methodology, and the postscript is included because of the inter-
esting results it produces. Clearly some of the assumptions in the postscript are
approximate, and would be inappropriate in any accurate analysis of the viscous
losses.

4.4 Discharge Flow Management

To this point the entire focus has been on the flow within the impeller or rotor of
the pump. However, the flow that discharges from the impeller requires careful
handling in order to preserve the gains in energy imparted to the fluid. In many
machines this requires the conversion of velocity head to pressure by means of a
diffuser. This inevitably implies hydraulic losses, and considerable care needs to
be taken to minimize these losses. The design of axial and radial diffusers, with
and without vanes to recover the swirl velocity, is a major topic, whose details
are beyond the scope of this book. The reader is referred to the treatise by Japikse
(1984).

Such diffusers are more common in compressors than in pumps. Typical pump
configurations are as follows. Axial flow pumps often employ a set of stator vanes
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Figure 4.4. Comparison of the results of equation 4.14 with the conventional recommendation of figure
2.7 for the head coefficient, ¥ p, and the flow coefficient, ¢p, as functions of the design specific
speed, Np.

before (or in) the axial diffuser in order to recover the swirl velocities. Special care
needs to be taken to match the swirl angles of the flow exiting the impeller with the
inlet angles of the stator vanes. It is advisable, where possible, to measure the impeller
discharge flow directly before finalizing a design. In some designs, the axial diffuser
will be followed by a spiral collector or “volute” in order to recover the energy in the
remaining swirl and axial velocities.

In the case of centrifugal pumps, a radial flow diffuser with vanes may or may not
be used. Often it is not, and the flow discharges directly into the volute. The proper
design of this volute is an important component of centrifugal pump design (Anderson
1955, Worster 1963, Stepanoff 1948). The objective is to design a volute in which
the flow is carefully matched to the flow exiting the impeller, so that the losses are
minimized and so that the pressure is uniform around the impeller discharge. The
basic concept is sketched in figure 4.5. The flow discharges from the impeller with
a velocity, vgy, in the tangential direction and a velocity, v,», in the radial direction,
given by

V2= Q/27 Ry B> (4.15)
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Figure 4.5. Volute flow notation.

where B, is the impeller discharge width. For simplicity, it will be assumed that the
discharge from the impeller is circumferentially uniform; in fact, nonuniform volute
flow will lead to a nonuniform flow in the impeller that is unsteady in the rotating
frame. Though this complication is often important, it is omitted from the present,
simple analysis.

If we further assume radially uniform velocity at each angular location in the volute
(also an assumption that needs to be modified in a more accurate analysis), then it
follows from the application of conservation of mass to an element, df, of the volute
that the discharge flow will be matched to the flow in the volute if

Vg ——— ="V 4
02 10 r2 8207

This requires a circumferentially uniform rate of increase of the volute area of
dAy/dO = v2Ry B> /vgy over the entire development of the spiral. If the area of
the clearance between the cutwater and the impeller discharge is denoted by Ay ¢,
and the volute exit area is denoted by Ay, then Ay should have the following linear
behavior:

0
Ay =Ayvc+ —Avr 4.17)
2

It follows that dAy /d6 = Ay /27 and hence

2n R> Byt
¢—1tan52_1:”+:“’32 (4.18)
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Consequently, for a given impeller operating at a given design flow coefficient,
¢p, there exists a specific area ratio, 27 Ry By tan 8,/ Ay 7, for the volute geometry.
This parameter is close to the ratio which Anderson (1955) used in his design method-
ology (see also Worster 1963), namely the ratio of the cross-sectional area of the
flow leaving the impeller (277 Ry B, sin 8) to the volute throat area (Ay 7). For more
detailed analyses of the flow in a volute, the reader is referred to Pfleiderer (1932),
Stepanoff (1948), and Lazarkiewicz and Troskolanski (1965). For example, Pfleiderer
explored the radially nonuniform distributions of velocity within the volute and the
consequences for the design methodology.

One of the other considerations during the design of a volute is the lateral force on
the impeller that can develop due to circumferentially nonuniform flow and pressure
in the volute. These, and other related issues, are discussed in chapter 10.

4.5 Prerotation

Perhaps no aspect of turbomachinery flow is more misrepresented and misunderstood
than the phenomenon of “prerotation.” While this belongs within the larger cate-
gory of secondary flows (dealt with in section 4.6), it is appropriate to address the
issue of prerotation seperately, not only because of its importance for the hydraulic
performance, but also because of its interaction with cavitation.

It is first essential to distinguish between two separate phenomena both of which
lead to a swirling flow entering the pump. These two phenomena have very differ-
ent fluid mechanical origins. Here we shall distinguish them by the separate terms,
“backflow-induced swirl” and “inlet prerotation.” Both imply a swirl component of
the flow entering the pump. In fluid mechanical terms, the flow has axial vorticity
(if the axis of rotation is parallel with the axis of the inlet duct) with a magnitude
equal to twice the rate of angular rotation of the swirl motion. Moreover, there are
some basic properties of such swirling flows that are important to the understanding of
prerotation. These are derived from the vorticity transport theorem (see, for example,
Batchelor 1967). In the context of the steady flow in an inlet duct, this theorem tells
us that the vorticity will only change with axial location for two reasons: (a) because
vorticity is diffused into the flow by the action of viscosity, or (b) because the flow
is accelerated or decelerated as a result of a change in the cross-sectional area of the
flow. The second mechanism results in an increase in the swirl velocity due to the
stretching of the vortex line, and is similar to the increase in rotation experienced by
figure skaters when they draw their arms in closer to their body. When the moment
of inertia is decreased, conservation of angular momentum results in an increase in
the rotation rate. Thus, for example, a nozzle in the inlet line would increase the
magnitude of any preexisting swirl.

For simplicity, however, we shall first consider inlet ducting of uniform and sym-
metric cross-sectional area, so that only the first mechanism exists. In inviscid flow,
it follows that, if there is a location far upstream at which the swirl (or axial vorticity)
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is zero, then, in the absence of viscous effects, the swirl will be everywhere zero.
This important result, which is a version of Kelvin’s theorem (Batchelor 1967), is not
widely recognized in discussions of prerotation. Moreover, the result is not altered
by the existence of viscous effects, since purely axial motion cannot generate axial
vorticity. However, there are two common circumstances in which prerotation can
be generated without violation of the above theorem, and these give rise to the two
phenomena named earlier.

The first of these common circumstances arises because of one of the most impor-
tant secondary flows that can occur in pumps, namely the phenomenon of “backflow.”
This is caused by the leakage flow between the tip of the blades of an impeller (we
consider first an unshrouded impeller) and the pump casing. The circumstances are
depicted in figure 4.6. Below a certain critical flow coefficient, the pressure difference
driving the leakage flow becomes sufficiently large that the tip leakage jet penetrates
upstream of the inlet plane of the impeller, and thus forms an annular region of “back-
flow” in the inlet duct. After penetrating upstream a certain distance, the fluid of this
jet is then entrained back into the main inlet flow. The upstream penetration distance
increases with decreasing flow coefficient, and can reach many diameters upstream
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Figure 4.6. Lateral view of impeller inlet flow showing tip leakage flow leading to backflow.
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of the inlet plane. In some pump development programs (such as the Rocketdyne J-2
liquid oxygen pump) efforts have been made to insert a “backflow deflector” in order
to improve pump performance (Jakobsen 1971). The intention of such a device is
to prevent the backflow from penetrating too far upstream, to reduce the distortion
of the inlet flow field, and to recover, as far as is possible, the swirl energy in the
backflow. More recently, a similar device was successfully employed in a centrifugal
pump (Sloteman et al. 1984).

Some measurements of the axial and swirl velocities just upstream of an axial
inducer are presented in figure 4.7. This data is taken from del Valle et al. (1992),
though very similar velocity profiles have been reported by Badowski (1969, 1970)
(see also Janigro and Ferrini 1973), and the overall features of the flow are similar
whether the pump is shrouded or unshrouded, axial or centrifugal (see, for example,
Stepanoft 1948, Okamura and Miyashiro 1978, Breugelmans and Sen 1982, Sloteman
et al. 1984). Measurements are shown in figure 4.7 for two distances upstream of
the inlet plane (half a radius and one radius upstream), and for a number of flow
coefficients, ¢p. Note from the axial flow velocity profiles that, as the flow coefficient
is decreased, the backflow reaches a half radius upstream at about ¢ &~ 0.066, and one
radius upstream at about ¢ ~ 0.063. The size of the backflow region grows as ¢ is
decreased. It is particularly remarkable that at ¢ &~ 0.05, nearly 30% of the inlet area
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Figure 4.7. Axial and swirl velocity profiles in the inlet duct 0.25 diameters (left) and 0.5 diameters
(right) upstream of the inlet plane of an inducer (Impeller VI) for various flow coefficients as shown
(from del Valle, Braisted and Brennen 1992).
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is experiencing reverse flow! We can further observe from the swirl velocity data that,
in the absence of backflow, the inlet flow has zero swirl. Kelvin’s theorem tells us this
must be the case because the flow far upstream has no swirl.

Obviously the backflow has a high swirl velocity imparted to it by the impeller
blades. But what is also remarkable is that this vorticity is rapidly spread to the
core of the main inlet flow, so that at ¢ = 0.05, for example, almost the entire inlet
flow has a nonzero swirl velocity. The properties of swirling flows discussed above
are not violated, since the origin of the vorticity is the pump itself and the vortic-
ity is transmitted to the inflow via the backflow. The rapidity with which the swirl
vorticity is diffused to the core of the incoming flow remains something of a mys-
tery, for it is much too rapid to be caused by normal viscous diffusion (Braisted
1979). It seems likely that the inherent unsteadiness of the backflow (with a strong
blade passing frequency component) creates extensive mixing which effects this rapid
diffusion. However it arises, it is clear that this “backflow-induced swirl,” or “pre-
rotation,” will clearly affect the incidence angles and, therefore, the performance of the
pump.

Before leaving the subject of backflow, it is important to emphasize that this
phenomenon also occurs at flow rates below design in centrifugal as well as axial
flow pumps, and with shrouded as well as unshrouded impellers (see, for example,
Okamura and Miyashiro 1978, Makay 1980). The detailed explanation may differ
from one device to another, but the fundamental tendency for an impeller to exhibit
this kind of secondary flow at larger angles of incidence seems to be universal.

But there is another, quite separate origin for prerotation, and this is usually man-
ifest in practice when the fluid is being drawn into the pump from an “inlet bay”
or reservoir with a free surface (figure 4.8). Under such circumstances, it is almost
inevitable that the large scale flow in the reservoir has some nonuniformity that con-
stitutes axial vorticity or circulation in the frame of reference of the pump inlet. Even
though the fluid velocities associated with this nonuniformity may be very small,
when the vortex lines are stretched as the flow enters the inlet duct, the vorticity is
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Figure 4.8. Right: sketch of a typical inlet vortex associated with prerotation. Left: Photograph of an air-
filled inlet vortex from Wijdieks (1965) reproduced with permission of the Delft Hydraulics Laboratory.
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greatly amplified, and the inlet flow assumes a significant preswirl or “inlet prerota-
tion.” The effect is very similar to the bathtub vortex. Once the flow has entered an
inlet duct of constant cross-sectional area, the magnitude of the swirl usually remains
fairly constant over the short lengths of inlet ducting commonly used.

Often, the existence of “inlet prerotation” can have unforeseen consequences for
the suction performance of the pump. Frequently, as in the case of the bathtub vortex,
the core of the vortex runs from the inlet duct to the free surface of the reservoir, as
shown in figure 4.8. Due to the low pressure in the center of the vortex, air is drawn
into the core and may even penetrate to the depth of the duct inlet, as illustrated by the
photograph in figure 4.8 taken from the work of Wijdieks (1965). When this occurs,
the pump inlet suddenly experiences a two-phase air/water flow rather than the single-
phase liquid inlet flow expected. This can lead, not only to a significant reduction in
the performance of the pump, but also to the vibration and unsteadiness that often
accompany two-phase flow. Even without air entrainment, the pump performance is
almost always deteriorated by these suction vortices. Indeed this is one of the prime
suspects when the expected performance is not realized in a particular installation.
These intake vortices are very similar to those which can occur in aircraft engines
(De Siervi et al. 1982).

4.6 Other Secondary Flows

Most pumps operate at high Reynolds numbers, and, in this regime of flow, most
of the hydraulic losses occur as a result of secondary flows and turbulent mixing.
While a detailed analysis of secondary flows is beyond the scope of this monograph
(the reader is referred to Horlock and Lakshminarayana (1973) for a review of the
fundamentals), it is important to outline some of the more common secondary flows
that occur in pumps. To do so, we choose to describe the secondary flows associated
with three typical pump components, the unshrouded axial flow impeller or inducer,
the shrouded centrifugal impeller, and the vaneless volute of a centrifugal pump.
Secondary flows in unshrouded axial flow inducers have been studied in detail
by Lakshminarayana (1972, 1981), and figure 4.9, which was adapted from those
publications, provides a summary of the kinds of secondary flows that occur within
the blade passage of such an impeller. Dividing the cross-section into a core region,
boundary layer regions on the pressure and suction surfaces of the blades, and an
interference region next to the static casing, Lakshminarayana identifies the following
departures from a simple flow following the blades. First, and perhaps most important,
there will be a strong leakage flow (called the tip leakage or tip clearance flow)
around the blade tips driven by the pressure difference between the pressure surface
and the suction surface. Clearly this flow will become even more pronounced at
flow rates below design when the blades are more heavily loaded. This leakage flow
will entrain secondary flow on both surfaces of the blades, as shown by the dashed
arrows in figure 4.9. Second, the flow in the boundary layers will tend to generate an
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Figure 4.9. Cross-section of a blade passage in an axial flow impeller showing the tip leakage flow,
boundary layer radial flow, and other secondary flows (adapted from Lakshminarayana 1981).

outward radial component on both the suction and pressure surfaces, though the former
may be stronger because of enhancement by the leakage flow. The photographs of
figure 4.10, which are taken from Bhattacharyya et al. (1993), show a strong outward
radial component of the flow on the blade surface of an inducer. This is particularly
pronounced near the leading edge (left-hand photograph). Incidentally, Bhattacharyya
et al. not only observed the backflow associated with the tip clearance flow, but also a
“backflow” at the hub in which flow reenters the blade passage from downstream of the
inducer. Evidence for this secondary flow can be seen on the hub surface in the right-
hand photograph of figure 4.10. Finally, we should mention that Lakshminarayana also
observed secondary vortices at both the hub and the casing as sketched in figure 4.9.
The vortex near the hub was larger and more coherent, while a confused interference
region existed near the casing.

Additional examples of secondary flows are given in the descriptions by Makay
(1980) of typical flows through shrouded centrifugal impellers. Figure 4.11, which
has been adapted from one of Makay’s sketches, illustrates the kind of secondary
flows that can occur at off-design conditions. Note, in particular, the backflow in the
impeller eye of this shrouded impeller pump. This backflow may well interact in an
important way with the discharge-to-suction leakage flow that is an important feature
of the hydraulics of a centrifugal pump at all flow rates. As testament to the importance
of the backflow, Makay cites a case in which the inlet guide vanes of a primary coolant
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Figure 4.10. Photographs of a 10.2 c¢m, 12° helical inducer with a lucite shroud showing the blade
surface flow revealed by the running paint dot technique. On the left the suction surfaces viewed from
the direction of the inlet. On the right the view of the pressure surfaces and the hub from the discharge.
The flow is for 2000 rpm and ¢ = 0.041. From Bhattacharyya et al. (1993).
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Figure 4.11. Schematic showing secondary flows associated with a typical centrifugal pump operating
at off-design conditions (adapted from Makay 1980).
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Figure 4.12. Schematic of a centrifugal pump with a single, vaneless volute indicating the disturbed and
separated flows which can occur in the volute below (left) and above (right) the design flow rate.

pump in a power plant suffered structural damage due to the repeated unsteady loads
caused by this backflow. Note should also be made of the secondary flows that Makay
describes occurring in the vicinity of the impeller discharge.

Itis also important to mention the disturbed and separated flows that can often occur
in the volute of a centrifugal pump when that combination is operated at off-design flow
rates (Binder and Knapp 1936, Worster 1963, Lazarkiewicz and Troskolanski 1965,
Johnston and Dean 1966). As described in the preceding section, and as indicated in
figure 4.12, one of the commonest geometries is the spiral volute, designed to collect
the flow discharging from an impeller in a way that would result in circumferentially
uniform pressure and velocity. However, such a volute design is specific to a particular
design flow coefficient. At flow rates above or below design, disturbed and separated
flows can occur particularly in the vicinity of the cutwater or tongue. Some typical
phenomena are sketched in figure 4.12 which shows separation on the inside and
outside of the tongue at flow coefficients below and above design, respectively. It also
indicates the flow reversal inside the tongue that can occur above design (Lazarkiewicz
and Troskolanski 1965). Moreover, as Chu et al. (1993) have recently demonstrated,
the unsteady shedding of vortices from the cutwater can be an important source of
vibration and noise.



Cavitation Parameters and Inception

5.1 Introduction

This chapter will deal with the parameters that are used to describe cavitation, and the
circumstances that govern its inception. In subsequent chapters, we address the dele-
terious effects of cavitation, namely cavitation damage, noise, the effect of cavitation
on hydraulic performance, and cavitation-induced instabilities.

5.2 Cavitation Parameters

Cavitation is the process of the formation of vapor bubbles in low pressure regions
within a flow. One might imagine that vapor bubbles are formed when the pressure in
the liquid reaches the vapor pressure, py, of the liquid at the operating temperature.
While many complicating factors discussed later cause deviations from this hypoth-
esis, nevertheless it is useful to adopt this as a criterion for the purpose of our initial
discussion. In practice, it can also provide a crude initial guideline.

The static pressure, p, in any flow is normally nondimensionalized as a pressure
coefficient, C),, defined as

1
Cp=(p—pn /50U (5.1)

where pj is some reference static pressure for which we shall use the pump inlet
pressure and U is some reference velocity for which we shall use the inlet tip speed,
QRr71. It is important to note that, for the flow of an incompressible liquid within
rigid boundaries, C), is only a function of the geometry of the boundaries and of the
Reynolds number, Re, which, for present purposes, can be defined as ZQRzT 1/ v where
v is the kinematic viscosity of the fluid. It is equally important to note that, in the
absence of cavitation, the fluid velocities and the pressure coefficient are independent
of the level of the pressure. Thus, for example, a change in the inlet pressure, p;, will
simply result in an equal change in all the other pressures, so that C,, is unaffected.
It follows that, in any flow with prescribed fluid velocities, geometry and Reynolds
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number, there will be a particular location at which the pressure, p, is a minimum and
that the difference between this minimum pressure, p;,in, and the inlet pressure, p is
given by

1
Cpmin = (Pmin — pl)/EpUz (5-2)

where Cpin is some negative number which is a function only of the geometry of
the device (pump) and the Reynolds number. If the value of C),;i,, could be obtained
either experimentally or theoretically, then we could establish the value of the inlet
pressure, p1, at which cavitation would first appear (assuming that this occurs when
Pmin = pv) as pi is decreased, namely

(p1) cavitation = py + l,OU2 (—Cpmm) (5.3)
APPEARANCE 2
which for a given device, given fluid, and given fluid temperature, would be a function
only of the velocity, U.
Traditionally, several special dimensionless parameters are utilized in evaluating
the potential for cavitation. Perhaps the most fundamental of these is the cavitation
number, o, defined as

1
o =(p1—pv)/5pU* (5.4)

Clearly every flow has a value of o whether or not cavitation occurs. There is, how-
ever, a particular value of o corresponding to the particular inlet pressure, pi, at
which cavitation first occurs as the pressure is decreased. This is called the cavitation
inception number, and is denoted by o;:

= [(pl) CAVITATION — pv] /l,OU2 (5.5)
APPEARANCE 2
If cavitation inception occurs when p,,;, = pv, then, combining equations 5.3 and 5.5,
it is clear that this criterion corresponds to a cavitation inception number of o; =
—Cpmin- On the other hand, a departure from this criterion results in values of o;
different from —C ppin.

Several variations in the definition of cavitation number occur in the literature.
Often the inlet tip velocity, 2R71, is employed as the reference velocity, U, and this
version will be used in this monograph unless otherwise stated. Sometimes, however,
the relative velocity at the inlet tip, wr1, is used as the reference velocity, U. Usually
the magnitudes of w7 and QR7 do not differ greatly, and so the differences in the
two cavitation numbers are small.

In the context of pumps and turbines, a number of other, surrogate cavitation
parameters are frequently used in addition to some special terminology. The NPSP
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(for net positive suction pressure) is an acronym used for ( plT — pv), where plT is the
inlet total pressure given by

1
pi =p1+§pv% (5.6)

For future purposes, note from equations 5.6, 5.4, and 2.17 that

1
(plT - pv) = EpﬂzR%l (o +0?) (5.7)

Also, the NPSE, or net positive suction energy, is defined as ( plT — pv)/p, and the
NPSH, or net positive suction head, is ( plT — pv)/pg. Furthermore, a nondimensional
version of these quantities is defined in a manner similar to the specific speed as

S=QQ?/(NPSE)} (5.8)

and is called the “suction specific speed.” Like the specific speed, N, the suction
specific speed, is a dimensionless number, and should be computed using a consistent
set of units, such as € in rad/s, Q in ft3/s and NPSE in ft?/s*. Unfortunately,
it is traditional U.S. practice to use 2 in rpm, Q in gpm, and to use the NPSH in
St rather than the N PSE. As in the case of the specific speed, one may obtain the
traditional U.S. evaluation by multiplying the rational suction specific speed used in
this monograph by 2734.6.

The suction specific speed is similar in concept to the cavitation number in that it
represents a nondimensional version of the inlet or suction pressure. Moreover, there
will be a certain critical value of the suction specific speed at which cavitation first
appears. This special value is termed the inception suction specific speed, S;. The
reader should note that frequently, when a value of the “suction specific speed” is
quoted for a pump, the value being given is some critical value of S that may or may
not correspond to S;. More frequently, it corresponds to S, the value at which the
degradation in the head rise reaches a certain percentage value (see section 5.5).

The suction specific speed, S, may be obtained from the cavitation number, o, and
vice versa, by noting that, from the relations 2.17, 5.4, 5.6, and 5.8, it follows that

3

1 1 3
S=[wor (1= Ripi/R71)]* / [5 (v+¢%)] (5.9)

We should also make note of a third nondimensional parameter, called Thoma’s
cavitation factor, o7 g, which is defined as

orn=(pl —pv)/(pf —»T) (5.10)
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where ( pzT — plT) is the total pressure rise across the pump. Clearly, this is connected
to o and to S by the relation

2 N\ 3
OTH = d —;d)l = (§>3 (5.11)

Since cavitation usually occurs at the inlet to a pump, o7 is not a particularly useful

parameter since ( pZT — plT) is not especially relevant to the phenomenon.

5.3 Cavitation Inception

For illustrative purposes in the last section, we employed the criterion that cavita-
tion occurs when the minimum pressure in the flow just reaches the vapor pressure,
0; = —Cpmin-. If this were the case, the prediction of cavitation would be a straight-
forward matter. Unfortunately, large departures from this criterion can occur in prac-
tice, and, in this section, we shall try to present a brief overview of the reasons for
these discrepancies. There is, of course, an extensive body of literature on this subject,
and we shall not attempt a comprehensive review. The reader is referred to reviews
by Knapp, Daily, and Hammit (1970), Acosta and Parkin (1975), Arakeri (1979) and
Brennen (1994) for more detail.

First, it is important to recognize that vapor does not necessarily form when the
pressure, p, in a liquid falls below the vapor pressure, py. Indeed, a pure liquid can,
theoretically, sustain a tension, A p = py — p, of many atmospheres before nucleation,
or the appearance of vapor bubbles, occurs. Such a process is termed homogeneous
nucleation, and has been observed in the laboratory with some pure liquids (not water)
under very clean conditions. In real engineering flows, these large tensions do not
occur because vapor bubbles grow from nucleation sites either on the containing
surfaces or suspended in the liquid. As in the case of a solid, the ultimate strength is
determined by the weaknesses (stress concentrations) represented by the nucleation
sites or “nuclei.” Research has shown that suspended nuclei are more important than
surface nucleation sites in determining cavitation inception. These suspended nuclei
may take the form either of microbubbles or of solid particles within which, perhaps,
there are microbubbles. For example, a microbubble of radius, Ry, containing only
vapor, is in equilibrium when the liquid pressure

p=pv—28/Rn (5.12)

where S is the surface tension. It follows that such a microbubble would result in a
critical tension of 25/Ry, and the liquid pressure would have to fall below py —
28 /Ry before the microbubble would grow to a visible size. For example, a 10 um
bubble in water at normal temperatures leads to a tension of 0.14 bar.

It is virtually impossible to remove all the particles, microbubbles and dissolved
air from any substantial body of liquid (the catch-all term “liquid quality” is used
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to refer to the degree of contamination). Because of this contamination, substantial
differences in the inception cavitation number (and, indeed, the form of cavitation)
have been observed in experiments in different water tunnels, and even in a single
facility with differently processed water. The ITTC comparative tests (Lindgren and
Johnsson 1966, Johnsson 1969) provided a particularly dramatic example of these
differences when cavitation on the same axisymmetric headform was examined in
many different water tunnels around the world. An example of the variation of o; in
those experiments, is reproduced as figure 5.1.

Because the cavitation nuclei are crucial to an understanding of cavitation incep-
tion, it is now recognized that the liquid in any cavitation inception study must be
monitored by measuring the number of nuclei present in the liquid. This information
is normally presented in the form of a nuclei number distribution function, N (Ry),
defined such that the number of nuclei per unit total volume with radii between Ry and
Ry +dRy is given by N(Ry)dRy. Typical nuclei number distributions are shown
in figure 5.2 where data from water tunnels and from the ocean are presented.

Most of the methods currently used for making these measurements are still in the
development stage. Devices based on acoustic scattering, and on light scattering, have
been explored. Other instruments, known as cavitation susceptibility meters, cause
samples of the liquid to cavitate, and measure the number and size of the resulting
macroscopic bubbles. Perhaps the most reliable method has been the use of holography
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Figure 5.1. The inception numbers measured for the same axisymmetric headform in a variety of water
tunnels around the world. Data collected as part of a comparative study of cavitation inception by the
International Towing Tank Conference (Lindgren and Johnsson 1966, Johnsson 1969).
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Figure 5.2. Several nuclei number distribution functions measured in water tunnels and in the ocean by
various methods (adapted from Gates and Acosta 1978).

to create a magnified three-dimensional photographic image of a sample volume of
liquid that can then be surveyed for nuclei. Billet (1985) has recently reviewed the
current state of cavitation nuclei measurements (see also Katz et al. 1984).

It may be interesting to note that cavitation itself'is a source of nuclei in many facil-
ities. This is because air dissolved in the liquid will tend to come out of solution at low
pressures, and contribute a partial pressure of air to the contents of any macroscopic
cavitation bubble. When that bubble is convected into a region of higher pressure and
the vapor condenses, this leaves a small air bubble that only redissolves very slowly, if
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at all. This unforeseen phenomenon caused great difficulty for the first water tunnels
which were modeled directly on wind tunnels. It was discovered that, after a few
minutes of operating with a cavitating body in the working section, the bubbles pro-
duced by the cavitation grew rapidly in number, and began to complete the circuit
of the facility so that they appeared in the incoming flow. Soon the working section
was obscured by a two-phase flow. The solution had two components. First, a water
tunnel needs to be fitted with a long and deep return leg so that the water remains at
high pressure for sufficient time to redissolve most of the cavitation-produced nuclei.
Such a return leg is termed a “resorber.” Second, most water tunnel facilities have a
“deaerator” for reducing the air content of the water to 20-50% of the saturation level
at atmospheric pressure. These comments serve to illustrate the fact that N(Ry) in
any facility can change according to the operating condition, and can be altered both
by deaeration and by filtration.

Most of the data of figure 5.2 is taken from water tunnel water that has been
somewhat filtered and degassed, or from the ocean which is surprisingly clean. Thus,
there are few nuclei with a size greater than 100 wm. On the other hand, it is quite
possible in many pump applications to have a much larger number of larger bubbles
and, in extreme situations, to have to contend with a two-phase flow. Gas bubbles in the
inflow could grow substantially as they pass through the low pressure regions within
the pump, even though the pressure is everywhere above the vapor pressure. Such
a phenomenon is called pseudo-cavitation. Though a cavitation inception number is
not particularly relevant to such circumstances, attempts to measure o; under these
circumstances would clearly yield values larger than —C .

On the other hand, if the liquid is quite clean with only very small nuclei, the
tension that this liquid can sustain means that the minimum pressure has to fall well
below py for inception to occur. Then o; is much smaller than —C ;. Thus the
quality of the water and its nuclei can cause the cavitation inception number to be
either larger or smaller than —C ;..

There are, however, at least two other factors that can affect o;, namely the resi-
dence time and turbulence. The residence time effect arises because the nuclei must
remain at a pressure below the critical value for a sufficient length of time to grow
to observable size. This requirement will depend on both the size of the pump and
the speed of the flow. It will also depend on the temperature of the liquid for, as
we shall see later, the rate of bubble growth may depend on the temperature of the
liquid. The residence time effect requires that a finite region of the flow be below
the critical pressure, and, therefore, causes o; to be lower than might otherwise be
expected.

Up to this point we have assumed that the flow and the pressures are laminar and
steady. However, most of the flows with which one must deal in turbomachinery
are not only turbulent but also unsteady. Vortices occur because they are inherent in
turbulence and because of both free and forced shedding of vortices. This has important
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consequences for cavitation inception, because the pressure in the center of a vortex
may be significantly lower than the mean pressure in the flow. The measurement
or calculation of —C i, would elicit the value of the lowest mean pressure, while
cavitation might first occur in a transient vortex whose central pressure was lower than
the lowest mean pressure. Unlike the residence time factor, this would cause higher
values of g; than would otherwise be expected. It would also cause o; to change with
Reynolds number, Re. Note that this would be separate from the effect of Reynolds
number on the minimum pressure coefficient, C ;. Note also that surface roughness
can promote cavitation by creating localized low pressure perturbations in the same
manner as turbulence.

5.4 Scaling of Cavitation Inception

The complexity of the issues raised in the last section helps to explain why serious
questions remain as to how to scale cavitation inception. This is perhaps one of the most
troublesome issues that the developer of a liquid turbomachine must face. Model tests
of a ship’s propeller or large turbine (to quote two common examples) may allow the
designer to accurately estimate the noncavitating performance of the device. However,
he will not be able to place anything like the same confidence in his ability to scale
the cavitation inception data.

Consider the problem in more detail. Changing the size of the device will alter not
only the residence time effect but also the Reynolds number. Furthermore, the nuclei
will now be a different size relative to the impeller. Changing the speed in an attempt
to maintain Reynolds number scaling may only confuse the issue by also altering the
residence time. Moreover, changing the speed will also change the cavitation number,
and, to recover the modeled condition, one must then change the inlet pressure which
may alter the nuclei content. There is also the issue of what to do about the surface
roughness in the model and in the prototype.

The other issue of scaling that arises is how to anticipate the cavitation phenomena
in one liquid based on data in another. It is clearly the case that the literature contains
a great deal of data on water as the fluid. Data on other liquids is quite meager. Indeed
the author has not located any nuclei number distributions for a fluid other than water.
Since the nuclei play such a key role, it is not surprising that our current ability to
scale from one liquid to another is quite tentative.

It would not be appropriate to leave this subject without emphasizing that most of
the remarks in the last two sections have focused on the inception of cavitation. Once
cavitation has become established, the phenomena that occur are much less sensitive
to special factors, such as the nuclei content. Hence the scaling of developed cavitation
can be anticipated with much more confidence than the scaling of cavitation inception.
This is not, however, of much solace to the engineer charged with avoiding cavitation
completely.
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5.5 Pump Performance

The performance of a pump when presented nondimensionally will take the generic
form sketched in figure 5.3. As discussed earlier, the noncavitating performance will
consist of the head coefficient, i/, as a function of the flow coefficient, ¢, where
the design conditions can be identified as a particular point on the ¥ (¢) curve. The
noncavitating characteristic should be independent of the speed, €2, though at lower
speeds there may be some deviation due to viscous or Reynolds number effects. The
cavitating performance, as illustrated on the right in figure 5.3, is presented as a
family of curves, (¢, 0), each for a specific flow coefficient, in a graph of the head
coefficient against cavitation number, o. Frequently, of course, both performance
curves are presented dimensionally; then, for example, the NPSH is often used instead
of the cavitation number as the abscissa for the cavitation performance graph.

It is valuable to identify three special cavitation numbers in the cavitation perfor-
mance graph. Consider a pump operating at a particular flow rate or flow coefficient,
while the inlet pressure, N PSH, or cavitation number is gradually reduced. As dis-
cussed in the previous chapter, the first critical cavitation number to be reached is that
at which cavitation first appears; this is called the cavitation inception number, o;.
Often the occurrence of cavitation is detected by the typical crackling sound that it
makes (see section 6.5). As the pressure is further reduced, the extent (and noise) of
cavitation will increase. However, it typically requires a further, substantial decrease
in o before any degradation in performance is encountered. When this occurs, the
cavitation number at which it happens is often defined by a certain percentage loss in
the head rise, H, or head coefficient, v, as shown in figure 5.3. Typically a critical
cavitation number, o,, is defined at which the head loss is 2, 3, or 5%. Further reduc-
tion in the cavitation number will lead to major deterioration in the performance; the
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Table 5.1. Inception and breakdown suction specific speeds for some
typical pumps (from McNulty and Pearsall 1979).

PUMP TYPE Np 0/0p S; Sp Sy/Si
Process pump with 0.31 0.24 0.25 2.0 8.0
volute and diffuser 1.20 0.8 2.5 3.14
Double entry pump 0.96 1.00 <0.6 2.1 >3.64
with volute 1.20 0.8 2.1 2.67
Centrifugal pump with 0.55 0.75 0.6 2.41 4.02
diffuser and volute 1.00 0.8 2.67 3.34
Cooling water pump 1.35 0.50 0.65 3.40 5.24
(1/5 scale model) 0.75 0.60 3.69 6.16
1.00 0.83 3.38 4.07
Cooling water pump 1.35 0.50 0.55 2.63 4.76
(1/8 scale model) 0.75 0.78 3.44 4.40
1.00 0.99 4.09 4.12
1.25 1.07 245 2.28
Cooling water pump 1.35 0.50 0.88 3.81 4.35
(1/12 scale model) 0.75 0.99 4.66 4.71
1.00 0.75 3.25 4.30
1.25 0.72 1.60 2.22
Volute pump 1.00 0.60 0.76 1.74 2.28
1.00 0.83 2.48 2.99
1.20 1.21 247 2.28

cavitation number at which this occurs is termed the breakdown cavitation number,
and is denoted by oy,

It is important to emphasize that these three cavitation numbers may take quite
different values, and to confuse them may lead to serious misunderstanding. For
example, the cavitation inception number, o;, can be an order of magnitude larger
than o, or op,. There exists, of course, a corresponding set of critical suction specific
speeds that we denote by S;, S;, and Sp. Some typical values of these parameters
are presented in table 5.1 which has been adapted from McNulty and Pearsall (1979).
Note the large differences between S; and Sp.

Perhaps the most common misunderstanding concerns the recommendation of the
Hydraulic Institute that is reproduced in figure 5.4. This suggests that a pump should
be operated with a Thoma cavitation factor, o7 g, in excess of the value given in the
figure for the particular specific speed of the application. The line, in fact, corresponds
to a critical suction specific speed of 3.0. Frequently, this is erroneously interpreted as
the value of S;. In fact, it is more like S,; operation above the line in figure 5.4 does
not imply the absence of cavitation, or of cavitation damage.

Data from McNulty and Pearsall (1979) for o; and o, in a typical pump is presented
graphically in figure 5.5 as a function of the fraction of design flow and the Reynolds
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number (or velocity). Note the wide scatter in the inception data, and that no clear
trend with Reynolds number seems to be present.

The next section will include a qualitative description of the various forms
of cavitation that can occur in a pump. Following that, the detailed development of
cavitation in a pump will be described, beginning in section 5.7 with a discussion of
inception.

5.6 Types of Impeller Cavitation

Since cavitation in a pump impeller can take a variety of forms (see, for example, Wood
1963), it is appropriate at this stage to attempt some description and classification of
these types of cavitation. It should be borne in mind that any such classification is
necessarily somewhat arbitrary, and that types of cavitation may occur that do not
readily fall within the classification system. Figure 5.6 includes sketches of some of
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the forms of cavitation that can be observed in an unshrouded axial flow impeller.
As the inlet pressure is decreased, inception almost always occurs in the tip vortex
generated by the corner where the leading edge meets the tip. Figure 5.7 includes
a photograph of a typical cavitating tip vortex from tests of Impeller IV (the scale
model of the SSME low pressure LOX turbopump shown in figure 2.12). Note that
the backflow causes the flow in the vicinity of the vortex to have an upstream velocity
component. Careful smoothing of the transition from the leading edge to the tip can
reduce o;, but it will not eliminate the vortex, or vortex cavitation.

Usually the cavitation number has to be lowered quite a bit further before the next
development occurs, and often this takes the form of traveling bubble cavitation on
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the suction surfaces of the blades. Nuclei in the inflow grow as they are convected into
the regions of low pressure on the suction surfaces of the blades, and then collapse
as they move into regions of higher pressure. For convenience, this will be termed
“bubble cavitation.” It is illustrated in figure 5.8 which shows bubble cavitation on a
single hydrofoil.

With further reduction in the cavitation number, the bubbles may combine to form
large attached cavities or vapor-filled wakes on the suction surfaces of the blades. In a
more general context, this is known as “attached cavitation.” In the context of pumps,
it is often called “blade cavitation.” Figure 5.9 presents an example of blade cavitation
in a centrifugal pump.

Figure 5.8. Bubble cavitation on the surface of a NACA 4412 hydrofoil at zero incidence angle, a speed
of 13.7 m/s and a cavitation number of 0.3. The flow is from left to right and the leading edge of the foil
is just to the left of the white glare patch on the surface (Kermeen 1956).

Figure 5.9. Blade cavitation on the suction surface of a blade in a centrifugal pump. The relative
flow is from left to right and the cavity begins at the leading edge of the blade which is toward the
left of the photograph (from Sloteman, Cooper, and Graf (1991), courtesy of Ingersoll-Dresser Pump
Company).
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Figure 5.10. Partially cavitating cascade (left) and supercavitating cascade (right).

When blade cavities (or bubble or vortex cavities) extend to the point on the
suction surface opposite the leading edge of the next blade, the increase in pressure
in the blade passage tends to collapse the cavity. Consequently, the surface opposite
the leading edge of the next blade is a location where cavitation damage is often
encountered.

Blade cavitation that collapses on the suction surface of the blade is also referred
to as “partial cavitation,” in order to distinguish it from the circumstances that occur
at very low cavitation numbers, when the cavity may extend into the discharge
flow downstream of the trailing edge of the blade. These long cavities, which are
clearly more likely to occur in lower solidity machines, are termed “supercavities.”
Figure 5.10 illustrates the difference between partial cavitation and supercavitation.
Some pumps have even been designed to operate under supercavitating conditions
(Pearsall 1963). The potential advantage is that bubble collapse will then occur
downstream of the blades, and cavitation damage might thus be minimized.

Finally, it is valuable to create the catch-all term “backflow cavitation” to refer
to the cavitating bubbles and vortices that occur in the annular region of backflow
upstream of the inlet plane when the pump is required to operate in a loaded condi-
tion below the design flow rate (see section 4.5). The increased pressure rise across
the pump under these circumstances may cause the tip clearance flow to penetrate
upstream and generate a backflow that can extend many diameters upstream of the
inlet plane. When the pump also cavitates, bubbles and vortices are swept up in this
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Figure 5.11. As figure 5.7, but here showing typical backflow cavitation.

backflow and, to the observer, can often represent the most visible form of cavita-
tion. Figure 5.11 includes a photograph illustrating the typical appearance of backflow
cavitation upstream of the inlet plane of an inducer.

5.7 Cavitation Inception Data

In section 5.3 the important role played by cavitation nuclei in determining cavitation
inception was illustrated by reference to the comparitive ITTC tests (figure 5.1). It
is now clear that measurements of cavitation inception are of little value unless the
nuclei population is documented. Unfortunately, this calls into question the value of
most of the cavitation inception data found in the literature. And, even more important
in the present context, is the fact that this includes just about all of the observations
of cavitation inception in pumps. To illustrate this point, we reproduce in figure
5.12 data obtained by Keller (1974) who measured cavitation inception numbers for
flows around hemispherical bodies. The water was treated in different ways so that
it contained different populations of nuclei, as shown on the left in figure 5.12. As
one might anticipate, the water with the higher nuclei population had a substantially
larger inception cavitation number.

One of the consequences of this dependence on nuclei population is that it may
cause the cavitation number at which cavitation disappears when the pressure is
increased (known as the “desinent” cavitation number, o) to be larger than the value
at which the cavitation appeared when the pressure was decreased, namely o;. This
phenomenon is termed “cavitation hysteresis” (Holl and Treaster 1966), and is often
the result of the fact mentioned previously (section 5.3) that the cavitation itself can
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Figure 5.12. Histograms of nuclei populations in treated and untreated tap water and the corresponding
cavitation inception numbers on hemispherical headforms of three different diameters (Keller 1974).

increase the nuclei population in a recirculating facility. An example of cavitation
hysteresis in tests on an axial flow pump in a closed loop is given in figure 7.8.

One of the additional complications is the subjective nature of the judgment that
cavitation has appeared. Visual inspection is not always possible, nor is it very objec-
tive, since the number of “events” (an event is a single bubble growth and collapse)
tends to increase over a range of cavitation numbers. If, therefore, one made a judg-
ment based on a certain critical event rate, it is inevitable that the inception cavitation
number would increase with nuclei population, as in figure 5.12. Experiments have
found, however, that the production of noise is a simpler and more repeatable measure
of inception than visual observation. While still subject to the variations with nuclei
population, it has the advantage of being quantifiable. Figure 5.13, from McNulty
and Pearsall (1979), illustrates the rapid increase in the noise from a centrifugal pump
when cavitation inception occurs (the data on inception in figure 5.5 and table 5.1 was
obtained acoustically).

Though information on the nuclei are missing in most experiments, the total air
content of the water is frequently monitored. One would suppose that the nuclei
population would increase with the air content, and this is usually the case. Some
data on the dependence of the critical cavitation numbers for a centrifugal pump on
the total air content is included in figure 5.14. As expected, the cavitation inception
number, o;, increases with air content. Note, however, that the breakdown cavitation
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Figure 5.14. The effect of air content on the critical cavitation numbers for a centrifugal pump
(Schoeneberger 1965, Pearsall 1972).

number, oy, is quite independent of air content, an illustration of the fact that, once it
has been initiated, cavitation is much less dependent on the nuclei population.

Having begun by questioning the value of much of the cavitation inception data,
we will nevertheless proceed to review some of the important trends in that data base.
In doing so we might take refuge in the thought that each investigator probably applied
a consistent criterion in assessing cavitation inception, and that the nuclei content in
a given facility might be fairly constant (though the latter is very doubtful). Then,
though the data from different investigators and facilties may be widely scattered,
one would hope that the trends exhibited in a particular research project would be
qualitatively significant.
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Figure 5.15. Cavitation inception characteristics of a NACA 4412 hydrofoil (Kermeen 1956).

Consider first the inception characteristics of a single hydrofoil as the angle of
incidence is varied. Typical data, obtained by Kermeen (1956) for a NACA 4412
hydrofoil, is reproduced in figure 5.15. At positive angles of incidence, the regions of
low pressure and cavitation inception will occur on the suction surface; at negative
angles of incidence, these phenomena will shift to what is normally the pressure
surface. Furthermore, as the angle of incidence is increased in either direction, the
value of —C i, Will increase, and hence the inception cavitation number will also
increase.

When such hydrofoils are used to construct a cascade, the results will also depend
on the cascade solidity, s. Data on the pressure distributions around a blade in a cascade
(such as that of Herrig et al. 1957) can be used to determine C i, as a function of blade
angle, Bp1, solidity, s, and angle of incidence, «. Consequently, one can anticipate
the variation in the inception number with these variables, assuming the first-order
approximation, 0; = —C ;. An example of such data is presented in figure 5.16; this
was derived by Pearsall (1972) from the cascade data of Herrig et al. (1957). Note that
a particular cascade will have a particular positive angle of incidence of, typically, a
few degrees, at which o; is a minimum. The optimum angle of incidence changes with
different s and B, ; however, it seems to lie within a fairly narrow range between 1 and
5 degrees for a wide range of those design variables. In a pump, the incidence angle
is usually small in the vicinity of the design flow rate, but will increase substantially
above or below the design value. Consequently, in a pump, the cavitation inception
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Figure 5.17. Variation in the inception number with flow rate for a typical centrifugal pump (adapted
from McNulty and Pearsall 1979).

number tends to have a minimum at the design flow rate. This is illustrated in figure
5.17 which includes some data from a typical centrifugal pump, and by the data in
figure 7.7 for an axial flow pump.

As we discussed in section 5.4, the scaling of cavitation phenomena with size
and with speed can be an important issue. Typical data for cavitation inception on a
single hydrofoil is that obtained by Holl and Wislicenus (1961); it is reproduced in
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figure 5.18. Data for three different sizes of 12% Joukowski hydrofoil (at zero angle of
incidence) were obtained at different speeds. It was plotted against Reynolds number
in the hope that this would reduce the data to a single curve. The fact that this does
not occur demonstrates that there is a size or speed effect separate from that due to
the Reynolds number. It seems plausible that the missing parameter is the ratio of the
nuclei size to chord length; however, in the absence of information on the nuclei, such
a conclusion is speculative.

To complete the list of those factors that may influence cavitation inception, it is
necessary to mention the effects of surface roughness and of the turbulence level in
the flow. The two effects are connected to some degree, since roughness will affect the
level of turbulence. But roughness can also affect the flow by delaying boundary layer
separation and therefore modifying the pressure and velocity fields in a more global
manner. The reader is referred to Arndt and Ippen (1968) for details of the effects of
surface roughness on cavitation inception.

Turbulence affects cavitation inception since a nucleus may find itself in the core
of a vortex where the pressure level is lower than the mean. It could therefore cavitate
when it might not do so under the influence of the prevailing mean pressure level.
Thus turbulence may promote cavitation, but one must also allow for the fact that it
may alter the global pressure field by altering the location of flow separation. These
complicated viscous effects on cavitation inception were first examined in detail by
Arakeri and Acosta (1974) and Gates and Acosta (1978) (see also Arakeri 1979). The
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implications for cavitation inception in the highly turbulent environment of most pump
flows have yet to be examined in detail.

In unshrouded turbomachinery, cavitation usually begins in the vortices associated
with the tip clearance flows, and so it is important to investigate how the tip clearance
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will affect the inception number. In figures 5.19 and 5.20 observed cavitation incep-
tion numbers for the tip clearance flows in axial flow impellers are plotted against
nondimensional tip clearance. The typical variation with incidence angle or flow
coefficients is illustrated in figure 5.19 (Rains 1954). Since the pressure difference
between the two sides of the blade increases with incidence angle, the velocities of
the tip clearance flow must also increase, and it follows that o; should increase cor-
respondingly, as is the case in figure 5.19. A second feature that is not clear in Rains’
data, but is manifest in the data of Acosta (1958) and Henderson and Tucker (1962), is
that there appears to be an optimum tip clearance of about 1% of the blade height. At
this optimum, the cavitation inception number is a minimum. This is illustrated in the
figure 5.20.



Bubble Dynamics, Damage and Noise

6.1 Introduction

We now turn to the characteristics of cavitation for o < o;. To place the material in
context, we begin with a discussion of bubble dynamics, so that reference can be made
to some of the classic results of that analysis. This leads into a discussion of two of
the deleterious effects that occur as soon as there is any cavitation, namely cavitation
damage and cavitation noise. In the next chapter, we address another deleterious
consequence of cavitation, namely its effect upon hydraulic performance.

6.2 Cavitation Bubble Dynamics

Two fundamental models for cavitation have been extensively used in the literature.
One of these is the spherical bubble model which is most relevant to those forms
of bubble cavitation in which nuclei grow to visible, macroscopic size when they
encounter a region of low pressure, and collapse when they are convected into a
region of higher pressure. For present purposes, we give only the briefest outline of
these methods, while referring the reader to the extensive literature for more detail
(see, for example, Knapp, Daily, and Hammitt 1970, Plesset and Prosperetti 1977,
Brennen 1994). The second fundamental methodology is that of free streamline theory,
which is most pertinent to flows consisting of attached cavities or vapor-filled wakes;
a brief review of this methodology is given in chapter 7.

Virtually all of the spherical bubble models are based on some version of the
Rayleigh-Plesset equation (Plesset and Prosperetti 1977) that defines the relation
between the radius of a spherical bubble, R(z), and the pressure, p(¢), far from
the bubble. In an otherwise quiescent incompressible Newtonian liquid, this equation
takes the form

_ 2 2
ps() = p(t) _ 4R 3(dR> 4vdR 2§ 6.1

oL a2 "2\ a ) TR a ok

where v, S, and p; are respectively the kinematic viscosity, surface tension, and
density of the liquid. This equation (without the viscous and surface tension terms)

78
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was first derived by Rayleigh (1917) and was first applied to the problem of a traveling
cavitation bubble by Plesset (1949).

The pressure far from the bubble, p(z), is an input function that could be obtained
from a determination of the pressure history that a nucleus would experience as it
travels along a streamline. The pressure, pp (), is the pressure inside the bubble. It is
often assumed that the bubble contains both vapor and noncondensable gas, so that

3mgKgTh 3mgKgTp
1) = Ip)+——Fx— = Too) — pr.O® + —————
p(t) = pv(Tp) 47 R3 pv(Tso) — pL 47 R3

(6.2)
where T is the temperature inside the bubble, py (T) is the vapor pressure, mg is
the mass of gas in the bubble, and K is the gas constant. However, it is convenient to
use the ambient liquid temperature far from the bubble, T, to evaluate py. When this
is done, it is necessary to introduce the term, ®, into equation 6.1 in order to correct
the difference between py (Tp) and py (Tx). It is this term, ©, that is the origin of
the thermal effect in cavitation. Using the Clausius-Clapeyron relation,

L
o Pv
PLIxo

(Teo — Tg()) (6.3)

where py is the vapor density and £ is the latent heat.

Note that in using equation 6.2 for pp(¢), we have introduced the additional
unknown function, Tg(¢), into the Rayleigh-Plesset equation 6.1. In order to deter-
mine this function, it is necessary to construct and solve a heat diffusion equation,
and an equation for the balance of heat in the bubble. Approximate solutions to these
equations can be written in the following simple form. If the heat conducted into the
bubble is equated to the rate of use of latent heat at the interface, then

aT LdR
(_) _pv~an (6.4)
ar r=R kL dt

where (0T /dr),—p is the temperature gradient in the liquid at the interface and &
is the thermal conductivity of the liquid. Moreover, an approximate solution to the
thermal diffusion equation in the liquid is

(a_T) _ T =T5(0) 6.5)
or ) ,—g (apt)?

where «y is the thermal diffusivity of the liquid (oz = k. /prcpr where cpy is the
specific heat of the liquid) and ¢ is the time from the beginning of bubble growth
or collapse. Using equations 6.4 and 6.5 in equation 6.3, the thermal term can be
approximated as

1dR
O =X(Tx)t2 T (6.6)
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where

pvL?

Y(Too) = (6.7)

1
2 2
pLCPLTOOOlL

In section 7.7, we shall utilize these relations to evaluate the thermal suppression
effects in cavitating pumps.

For present purposes, it is useful to illustrate some of the characteristic features of
solutions to the Rayleigh-Plesset equation in the absence of thermal effects (® =0
and Tg(t) = Txo). A typical solution of R(¢) for a nucleus convected through a low
pressure region is shown in figure 6.1. Note that the response of the bubble is quite
nonlinear; the growth phase is entirely different in character from the collapse phase.
The growth is steady and controlled; it rapidly reaches an asymptotic growth rate in
which the dominant terms of the Rayleigh-Plesset equation are the pressure difference,
pv — p, and the second term on the right-hand side so that

1
dR N [M] ’ (6.8)
dt 3oL

Note that this requires the local pressure to be less than the vapor pressure. For traveling
bubble cavitation, the typical tension (py — p) will be given nondimensionally by
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Figure 6.1. Typical solution, R(t), of the Rayleigh-Plesset equation for a spherical bubble originating
from a nucleus of radius, Ry. The nucleus enters a low pressure region at a dimensionless time of 0 and
is convected back to the original pressure at a dimensionless time of 500. The low pressure region is
sinusoidal and symmetric about a dimensionless time of 250.
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(—=Cpmin — o) (see equations 5.2 and 5.4) so the typical growth rate is given by

dR
— X
dt

Nl—

(=Cpmin—0)2U (6.9)
While this growth rate may appear, superficially, to represent a relatively gentle pro-
cess, it should be recognized that it corresponds to a volume that is increasing like #3.
Cavitation growth is therefore an explosive process to be contrasted with the kind of
boiling growth that occurs in a kettle on the stove in which d R /dt typically behaves
like =2 The latter is an example of the kind of thermally inhibited growth discussed
in section 7.7.

It follows that we can estimate the typical maximum size of a cavitation bub-
ble, Ry, given the above growth rate and the time available for growth. Numerical
calculations using the full Rayleigh-Plesset equation show that the appropriate time
for growth is the time for which the bubble experiences a pressure below the vapor
pressure. In traveling bubble cavitation we may estimate this by knowing the shape
of the pressure distribution near the minimum pressure point. We shall represent this
shape by

Cp = Cpmin + Cps(s/D)? (6.10)

where s is a coordinate measured along the surface, D is the typical dimension of the
body or flow, and C ., is some known constant of order one. Then, the time available
for growth, ¢¢, is given approximately by

2D (6 — Cpmin)%

g~ (6.11)

1 1
Cﬁ*U(l +Cpmin)2
and therefore

Ry N 2(—0’—Cpmin)
D ;
Cps (14 Cpmin)?

(6.12)

Note that this is independent of the size of the original nucleus.

One other feature of the growth process is important to mention. It transpires that
because of the stabilizing influence of the surface tension term, a particular tension,
(pv — p), will cause only bubbles larger than a certain critical size to grow explosively
(Blake 1949). This means that, for a given cavitation number, only nuclei larger than
a certain critical size will achieve the growth rate necessary to become macroscopic
cavitation bubbles. A decrease in the cavitation number will activate smaller nuclei,
thus increasing the volume of cavitation. This phenomenon is illustrated in figure 6.2
which shows the maximum size of a cavitation bubble, Ry, as a function of the
size of the original nucleus and the cavitation number for a typical flow around an
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axisymmetric headform. The vertical parts of the curves on the left of the figure
represent the values of the critical nuclei size, R, that are, incidentally, given simply
by the expression

Rc ~«kS/pLU? (=0 — Cpmin) (6.13)

where the factor « is roughly unity (Ceccio and Brennen 1991). Note also from
figure 6.2 that all the unstable nuclei grow to roughly the same size as anticipated
earlier.

Turning now to the collapse, it is readily seen from figure 6.1 that cavitation bubble
collapse is a catastrophic phenomenon in which the bubble, still assumed spherical,
reaches a size very much smaller than the original nucleus. Very high accelerations and
pressures are generated when the bubble becomes very small. However, if the bubble
contains any noncondensable gas at all, this will cause arebound as shown in figure 6.1.
Theoretically, the spherical bubble will undergo many cycles of collapse and rebound.
In practice, a collapsing bubble becomes unstable to nonspherical disturbances, and
essentially shatters into many smaller bubbles in the first collapse and rebound. The
resulting cloud of smaller bubbles rapidly disperses. Whatever the deviations from the
spherical shape, the fact remains that the collapse is a violent process that produces
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noise and the potential for material damage to nearby surfaces. We proceed to examine
both of these consequences in the two sections which follow.

6.3 Cavitation Damage

Perhaps the most ubiquitous problem caused by cavitation is the material damage that
cavitation bubbles can cause when they collapse in the vicinity of a solid surface.
Consequently, this aspect of cavitation has been intensively studied for many years
(see, for example, ASTM 1967, Knapp, Daily, and Hammitt 1970, Thiruvengadam
1967, 1974). The problem is complex because it involves the details of a complicated
unsteady flow combined with the reaction of the particular material of which the solid
surface is made.

As we have seen in the previous section, cavitation bubble collapse is a violent
process that generates highly localized, large amplitude disturbances and shocks in
the fluid at the point of collapse. When this collapse occurs close to a solid surface,
these intense disturbances generate highly localized and transient surface stresses.
Repetition of this loading due a multitude of bubble collapses can cause local surface
fatigue failure, and the detachment of pieces of material. This is the generally accepted
explanation for cavitation damage. It is consistent with the appearance of cavitation
damage in most circumstances. Unlike the erosion due to solid particles in the flow, for
which the surface appears to be smoothly worn with scratches due to larger particles,
cavitation damage has the crystalline and jagged appearance of fatigue failure. To
illustrate this, a photograph of localized cavitation damage on the blade of a mixed
flow pump, fabricated from an aluminium-based alloy, is included as figure 6.3. More
extensive damage is illustrated in figure 6.4 which shows the blades at discharge from
a Francis turbine; here the cavitation damage has penetrated the blades. Cavitation
damage can also occur in much larger scale flows. As an example, figure 6.5 shows

Figure 6.3. Photograph of localized cavitation damage on the blade of a mixed flow pump impeller made
from an aluminium-based alloy.
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Figure 6.4. Cavitation damage on the blades at the discharge from a Francis turbine.

Figure 6.5. Cavitation damage to the concrete wall of the 15.2 m diameter Arizona spillway at the Hoover
Dam. The hole is 35 m long, 9 m wide, and 13.7 m deep. Reproduced from Warnock (1945).

cavitation damage suffered by a spillway at the Hoover dam (Warnock 1945, Falvey
1990).

In hydraulic devices such as pump impellers or propellers, cavitation damage is
often observed to occur in quite localized areas of the surface. This is frequently
the result of the periodic and coherent collapse of a cloud of cavitation bubbles.
Such is the case in magnetostrictive cavitation testing equipment (Knapp, Daily, and
Hammitt 1970). In many pumps, the periodicity may occur naturally as a result of
regular shedding of cavitating vortices, or it may be aresponse to a periodic disturbance
imposed on the flow. Examples of the kinds of imposed fluctuations are the interaction
between a row of rotor vanes and a row of stator vanes, or the interaction between a
ship’s propeller and the nonuniform wake behind the ship. In almost all such cases, the
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Figure 6.6. Axial views from the inlet of the cavitation and cavitation damage on the hub or base plate of
a centrifugal pump impeller. The two photographs are of the same area, the left one showing the typical
cavitation pattern during flow and the right one the typical cavitation damage. Parts of the blades can be
seen in the upper left and lower right corners; relative to these blades the flow proceeds from the lower
left to the upper right. The leading edge of the blade is just outside the field of view on the upper left.
Reproduced from Soyama, Kato, and Oba (1992) with permission of the authors.

coherent collapse of the cloud can cause much more intense noise and more potential
for damage than in a similar nonfluctuating flow. Consequently, the damage is most
severe on the solid surface close to the location of cloud collapse. An example of this
phenomenon is included in figure 6.6 taken from Soyama, Kato, and Oba (1992). In
this instance, clouds of cavitation are being shed from the leading edge of a centrifugal
pump blade, and are collapsing in a specific location as suggested by the pattern of
cavitation in the left-hand photograph. This leads to the localized damage shown in
the right-hand photograph.

Currently, several research efforts are focussed on the dynamics of cavitation
clouds. These studies suggest that the coherent collapse can be more violent than
that of individual bubbles, but the basic explanation for the increase in the noise and
damage potential is not clear.

6.4 Mechanism of Cavitation Damage

The intense disturbances that are caused by cavitation bubble collapse can have two
separate origins. The first is related to the fact that a collapsing bubble may be unstable
in terms of its shape. When the collapse occurs near a solid surface, Naude and
Ellis (1961) and Benjamin and Ellis (1966) observed that the developing spherical
asymmetry takes the form of a rapidly accelerating jet of fluid, entering the bubble
from the side furthest from the wall (see figure 6.7). Plesset and Chapman (1971)
carried out numerical calculations of this “reentrant jet,” and found good agreement
with the experimental observations of Lauterborn and Bolle (1975). Since then, other
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Figure 6.7. The collapse of a cavitation bubble close to a solid boundary. The theoretical shapes of Plesset
and Chapman (1971) (solid lines) are compared with the experimental observations of Lauterborn and
Bolle (1975) (points) (adapted from Plesset and Prosperetti 1977).

analytical methods have explored the parametric variations in the flow. These methods
are reviewed by Blake and Gibson (1987). The “microjet” achieves very high speeds,
so that its impact on the other side of the bubble generates a shock wave, and a highly
localized shock loading of the surface of the nearby wall.

Parenthetically, we might remark that this is also the principle on which the depth
charge works. The initial explosion creates little damage, but does produce a very large
bubble which, when it collapses, generates a reentrant jet directed toward any nearby
solid surface. When this surface is a submarine, the collapse of the bubble can cause
great damage to that vessel. It may also be of interest to note that a bubble, collapsing
close to a very flexible or free surface, develops a jet on the side closest to this
boundary, and, therefore, traveling in the opposite direction. Some researchers have
explored the possibility of minimizing cavitation damage by using surface coatings
with a flexibility designed to minimize the microjet formation.

The second intense disturbance occurs when the remnant cloud of bubbles, that
remains after the microjet disruption, collapses to its minimum gas/vapor volume,
and generates a second shock wave that impinges on the nearby solid surface. The
generation of a shock wave during the rebound phase of bubble motion was first
demonstrated by the calculations of Hickling and Plesset (1964). More recently, Shima
et al. (1981) have made interesting observations of the spherical shock wave using
Schlieren photography, and Fujikawa and Akamatsu (1980) have used photoelastic
solids to examine the stress waves developed in the solid. Though they only observed
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stress waves resulting from the remnant cloud collapse and not from the microjet,
Kimoto (1987) has subsequently shown that both the microjet and the remnant cloud
create stress waves in the solid. His measurements indicate that the surface load-
ing resulting from the remnant cloud is about two or three times that due to the
microjet.

Until very recently, virtually all of these detailed observations of collapsing cavita-
tion bubbles had been made in a quiescent fluid. However, several recent observations
have raised doubts regarding the relevance of these results for most flowing systems.
Ceccio and Brennen (1991) have made detailed observations of the collapse of cavitat-
ing bubbles in flows around bodies, and have observed that typical cavitation bubbles
are distorted and often broken up by the shear in the boundary layer or by the turbulence
before the collapse takes place. Furthermore, Chahine (personal communication) has
performed calculations similar to those of Plesset and Chapman, but with the addition
of rotation due to shear, and has found that the microjet is substantially modified and
reduced by the flow.

The other important facet of the cavitation damage phenomenon is the reaction of
the material of the solid boundary to the repetitive shock (or “water hammer”) loading.
Various measures of the resistance of particular materials to cavitation damage have
been proposed (see, for example, Thiruvengadam 1967). These are largely heuris-
tic and empirical, and will not be reviewed here. The reader is referred to Knapp,
Daily, and Hammitt (1970) for a detailed account of the relative resistance of different
materials to cavitation damage. Most of these comparisons are based, not on tests in
flowing systems, but on results obtained when material samples are vibrated at high
frequency (about 20 kHz) in a bath of quiescent liquid. The samples are weighed
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Figure 6.8. Examples of cavitation damage weight loss as a function of time. Data from vibratory tests
with different materials (Hobbs, Laird and Brunton 1967).
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Figure 6.9. Cavitation erosion rates in a centrifugal pump as a function of the flow rate relative to the
design flow rate (Pearsall 1978 from Grist 1974).

at regular intervals to determine the loss of material, and the results are presented
in the form typified by figure 6.8. Note that the relative erosion rates, according to
this data, can be approximately correlated with the structural strength of the material.
Furthermore, the erosion rate is not necessarily constant with time. This may be due to
the differences in the response of a collapsing bubble to a smooth surface as opposed
to a surface already roughened by damage. Finally, note that the weight loss in many
materials only begins after a certain incubation time.

The data on erosion rates in pumps is very limited because of the length of time
necessary to make such measurements. The data that does exist (Mansell 1974) demon-
strates that the rate of erosion is a strong function of the operating point as given by
the cavitation number and the flow coefficient. The influence of the latter is illustrated
in figure 6.9. This curve essentially mirrors those of figures 5.16 and 5.17. At off-
design conditions, the increased angle of incidence leads to increased cavitation and,
therefore, increased weight loss.

6.5 Cavitation Noise

The violence of cavitation bubble collapse also produces noise. In many practical
circumstances, the noise is important not only because of the vibration that it may
cause, but also because it advertizes the presence of cavitation and, therefore, the
likelihood of cavitation damage. Indeed, the magnitude of cavitation noise is often
used as a crude measure of the rate of cavitation erosion. For example, Lush and
Angell (1984) have shown that, in a given flow at a given cavitation number, the rate
of weight loss due to cavitation damage correlates with the noise as the velocity of
the flow is changed.

Prior to any discussion of cavitation noise, it is useful to identify the natural
frequency with which individual bubbles will oscillate a quiescent liquid. This natural
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frequency can be obtained from the Rayleigh-Plesset equation 6.1 by substituting an
expression for R(¢) that consists of a constant, Rg, plus a small sinusoidal perturbation
of amplitude, R, at a general frequency, w. Steady state oscillations like this would
only be maintained by an applied pressure, p(t), consisting of a constant, p, plus
a sinusoidal perturbation of amplitude, p, and frequency, w. Obtaining the relation
between the linear perturbations, R and p, from the Rayleigh-Plesset equation, it is
found that the ratio, R/, has a maximum at a resonant frequency, wp, given by

1

|:3(13—pv) 48 81)2}2
b=

pLR% ,OLR% R4E (6.14)
The results of this calculation for bubbles in water at 300° K are presented in figure 6.10
for various mean pressure levels, p. Note that the bubbles below about 0.02 pm are
supercritically damped, and have no resonant frequency. Typical cavitation nuclei
of size 10 — 100 wm have resonant frequencies in the range 10 — 100 kHz. Even
though the nuclei are excited in a highly nonlinear way by the cavitation, one might
expect that the spectrum of the noise that this process produces would have a broad
maximum at the peak frequency corresponding to the size of the most numerous nuclei
participating in the cavitation. Typically, this would correspond to the radius of the
critical nucleus given by the expression 6.13. For example, if the critical nuclei size
were of the order of 10-100 um, then, according to figure 6.10, one might expect
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Figure 6.10. Bubble natural frequency, wp, in Hz as a function of the bubble radius and the difference
between the equilibrium pressure and the vapor pressure (in kg/m secz) for water at 300°K .
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Figure 6.11. Typical acoustic signal from a single collapsing bubble (from Ceccio and Brennen 1991).

to see cavitation noise frequencies of the order of 10—100 k Hz. This is, indeed, the
typical range of frequencies produced by cavitation.

Fitzpatrick and Strasberg (1956) were the first to make extensive use of the
Rayleigh-Plesset equation to predict the noise from individual collapsing bubbles
and the spectra that such a process would produce. More recently, Ceccio and Bren-
nen (1991) have recorded the noise from individual cavitation bubbles in a flow. A
typical acoustic signal is reproduced in figure 6.11. The large positive pulse at about
450 s corresponds to the first collapse of the bubble. Since the radiated acoustic
pressure, p4, in this context is related to the second derivative of the volume of the
bubble, V (¢), by

PL d2V

= — — 6.15
4me dt? .15

PA
(where ¢ is the distance of the measurement from the center of the bubble), the pulse
corresponds to the very large and positive values of d2V /dt* that occur when the
bubble is close to its minimum size in the middle of the collapse. The first pulse is
followed in figure 6.11 by some facility-dependent oscillations, and by a second pulse
at about 1100 ws. This corresponds to the second collapse; no further collapses were
observed in these particular experiments.
A good measure of the magnitude of the collapse pulse in figure 6.11 is the acoustic
impulse, 7, defined as the area under the curve or

n
1:/ padt (6.16)
1

where f; and f, are the times before and after the pulse when p4 = 0. The
acoustic impulses for cavitation on two axisymmetric headforms (ITTC and Schiebe
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Figure 6.12. The acoustic impulse, /, produced by the collapse of a single cavitation bubble. Data is
shown for two axisymmetric bodies (the ITTC and Schiebe headforms) as a function of the maximum
volume prior to collapse. Also shown are the equivalent results from solutions of the Rayleigh-Plesset
equation (from Ceccio and Brennen 1991).

headforms) are compared in figure 6.12 with impulses predicted from integration of
the Rayleigh-Plesset equation. Since these theoretical calculations assume that the
bubble remains spherical, the discrepancy between the theory and the experiments is
not too surprising. Indeed, the optimistic interpretation of figure 6.12 is that the theory
can provide an order of magnitude estimate of the noise produced by a single bubble.
This could then be combined with the nuclei number density distribution to obtain a
measure of the amplitude of the noise (Brennen 1994).

The typical single bubble noise shown in figure 6.11 leads to the spectrum shown
in figure 6.13. If the cavitation events are randomly distributed in time, this would
also correspond to the overall cavitation noise spectrum. It displays a characteristic
frequency content in the range of 1 — 50 kHz (the rapid decline at about 80 kHz
represents the limit of the hydrophone used to make these measurements). Typical
measurements of the noise produced by cavitation in an axial flow pump are illus-
trated in figure 6.14, and exhibit the same features demonstrated in figure 6.13. The
signal in figure 6.14 also clearly contains some shaft or blade passage frequencies that
occur in the absence of cavitation, but may be amplified or attenuated by cavitation.
Figure 6.15 contains data obtained for cavitation noise in a centrifugal pump. Note
that the noise at a frequency of 40 k H z shows a sharp increase with the onset of cav-
itation; on the other hand, the noise at the shaft and blade passage frequencies show
only minor changes with cavitation number. The decrease in the 40 k Hz cavitation
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Figure 6.13. Typical spectra of noise from bubble cavitation for various cavitation numbers as indicated
(Ceccio and Brennen 1991).
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Figure 6.14. Typical spectra showing the increase in noise with increasing cavitation in an axial flow
pump (Lee 1966).

noise as breakdown is approached is also a common feature in cavitation noise
measurements.

The level of the sound produced by a cavitating flow is the result of two fac-
tors, namely the impulse, /, produced by each event (equation 6.16) and the event
rate or number of events per second, N £. Therefore, the sound pressure level, pg,
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will be
ps=1INg (6.17)

Here, we will briefly discuss the scaling of the two components, /, and N £, and thus
the scaling of the cavitation noise, ps. We emphasize that the following equations
omit some factors of proportionality necessary for quantitative calculations.

Both the experimental observations and the calculations based on the Rayleigh-
Plesset equation, show that the nondimensional impulse from a single cavitation event,
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defined by
I*=4n1¢/pUD? (6.18)

(where U and D are the reference velocity and length in the flow), is strongly correlated
with the maximum volume of the cavitation bubble (maximum equivalent volumetric
radius = Rys), and appears virtually independent of the other flow parameters. In
dimensionless terms,

I*~ R,/ D? (6.19)
It follows that
I~ pURY /¢ (6.20)

The evaluation of the impulse from a single event is then completed by some estimate
of the maximum bubble size, Rys. For example, we earlier estimated Ry, for traveling
bubble cavitation (equation 6.12), and found it to be independent of U for a given
cavitation number. In that case / is linear in U.

Modeling the event rate, N, can be considerably more complicated than might, at
first sight, be visualized. If all the nuclei flowing through a certain known streamtube
(say with a cross-sectional area, Ay, in the upstream reference flow), were to cavitate
similarly then, clearly, the result would be

Neg=NAyU (6.21)

where N is the nuclei concentration (number/unit volume). Then the sound pres-
sure level resulting from substituting the expressions 6.21, 6.20, and 6.12 into
equation 6.17, is

s~ pU? (=6 — Cpmin)° ANND? /€ (6.22)

where we have omitted some of the constants of order unity. For the simple circum-
stances outlined, equation 6.22 yields a sound pressure level that scales with U? and
with D* (because Ay o« D?). This scaling with velocity does correspond to that often
observed (for example, Blake, Wolpert, and Geib 1977, Arakeri and Shangumanathan
1985) in simple traveling bubble flows. There are, however, a number of complicating
factors. First, as we have discussed earlier in section 6.2, only those nuclei larger than
a certain critical size, Rc, will actually grow to become cavitation bubbles, and, since
Rc is a function of both o and the velocity U, this means that N will be a function of
Rc and U. Since R¢ decreases as U increases, the power law dependence of pgs on
velocity will then be U™ where m is greater than 2.

Different scaling laws will apply when the cavitation is generated by turbulent
fluctuations, such as in a turbulent jet (see, for example, Ooi 1985, Franklin and
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McMillan 1984). Then the typical tension and the typical duration of the tension
experienced by a nucleus, as it moves along an approximately Lagrangian path in the
turbulent flow, are very much more difficult to estimate. Consequently, estimates of
the sound pressure due to cavitation in turbulent flows, and the scaling of that sound
with velocity, are more poorly understood.



Cavitation and Pump Performance

7.1 Introduction

In this chapter we turn our attention to another of the deleterious consequences of
cavitation, namely its effect upon the steady state hydraulic performance of a pump. In
the next section we present several examples of the effect of cavitation on conventional
pumps. This is followed by a discussion of the performance and design of cavitating
inducers which are devices added to conventional pumps for the purpose of improving
the cavitation performance. Subsequent sections deal with the analytical methods
available for the evaluation of cavitation performance and with the thermodynamic
effects of the phase change process on that performance.

7.2 Typical Pump Performance Data

A typical non-cavitating performance characteristic for a centrifugal pump is shown
in figure 7.1 for the Impeller X/Volute A combination (Chamieh 1983) described in
section 2.8. The design flow coefficient for this pump is ¢ = 0.092 but we note that
it performs reasonably well down to about 30% of this design flow. This flexibility is
characteristic of centrifugal pumps. Data is presented for three different shaft speeds,
namely 600, 800, and 1200 rpm; since these agree closely we can conclude that there
is no perceptible effect of Reynolds number for this range of speeds. The effect of a
different volute is also illustrated by the data for Volute B which is a circular volute of
circumferentially uniform area. In theory this circular volute is not well matched to the
impeller discharge flow and the result is that, over most of the range of flow coefficient,
the hydraulic performance is inferior to that with Volute A. However, Volute B is
superior at high flow coefficients. This suggests that the flow in Volute A may be more
pathological than one would like at these high flow coefficients (see sections 4.4 and
4.6). It further serves to emphasize the importance of a volute (or diffuser) and the need
for an understanding of the flow in a volute at both design and off-design conditions.
Typical cavitation performance characteristics for a centrifugal pump are presented
in figure 7.2 for the Impeller X/Volute A combination. The breakdown cavitation
numbers in the range o = 0.1 — 0.4 are consistent with the data in table 5.1. Note

96



7.2 Typical Pump Performance Data 97

I I I I T T T
051 °% VOLUTE A 7]
0® o * L)
° ®
. AN
b o
S .
0.4 fo) —
e VOLUTE B A A
£ (CIRCULAR) *
w
o
T . 3
m 0
o 03 ° .
o A
2 o
T °
SHAFT RPM a .j
0.2 A 600 o
0,8 800
4 1200
| ] | 1 1 | |
0 002 004 006 008 010 012 0.14

FLOW COEFFICIENT, ¢,

Figure 7.1. Typical non-cavitating performance for a centrifugal pump, namely Impeller X (see section
2.8) with Volute A and a circular volute of uniform cross-section (from Chamich 1983).

that the cavitation head loss occurs more gradually at high flow coefficients than at
low values. This is a common feature of the cavitation performance of many pumps,
both centrifugal and axial.

Now consider some examples of axial and mixed flow pumps. Typical non-
cavitating performance characteristics are shown in figure 7.3 for a Peerless axial
flow pump. This unshrouded pump has a design flow coefficient ¢ = 0.171. The
maximum efficiency at this design point is about 85%. Axial flow pumps are more
susceptible to flow separation and stall than centrifugal pumps and could therefore be
considered less versatile. The depression in the head curve of figure 7.3 in the range
¢> = 0.08 — 0.12 is indicative of flow separation and this region of the head/flow
curve can therefore be quite sensitive to the details of the blade profile since small sur-
face irregularities can often have a substantial effect on separation. This is illustrated
by the data of figure 7.4 which presents the non-cavitating characteristics for four
similar axial flow pumps with slightly different blade profiles. The kinks in the curves
are more marked in this case and differ significantly from one profile to another. Also
note that there are small regions of positive slope in the head characteristics. This often
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Figure 7.3. Typical non-cavitating performance characteristics for a 20.3 c¢m diameter, 3-bladed axial
flow pump with a hub-tip ratio, Ry /R7, of 0.45 running at about 1500 rpm. At the blade tip the chord
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Figure 7.4. Typical non-cavitating performance characteristics for a 4-bladed axial flow pump with tip
blade angle, Bp7, of about 18°, a hub-tip ratio, Ry /RT, of 0.483, a solidity of 0.68 and four different
blade profiles (yielding the set of four performance curves). Adapted from Oshima and Kawaguchi
(1963).

leads to instability and to fluctuating pressures and flow rates through the excitation
of the surge and stall mechanisms discussed in the following chapters. Sometimes the
region of positive slope in the head characteristic can be even more marked as in the
example presented in figure 7.5 in which the stall occurs at about 80% of the design
flow. As a final example of non-cavitating performance we include in figure 7.6, the
effect of the blade angle in an axial flow pump; note that angles of the order of 20° to
30° seem to be optimal for many purposes.

The cavitation characteristics for some of the above axial flow pumps are pre-
sented in figures 7.7 through 7.10. The data of Guinard et al. (1953) provides a
particularly well-documented example of the effect of cavitation on an axial flow
pump. Note first from figure 7.7 that the cavitation inception number is smallest at
the design flow and increases as ¢ is decreased; the decrease at very low ¢ does
not, however, have an obvious explanation. Since Guinard et al. (1953) noticed the
hysteretic effect described in section 5.7 we present figure 7.8 as an example of that
phenomenon.
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Figure 7.6. Head and efficiency characteristics for an axial flow pump with different tip blade angles,
BpT (from Peck 1966).

The cavitation data of figure 7.7 also help to illustrate several other characteristic
phenomena. Note the significant increase in the head just prior to the decrease asso-
ciated with breakdown. In the case of the pump tested by Guinard et al., this effect
occurs at low flow coefficients. However, other pumps exhibit this phenomenon at
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Figure 7.7. Cavitation performance characteristics of the axial flow pump of figure 7.3. Adapted from
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higher flows and not at low flows as illustrated by the data of Oshima and Kawaguchi
(1963) presented in figure 7.9. The effect is probably caused by an improved flow
geometry due to a modest amount of cavitation.

The cavitation data of figure 7.7 also illustrates the fact that breakdown at low flow
coefficients occurs at higher cavitation numbers and is usually more abrupt than at
higher flow coefficients. It is accompanied by a decrease in efficiency as illustrated by
figure 7.9. Finally we include figure 7.10 which shows that the effect of blade profile
changes on the head breakdown cavitation number is quite small.

7.3 Inducer Designs

Axial flow inducers are intended to improve the cavitation performance of centrifugal
or mixed flow pumps by increasing the inlet pressure to the pump to a level at which
it can operate without excessive loss of performance due to cavitation. Typically they
consist of an axial flow stage placed just upstream of the inlet to the main impeller.
They are designed to operate at small incidence angles and to have thin blades so
that the perturbation to the flow is small in order to minimize the production of
cavitation and its deleterious effect upon the flow. The objective is to raise the pressure
very gradually to the desired level. The typical advantage gained by the addition of
an inducer is illustrated in figure 7.11 taken from Janigro and Ferrini (1973). This
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Figure 7.11. Comparison of the suction specific speed at 3% head drop for process pumps with and
without inducer (from Janigro and Ferrini 1973).

compares the cavitation performance of a class of process pumps with and without an
inducer.

Various types of inducer design are documented in figure 7.12 and table 7.1, both
taken from Jakobsen (1971). Data on the low pressure LOX pump in the Space Shuttle
Main Engine (SSME) has been added to table 7.1. Most inducers of recent design seem
to be of types (a) or (b). They are unshrouded, with a swept leading edge and often with
a forward cant to the blades as in the case of the low pressure LOX pump in the SSME
(figure 2.12). This blade cant has the effect of causing the leading edge to be located
at a single axial plane counteracting the effect of the sweep given to the leading edge.
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[a] Low-head inducer with [b] Low-head inducer with
cylindrical tip and hub. cylindrical tip, tapered hub.

[c] Low-head inducer with [d] Low-head inducer,
tapered tip and hub. shrouded.

[e] High-head inducer with [f] High-head inducer with
cylindrical tip, tapered hub. tapered tip and hub.

Figure 7.12. Various geometries of cavitating inducers (from Jakobsen 1971).

They are also designed to function at an incidence angle of a few degrees. The reason
that the design incidence angle is not zero is that under these conditions cavitation
could form on either the pressure or suction surfaces or it could oscillate between the
two. It is preferable to use a few degrees of incidence to eliminate this uncertainity
and ensure suction surface cavitation.

7.4 Inducer Performance

Typical inducer performance characteristics are presented in figures 7.13 through
7.16. The non-cavitating performance of simple 9° helical inducers (see figure 2.12)
is presented in figure 7.13. The data for the 5.1 ¢m and 7.6 ¢cm diameter models
appear to coincide indicating very little Reynolds number effect. Furthermore, the
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Table 7.1. Typical rocket engine inducer geometry and performance (from Jakobsen
1971 and other sources). Key. (a) Main + Partial or Main/Tandem (b) Radial (RAD),
Swept Backwards (SWB), or Swept Forward (SWF)

Rocket: THOR J-2 X-8 X-8 J-2 J-2 SSME
Fluid: LOX LOX LOX LOX LH2 LH2 LOX
No. of Blades (a) 4 3 3 2 4+4 4+4 4/12
Ru1/R71 0.31 0.20 0.23 ~0.19 0.42 0.38 0.29
R72/R71 1.0 1.0 ~0.9 ~0.8 1.0 ~0.9 1.0
Ru2/RH1 1.0 ~2 ~1.5 1.5 ~2 ~2 2.6
Leading Edge (b) RAD SWB SWB SWF SWB SWB SWB
Brr1 (deg.) 14.15 9.75 9.8 5.0 7.9 7.35 7.3
d1p 0.116 0.109 0.106 0.05 0.094 0.074 0.076
Y1p 0.075 0.11 0.10 0.063 0.21 0.20 0.366
Nip 4.21 3.06 3.25 3.15 1.75 1.61 0.68
ar (deg.) 7.5 3.5 3.7 2.1 2.5 3.1 4.3
oD 0.028 0.021 0.025 0.007 0.011 0.011

Sp 10.4 12.5 11.4 21.2 15.8 16.2

non-cavitating performance is the same whether the leading edge is swept or straight.
Also included in the figure are the results of the lossless performance prediction of
equation 4.6. The agreement with the experiments is about as good as one could expect.
It is most satisfactory close to the zero incidence flow coefficient of about 0.09 — 0.10
where one would expect the viscous losses to be a minimum. The comparison also
suggests that the losses increase as one either increases or decreases the flow from
that zero incidence value.

The cavitation performance of the 7.58 ¢m model of the 9° helical inducer is
presented in figure 7.14. These curves for different flow coefficients exhibit the
typical pattern of a more gradual head loss at the higher flow coefficients. Notice
that the breakdown cavitation number is smaller for non-zero incidence (for exam-
ple, ¢ = 0.052) than it is for zero incidence (¢ = 0.095). One would expect the
breakdown cavitation number to be a minimum at zero incidence. The fact that the
data do not reflect this expectation may be due to the complications at low flow
coefficients caused by backflow and the prerotation which backflow induces (see
section 4.5).

Another example of inducer performance is presented in figures 7.15 and 7.16, in
this case for the SSME low pressure LOX pump model designated Impeller IV (see
figure 2.12). In figure 7.15, non-cavitating performance characteristics are shown
for two models with diameters of 7.58 ¢m and 10.2 c¢m. The difference in the two
characteristics is not related to the size as much as it is to the fact that the 7.58 cm
model was tested with a set of diffuser (stator) vanes in the axial flow annulus just
downstream of the impeller discharge whereas the 10.2 cm model was tested without
such a diffuser. Note the substantial effect that this has upon the performance. Below
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Figure 7.13. Non-cavitating performance of 9° helical inducers of two different sizes and with and

without swept leading edges (the 7.58 ¢m inducers are Impellers 11l and V). Also shown is the theoretical
performance prediction in the absence of losses (from Ng and Brennen 1978).
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Figure 7.14. Cavitation performance for Impeller V at various flow coefficients and rotating speeds (from
Ng and Brennen 1978).
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Figure 7.15. Non-cavitating performance of Impeller [V (7.58 cm, with stator) and Impeller VI (10.2 cm,
without stator) at various rotational speeds. Also shown are full scale test data from Rocketdyne and a
theoretical performance prediction (solid line) (from Ng and Brennen 1978).

the design flow (¢; =~ 0.076) the stator vanes considerably improve the diffusion
process. However, above the design flow, the negative angle of incidence of the
flow encountering the stator vanes appears to cause substantial loss and results in
degradation of the performance. Some full scale test data (with diffuser) obtained by
Rocketdyne is included in figure 7.15 and shows quite satisfactory agreement with the
7.58 cm model tests. The results of the theoretical performance given by equation 4.6
are also shown and the comparison between the lossless theory and the experimental
data is similar to that of figure 7.13.

The cavitation performance of Impeller IV in water is shown in figure 7.16 along
with some data from full scale tests. Note that the head tends to be somewhat erratic
at the lower cavitation numbers. Such behavior is typical of most axial flow inducer
data and is probably due to hydraulic losses caused by unsteadiness in the flow (see
section 8.7).



108 Cavitation and Pump Performance

0.4
¢4 =0.055
¢4 = 0.060

0.3 4 =0.065

=

= ¢4 =0.070

& b4 =0.073

(@) =

2 b4 =0.076

L 0.2

o)

(&)

a

<

i IMPELLER IV

0.1 STEADY STATE RESULTS (9000)
FULL SCALE ROCKETDYNE TESTS
(COCA IA 740-015)(¢> = 0.069)
0
0 0.02 0.04 0.06 0.08 0.10

CAVITATION NUMBER, o

Figure 7.16. Cavitation performance of Impeller IV at 9000 rpm and various flow coefficients. Also
shown are full scale test data from Rocketdyne (from Ng and Brennen 1978).
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Figure 7.17. The effect of solidity on the cavitation performance of a 9° helical inducer (from Acosta
1958).

7.5 Effects of Inducer Geometry

In this section we comment on several geometric factors for which the data suggests
optimum values. Clearly, the solidity, s, needs to be as small as possible and yet large
enough to achieve the desired discharge flow angle. Data on the effect of the solidity on
the performance of a 3-bladed, 9° helical inducer has been obtained by Acosta (1958)
and on a 4-bladed, 8%0 helical inducer by Henderson and Tucker (1962). This data is
shown in figures 7.17 and 7.18. The effect on the non-cavitating performance (extreme
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Figure 7.18. The effect of solidity on the cavitation performance of a cavitating inducer (Janigro and
Ferrini 1973 from Henderson and Tucker 1962).

right of the figures) seems greater for Acosta’s inducer than for that of Henderson and
Tucker. The latter data suggests that, as expected, the non-cavitating performance
is little affected unless the solidity is less than unity. Both sets of data suggest that
the cavitating performance is affected more than the non-cavitating performance by
changes in the solidity when the latter is less than about unity. Consequently, this data
suggests an optimum value of s of about 1.5.

The same two studies also investigated the effect of the tip clearance and the
data of Henderson and Tucker (1962) is reproduced in figure 7.19. As was the case
with the solidity, the non-cavitating performance is less sensitive to changes in the
tip clearance than is the cavitation performance. Note from figure 7.19 that the non-
cavitating performance is relatively insensitive to the clearance unless the latter is
increased above 2% of the chord when the performance begins to decline more rapidly.
The cavitating performance shows a similar dependence though the fractional changes
in the performance are larger. Note that the performance near the knee of the curve
indicates an optimum clearance of about 1% of the chord which is in general qualitative
agreement with the effect of tip clearance on cavitation inception discussed earlier (see
figure 5.20).

Moore and Meng (1970a,b) have made a study of the effect of the leading edge
geometry on inducer performance and their results are depicted graphically in figures
7.20 and 7.21. Note that the leading edge geometry has a significant effect on the non-
cavitating performance and on the breakdown cavitation number. Simply stated, the
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Figure 7.19. The effect of tip clearance on the cavitation performance of a cavitating inducer (from
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Figure 7.20. Non-cavitating performance of three 9.4° helical inducers with different leading edges as
shown. Tests performed with liquid hydrogen (from Moore and Meng 1970b).

sharper the leading edge the better the hydraulic performance under both cavitating and
non-cavitating conditions. There is, however, a trade-off to be made here for very thin
leading edges may flutter. This phenomenon is discussed in section 8.12. Incidentally,
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figure 7.21 also demonstrates the thermal effect on cavitation performance which is
discussed in section 7.7.

7.6 Analyses of Cavitation in Pumps

In this and the sections which follow we shall try to give a brief overview of the
various kinds of models which have been developed for the analysis of developed
cavitation in a pump. Clearly different types of cavitation require different analyt-
ical models. We begin in this section with the various attempts which have been
made to model traveling bubble cavitation in a pump and to extract from such a
model information regarding the damage potential, noise or performance decrement
caused by that cavitation. In a later section we shall outline the methods developed
for attached blade cavitation. As for the other types of cavitation which are typically
associated with the secondary flows (for example, tip vortex cavitation, backflow cav-
itation) there is little that can be added to what has already been described in the last
chapter. Much remains to be understood concerning secondary flow cavitation, per-
haps because some of the more important effects involve highly unsteady and transient
cavitation.

To return to a general discussion of traveling bubble cavitation, it is clear that, given
the pressure and velocity distribution along a particular streamline in a reference frame
fixed in the impeller, one can input that information into the Rayleigh-Plesset equation
6.1 as discussed in section 6.2. The equation can then be integrated to find the size
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of the bubble at each point along its trajectory (see examples in section 6.2). Such
programs are equally applicable to two-phase flows or to two-component gas/liquid
flows.

Since the first applications of the Rayleigh-Plesset equation to traveling bubble
cavitation by Plesset (1949) and Parkin (1952) there have been many such investiga-
tions, most of which are reviewed by Holl (1969). A notable example is the work of
Johnson and Hsieh (1966) who included the motion of the bubble relative to the liquid
and demonstrated the possibility of some screening effects because of the motion of
the bubbles across streamlines due to centripetal forces. While most of the literature
discusses single bubble solutions of this type for flows around simple headforms the
same programs can readily be used for the flow around a pump blade provided the
pressure distributions on streamlines are known either from an analytic or numerical
solution or from experimental measurements of the flow in the absence of cavitation.
Such investigations would allow one to examine both the location and intensity of
bubble collapse in order to learn more about the potential for cavitation damage.

These methods, however, have some serious limitations. First, the Rayleigh-
Plesset equation is only valid for spherical bubbles and collapsing bubbles lose their
spherical symmetry as discussed in section 6.4. Consequently any investigation of
damage requires considerations beyond those of the Rayleigh-Plesset equation. Sec-
ondly, the analysis described above assumes that the concentration of bubbles is
sufficiently small so that bubbles do not interact and are not sufficiently numerous to
change the flow field from that for non-cavitating flow. This means that they are of
little value in predicting the effect of cavitation on pump performance since such an
effect implies interactions between the bubbles and the flow field.

It follows that to model the performance loss due to traveling bubble cavitation
one must use a two-phase or two-component flow model which implicitly includes
interaction between the bubbles and the liquid flow field. One of the first models
of this kind was investigated by Cooper (1967) and there have been a number of
similar investigations for two-component flows in pumps, for example, that by Rohatgi
(1978). While these investigations are useful, they are subject to serious limitations. In
particular, they assume that the two-phase mixture is in thermodynamic equilibrium.
Suchis certainly not the case in cavitation flows where an expression like the Rayleigh-
Plesset equation is needed to describe the dynamics of disequilibrium. Nevertheless
the models of Cooper and others have value as the first coherent attempts to evaluate
the effects of traveling bubble cavitation on pump performance.

Rather than the assumption of thermodynamic equilibrium, two-phase bubble flow
models need to be developed in which the bubble dynamics are included through
appropriate use of the Rayleigh-Plesset equation. In recent years a number of inves-
tigators have employed such models to investigate the dynamics and acoustics of
clouds of cavitation bubbles in which the bubbles and the flow interact (see, for
example, Chahine 1982, d’ Agostino and Brennen 1983, 1989, d’ Agostino et al. 1988,
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Biesheuval and van Wijngaarden 1984, Omta 1987). Among other things these inves-
tigations demonstrate that a cloud of bubbles has a set of natural frequencies of'its own,
separate from (but related to) the bubble natural frequency and that the bubble and flow
interaction effects become important when the order of magnitude of the parameter
aA?/R? exceeds unity where « is the void fraction and A and R are the dimensions
of the cloud and bubbles respectively. These more appropriate models for travel-
ing bubble cavitation have not, as yet, been used to investigate cavitation effects in
pumps.

Several other concepts should be mentioned before we leave the subject of bubbly
cavitation in pumps. One such concept which has not received the attention it deserves
was put forward by Jakobsen (1964). He attempted to merge the free streamline models
(which are discussed later in section 7.8) with his observations that attached cavities
on the suction surfaces of impeller blades tend to break up into bubbly mixtures near
the closure or reattachment point of the attached cavity. Jakobsen suggested that
condensation shocks occur in this bubbly mixture and constitute a mechanism for
head breakdown.

There are also a number of results and ideas that emerge from studies of the
pumping of bubbly gas/liquid mixtures. One of the most important of these is found
in the measurements of bubble size made by Murakami and Minemura (1977, 1978).
It transpires that, in most practical pumping situations, the turbulence and shear at
inlet tend to break up all the gas bubbles larger than a certain size during entry to the
blade passages. The ratio of the force tending to cause fission to the surface tension,
S, which tends to resist fission will be a Weber number and Murakami and Minemura
(1977, 1978) suggest that the ratio of the diameter of the largest bubbles to survive
the inlet shear, 2Ry, to the blade spacing, &1, will be a function of a Weber number,
We = pQ? R%lhl /S. Figure 7.22 presents some data on 2R s /h1 taken by Murakami
and Minemura for both centrifugal and axial flow pumps.

The size of the bubbles in the blade passages is important because it is the migration
and coalesence of these bubbles that appears to cause degradation in the performance.
Since the velocity of the relative motion between the bubbles and the liquid is propor-
tional to the bubble size raised to some power which depends on the Reynolds number
regime, it follows that the larger the bubbles the more likely it is that large voids will
form within the blade passage due to migration of the bubbles toward regions of lower
pressure (Furuya 1985, Furuya and Mackawa 1985). As Patel and Runstadler (1978)
observed during experiments on centrifugal pumps and rotating passages, regions of
low pressure occur not only on the suction sides of the blades but also under the shroud
of a centrifugal pump. These large voids can cause substantial changes in the devia-
tion angle of the flow leaving the impeller and hence alter the pump performance in a
significant way. This mechanism of head degradation is probably significant not only
for gas/liquid flows but also for cavitating flows. In gas/liquid flows the higher the
velocity the greater the degree of bubble fission at inlet and the smaller the bubbles.
But the force acting on the bubbles is also greater for the higher velocity flows and so
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the net result is not obvious. One can only conclude that both processes, inlet fission
and blade passage migration, may be important and deserve further study along the
lines begun by Murakami and Minemura.

At the beginning of this section we discussed the application of the Rayleigh-
Plesset equation to study the behavior of individual cavitating bubbles. One area in
which such an analysis has been useful is in evaluating the differences in the cavitation
occurring in different liquids and in the same liquid at different temperatures. These
issues will be addressed in the next section. In the subsequent section we turn our
attention to the free streamline methods which have been developed to model the
flows which occur when large attached cavities or gas-filled voids occur on the blades
of a turbomachine.

7.7 Thermal Effect on Pump Performance

Changes in the temperature of the liquid being pumped will clearly affect the vapor
pressure, py, and therefore the NPSH or cavitation number. This effect has, of course,
already been incorporated in the analysis or presentation of the performance by using
the difference between the inlet pressure and the vapor pressure rather than the absolute
value of the inlet pressure as a flow parameter. But there is another effect of the liquid
temperature which is not so obvious and requires some discussion and analysis. It is
illustrated by figure 7.23 which includes cavitation performance data for a centrifugal
pump (Arndt 1981 from Chivers 1969) operating with water at different inlet tem-
peratures. Note that the cavitation breakdown decreases substantially with increasing
temperature. Somewhat counter-intuitively the performance actually improves as the
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Figure 7.22. The bubble diameters observed in the blade passages of centrifugal and axial flow pumps
as a function of Weber number (adapted from Murakami and Minemura 1978).
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Figure 7.23. Typical cavitation performance characteristics for a centrifugal pump pumping water at
various temperatures as indicated (Arndt 1981 from Chivers 1969).

temperature gets greater! The variation of the breakdown cavitation number, o}, with
the inlet temperature in Chivers’ (1969) experiments is shown in figure 7.24 which
includes data for two different speeds and shows a consistent decrease in o}, with
increasing temperature. The data for the two speeds deviate somewhat at the lowest
temperatures. To illustrate that the thermal effect occurs in other liquids and in other
kinds of pumps, we include in figure 7.25 data reported by Gross (1973) from tests of
the Saturn J-2 liquid oxygen inducer pump. This shows the same pattern manifest in
figure 7.24. Other data of this kind has been obtained by Stepanoff (1961), Spraker
(1965), and Salemann (1959) for a variety of other liquids.

The explanation for this effect is most readily given by making reference to travel-
ing bubble cavitation though it can be extended to other forms of cavitation. However,
for simplicity, consider a single bubble (or nucleus) which begins to grow when it
enters a region of low pressure. Liquid on the surface of the bubble will vaporize to
provide the increase in volume of vapor filling the bubble. Consider, now, what hap-
pens at two different temperatures, one “high” and one “low.” At “low” temperatures
the density of the saturated vapor is low and, therefore, the mass rate of evaporation
of liquid needed is small. Consequently, the rate at which heat is needed as latent heat
to effect this vaporization is low. Since the heat will be conducted from the bulk of the
liquid and since the rate of heat transfer is small, this means that the amount by which
the temperature of the interface falls below the bulk liquid temperature is also small.
Consequently the vapor pressure in the cavity only falls slightly below the value of the
vapor pressure at the bulk liquid temperature. Therefore, the driving force behind the
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(adapted from Gross 1973).

bubble growth, namely the difference between the internal pressure (vapor pressure)
and the pressure far from the bubble, is not much influenced by thermal effects.
Now, consider the same phenomenon occuring at the “high” temperature. Since the
vapor density can be many orders of magnitude larger than at the “low” temperature,
the mass rate of evaporation for the same volume growth rate is much larger. Thus
the heat which must be conducted to the interface is much larger which means that a
substantial thermal boundary layer builds up in the liquid at the interface. This causes
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the temperature in the bubble to fall well below that of the bulk liquid and this, in turn,
means that the vapor pressure within the bubble is much lower than otherwise might
be expected. Consequently, the driving force behind the bubble growth is reduced.
This reduction in the rate of bubble growth due to thermal effects is the origin of the
thermal effect on the cavitation performance in pumps. Since the cavitation head loss
is primarily due to disruption of the flow by volumes of vapor growing and collapsing
within the pump, any reduction in the rate of bubble growth will lessen the disruption
and result in improved performance.

This thermal effect can be extended to attached or blade cavities with only minor
changes in the details. At the downstream end of a blade cavity, vapor is entrained by
the flow at a certain volume rate which will depend on the flow velocity and other
geometric parameters. At higher temperatures this implies a larger rate of entrainment
of mass of vapor due to the larger vapor density. Since vaporization to balance this
entrainment is occurring over the surface of the cavity, this implies a larger temper-
ature difference at the higher temperature. And this implies a lower vapor pressure
in the cavity than might otherwise be expected and hence a larger “effective” cav-
itation number. Consequently the cavitation performance is improved at the higher
temperature.

Both empirical and theoretical arguments have been put forward in attempts to
quantify these thermal effects. We shall begin with the theoretical arguments put
forward by Ruggeri and Moore (1969) and by Brennen (1973). These explicitly apply
to bubble cavitation and proceed as follows.

At the beginning of bubble growth, the rate of growth rapidly approaches the
value given by equation 6.8 and the important (d R /dt)? term in the Rayleigh-Plesset
equation 6.1 is roughly constant. On the other hand, the thermal term, ®, which is
initially zero, will grow like 12 according to equation 6.6. Consequently there will
be a critical time, tc, at which the thermal term, ®, will approach the magnitude of
(pB(Tso) — p)/prL and begin to reduce the rate of growth. Using the expression 6.6,
this critical time is given by

tc ~ (pg—p) [pLE? (7.1)

For t « t¢, the dominant terms in equation 6.1 are (pp — p)/pr and (dR /a’t)2 and
the bubble growth rate is as given by equation 6.8. For ¢ > t¢, the dominant terms
in equation 6.1 become (pp — p)/pr and O so that, using equations 6.4 and 6.5, the
bubble growth rate becomes

dR _cpr (T = Tp() (ar\;
el = 7.2

dt L ( t ) (7.2
which is typical of the expressions for the bubble growth rate in boiling. Now consider
anucleus or bubble passing through the pump which it will do in a time of order 1/ Q¢.

It follows that if 2¢ >> 1/¢¢ then the bubble growth will not be inhibited by thermal
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Figure 7.26. Thermodynamic parameter, X, as a function of temperature for various saturated fluids.

effects and explosive cavitating bubble growth will occur with the potential of causing
substantial disruption of the flow and degradation of pump performance. On the other
hand, if Q¢ < 1/tc, most of the bubble growth will be thermally inhibited and the
cavitation performance will be much improved.

To calculate #¢ we need values of ¥ which by its definition (equation 6.7) is a
function only of the liquid temperature. Typical values of X for a variety of liquids
are presented in figure 7.26 as a function of temperature (the ratio of temperature to
critical temperature is used in order to show all the fluids on the same graph). Note
that the large changes in the value of ¥ are caused primarily by the change in the
vapor density with temperature.

As an example, consider a cavitating flow of water in which the tension, (pp — p),
is of the order of 10* kg/m s? or 0.1 bar. Then, since water at 20°C has a value
of ¥ of about 1 m /s%, the value of 7¢ is of the order of 10 s. Thus, in virtually all
pumps, Q¢ will be much greater than 1/¢¢ and no thermal effect will occur. On the
other hand at 100°C, the value of X for water is about 10° m /s% and it follows that
tc = 10 us. Thus in virtually all cases Q¢ < 1/f¢ and a strong thermal effect can be
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expected. In fact, in a given application there will exist a “critical” temperature above
which one should expect a thermal effect on cavitation. For a water pump rotating at
3000 rpm this “critical” temperature is about 70°C, a value which is consistent with
the experimental measurements of pump performance.

The principal difficulty with the above approach is in finding some way to evaluate
the tension, pp — p, for use in equation 7.1 in order to calculate z¢. Alternatively, the
experimental data could be examined for guidance in establishing a criterion based on
the above model. To do so equation 7.1 is rewritten in terms of dimensionless groups

as follows:
1 — R2G3
Qpre =1 2P ¢ (7.3)
2 E/OLS2 RT Y

where the expression in the first curly brackets on the right-hand side could be further
approximated by (—Cppmin — o) wWhere Cppipn 1s a characteristic minimum pressure
coefficient. It follows that the borderline between a flow which is broken down due to
cavitation in the absence of thermal effects and a flow which is not broken down due
to a beneficial thermal effect occurs when the ratio of times, Q¢1¢, takes some critical
value which we will denote by 8. Equation 7.3 with Q¢ set equal to 8 would then
define a critical breakdown cavitation number, oy (o, or o}) as follows:

22
ox = —Cpmin —2——— 7.4
x pmin :8 R%Q:;(ﬁ ( )
The value of o, in the absence of thermal effects should then be (0y)o = —Cppmin and
equation 7.4 can be presented in the form
2
Ox
=1-2—5——— (7.5)
(@:x)0 R7Q3¢(01)0

It would then follow that the ratio of critical cavitation numbers, o, /(o )0, should be
a simple function of the modified thermal effect parameter, X*, defined by

T* = E/{R%qub(ox)o}% (7.6)

To test this hypothesis, data from a range of different experiments is presented in
figure 7.27. It can be seen that the data correspond very roughly to some kind of
common curve for all these different pumps and liquids. The solid line corresponds
to equation 7.5 with an arbitrarily chosen value of 8 =5 x 107°. Consequently this
attempt to model the thermal effect has succeeded to a limited degree. It should
however be noted that the horizontal scatter in the data in figure 7.27 is more than a
decade, though such scatter may be inevitable given the range of impeller geometries.
We have also omitted one set of data, namely that of Chivers (1969), since it lies well
to the left of the data included in the figure.
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Figure 7.27. The ratio of the critical cavitation number oy (o, or o) to (ox)g (the value of oy in the
absence of any thermal effect) as a function of the thermal effect parameter, £*. Data is shown for a
variety of pumps and liquids.

A number of purely empirical approaches to the same problem have been sug-
gested in the past. All these empirical methods seek to predict the change in NPSH,
say ANPSH, due to the thermal effect. This quantity ANPSH is the increment by
which the cavitation performance characteristic would be shifted to the left as a
result of the thermal effect. The method suggested by Stahl and Stepanoff (1956) and
Stepanoff (1961, 1964) is widely used; it is based on the premise that the cavitation
characteristic of a particular pump operating at a particular speed with two different
liquids (or with two different temperatures in the same liquid) would be horizontally
shifted by

ANPSH = Hr1 — Hr (7.7)

where the quantities Hy; and H7, only depend on the thermodynamic properties
of the two individual fluids considered separately. This generic property is denoted
by Hr. For convenience, Stepanoff also uses the symbol B’ to denote the group
,o%c rrTs0/ ,o%,ﬁz which also occurs in ¥ and almost all analyses of the thermal effect.
Then, by examining data from a number of single-stage 3500 rpm pumps, Stahl
and Stepanoff arrived at an empirical relation between H7 and the thermodynamic
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1964).

properties of the following form:
. 4
Hr (inm)=289p.g/py(B)3 (7.8)

where py /gpy is the vapor pressure head (in m) and B’ is in m~!. This relation
is presented graphically in figure 7.28. Clearly equation 7.8 (or figure 7.28) can be
used to find Hr for the desired liquid and operating temperature and for the reference
liquid at the reference operating temperature. Then the cavitation performance under
the desired conditions can be obtained by application of the shift given by equation
7.7 to the known cavitation performance under the reference conditions.
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7.8 Free Streamline Methods

The diversity of types of cavitation in a pump and the complexity of the two-phase flow
which it generates mean that reliable analytical methods for predicting the cavitating
performance characteristics are virtually non-existent. However if the cavity flow can
be approximated by single, fully developed or attached cavities on each blade, then this
allows recourse to the methods of free streamline theory for which the reader may wish
to consult the reviews by Tulin (1964) and Wu (1972) or the books by Birkhoff and
Zarantonello (1957) and Brennen (1994). The analytical approaches can be subdivided
into linear theories which are applicable to slender, streamlined flows (Tulin 1964)
and non-linear theories which are more accurate but can be mathematically much
more complex (Wu 1972). Both approaches to free streamline flows have been used
in a wide range of cavity flow problems and it is necessary to restrict the present
discussion to some of the solutions of relevance to attached cavitation in pumps.

It is instructive to begin by quoting some of'the results obtained for single hydrofoils
for which the review by Acosta (1973) provides an excellent background. In particular
we will focus on the results of approximate linear theories for a partially cavitating
or supercavitating flat plate hydrofoil. The partially cavitating solution (Acosta 1955)
yields a lift coefficient

cLzm[1+(1—6)—%] (1.9)

where £ is the ratio of the cavity length to the chord of the foil and is related to the
cavitation number, o, by

1

o _ 2—£1+2(1—1€)2 (7.10)

2o e2(1-0)2
Thus, for a given cavity length, £, and a given angle of incidence, «, the cavitation
number follows from equation 7.10 and the lift coefficient from equation 7.9. Note
that as £ — 0 the value of Cy, tends to the theoretical value for a non-cavitating flat
plate, namely 2w «. The corresponding solution for a supercavitating flat plate was
given by Tulin (1953) in his pioneering paper on linearized cavity flows. In this case

CL=nal [z%(z— =2 - 1} (7.11)
a(3+1>=w—1)% (7.12)
o

where now, of course, £ > 1.

The lift coefficient and the cavity length from equations 7.9 to 7.12 are plotted
against cavitation number in figure 7.29 for a typical angle of incidence of o = 4°.
Note that as 0 — oo the fully wetted lift coefficient, namely 27 «, is recovered from
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Figure 7.29. Typical results from the linearized theories for a cavitating flat plate at an angle of incidence
of 4°. The lift coefficients, Cy (solid lines), and the ratios of cavity length to chord, £ (dashed lines), are
from the supercavitation theory of Tulin (1953) and the partial cavitation theory of Acosta (1955). Also
shown are the experimental results of Wade and Acosta (1966) for £ (A) and for Cy, (o and e) where the
open symbols represent points of stable operation and the solid symbols denote points of unstable cavity
operation.

the partial cavitation solution and that as o — 0 the lift coefficient tends to wa /2.
Notice also that both the solutions become pathological when the length of the cavity
approaches the chord length (£ — 1). However, if some small portion of each curve
close to £ = 1 were eliminated, then the characteristic decline in the performance of the
hydrofoil as the cavitation number is decreased is readily observed. It also compares
well with the experimental observations as illustrated by the favorable comparison
with the data of Wade and Acosta (1966) included in figure 7.29. Consequently, as
the cavitation number is decreased, a single foil exhibits only a small change in
the performance or lift coefficient until some critical value of o (about 0.7 in the
case of figure 7.29) is reached. Below this critical value the performance begins to
“breakdown” quite rapidly. Thus, even a single foil mirrors the typical cavitation
performance experienced in a pump. On a more detailed level, note that the small
increase in the supercavitating lift coefficient which occurs as the cavitation number
is decreased toward the critical value of o is, in fact, observed experimentally with
many single hydrofoils (for example, Wade and Acosta 1966) as well as in some pumps.

The peculiar behaviour of the analytical solutions close to the critical cavitation
number is related to an instability which is observed when the cavity length is of the
same order as the chord of the foil. However, we delay further discussion of this until
the appropriate point in the next chapter (see section 8.10). Some additional data on
the variation of the lift coefficient with angle of incidence is included in that later
section.
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Figure 7.30. Lift coefficients for a flat plate from the non-linear theory of Wu (1962). The experimental
data (Parkin 1958) is for angles of incidence as follows: 8° (v7), 10° (O), 15° (A), 20° (), 25° (®), and
30° (<). Also shown is some data of Silberman (1959) in a free jet tunnel: 20° (4) and 25° (x).

Before leaving the subject of the single cavitating foil we should note that more
exact, non-linear solutions for a flat plate or an arbitrarily shaped profile have been
generated by Wu (1956, 1962), Mimura (1958) and others. As an example of these
non-linear results, the lift and drag coefficients at various cavitation numbers and
angles of incidence are presented in figures 7.30 and 7.31 where they are compared
with the experimental data of Parkin (1958) and Silberman (1959). Data both for
supercavitating and partially cavitating conditions are shown in these figures, the latter
occurring at the higher cavitation numbers and lower incidence angles (the dashed
parts of the curves represent a somewhat arbitrary smoothing through the critical
region in which the cavity lengths are close to the chord length). This comparison
demonstrates that the non-linear theory yields values which are in good agreement
with the experimental measurements. In the case of circular-arc hydrofoils, Wu and
Wang (1964) have shown similar agreement with the data of Parkin (1958) for this
type of profile. For a recent treatment of supercavitating single foils the reader is
referred to the work of Furuya and Acosta (1973).
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Figure 7.31. Drag coefficients corresponding to the lift coefficients of figure 7.30.

7.9 Supercavitating Cascades

We now turn to the free streamline analyses which are most pertinent to turboma-
chines, namely solutions and data for cavitating cascades. Both partially cavitating
and supercavitating cascades (see figure 5.10) have been analysed using free stream-
line methods. Clearly cavities initiated at the leading edge are more likely to extend
beyond the trailing edge when the solidity and the stagger angle are small. Such
cascade geometries are more characteristic of propellers and, therefore, the supercav-
itating cascade results are more often applied in that context. On the other hand, most
cavitating pumps have large solidities (> 1) and large stagger angles. Consequently,
partial cavitation is the more characteristic condition in pumps, particularly since the
pressure rise through the pump is likely to collapse the cavity before it emerges from
the blade passage. In this section we will discuss the supercavitating analyses and
data; the next section will deal with the partially cavitating results.

Free streamline methods were first applied to the problems of a cavitating cascade
by Betz and Petersohn (1931) who used a linearized method to solve the problem of
infinitely long, open cavities produced by a cascade of flat plate hydrofoils. Extensions
to this linear, supercavitating solution were generated by Sutherland and Cohen (1958)
who solved the problem of finite supercavities behind a flat plate cascade and by
Acosta (1960) who generalized this to a cascade of circular arc hydrofoils. Other early
contributions to linear cascade theory for supercavitating foils include the models of
Duller (1966) and Hsu (1972) and the inclusion of the effect of rounded leading edges
by Furuya (1974). Non-linear solutions were first obtained by Woods and Buxton
(1966) for the case of a cascade of flat plates. Later Furuya (1975) expanded this work
to include foils of arbitrary geometry.
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Figure 7.32. Lift and drag coefficients as functions of the cavitation number for cascades of solidity,
0.625, and blade angle, B, = 45° 4+ «, operating at angles of incidence, «, of 8° (A) and 9° (O). The
points are from the experiments of Wade and Acosta (1967) and the analytical results for a supercavitating
cascade are from the linear theory of Duller (1966) (dashed lines) and the non-linear theory of Furuya
(1975) (solid lines).

A substantial body of data on the performance of cavitating cascades has been accu-
mulated through the efforts of Numachi (1961, 1964), Wade and Acosta (1967) and
others. This allows comparison with the analytical models, in particular the super-
cavitating theories. Figure 7.32 provides such a comparison between measured lift
and drag coefficients (defined as normal and parallel to the direction of the incident
stream) for a particular cascade and the theoretical results from the supercavitating
theories of Furuya (1975) and Duller (1966). Note that the measured lift coefficients
exhibit a clear decline in cascade performance as the cavitation number is reduced
and the supercavities grow. However, it is important to observe that this degradation
does not occur until the cavitation is quite extensive. The cavitation inception num-
bers for the experiments were o; = 2.35 (for 8°) and o; = 1.77 (for 9°). However the
cavitation number must be lowered to about 0.5 before the performance is adversely
affected. Consequently there is a significant range of intermediate cavitation numbers
within which partial cavitation is occurring and within which the performance is little
changed.

For the cascades and incidence angles used in the example of figure 7.32, Furuya
(1975) shows that the linear and non-linear supercavitation theories yield similar
results which are close to those of the experiments. This is illustrated in figure 7.32.
However, Furuya also demonstrates that there are circumstances in which the lin-
ear theories can be substantially in error and for which the non-linear results are
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Figure 7.33. Lift and drag coefficients as functions of the solidity for cascades of blade angle, 8;, =
45° + «, operating at the indicated angles of incidence, «, and at a cavitation number, o = 0.18. The
points are from the experiments of Wade and Acosta (1967) and the lines are from the non-linear theory
of Furuya (1975). Reproduced from Furuya (1975).

clearly needed. The effect of the solidity on the results is also important because
it is a major design factor in determining the number of blades in a pump or pro-
peller. Figure 7.33 illustrates the effect of solidity when large supercavities are present
(o = 0.18). Note that the solidity has remarkably little effect at the smaller angles of
incidence.

7.10 Partially Cavitating Cascades

In the context of pumps, the solutions by Acosta and Hollander (1959) and Stripling
and Acosta (1962) of partial cavitation in a semi-infinite cascade of infinitely thin
blades and the solution by Wade (1967) of a finite cascade of partially cavitating
foils provide a particularly valuable means of analyzing the performance of two-
dimensional cascades with blade cavities. More recently the three dimensional aspects
of these solutions have been explored by Furuya (1974). As a complement to purely
analytical methods, more heuristic approaches are possible in which the conventional
cascade analyses (see sections 3.2 and 3.5) are supplemented by lift and drag data for
blades operating under cavitating conditions.

Partly for the purposes of example and partly because the results are useful, we
shall recount here the results of the free-streamline solution of Brennen and Acosta
(1973). This is a slightly modified version of the Acosta and Hollander solution for
partial cavitation in a cascade of infinitely thin, flat blades. The modification was to
add finite thickness to the blades. As we shall see, this can be important in terms of
the relevance of the theory.

A sketch of the cascade geometry is shown in figure 7.34. A single parameter
is introduced to the solution in order to yield finite blade thickness. This parameter
implies aratio, d, of the blade thickness far downstream to the normal spacing between
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Figure 7.34. Schematic of partially cavitating cascade of flat blades of thickness nd (Brennen and Acosta
1973).

the blades. It also implies a radius of curvature of the parabolic leading edge of the
blade, «, given by
243

! R~ di (7.13)

k wh(l40.)
where o is the choked cavitation number (see below). Equation 7.13 and the fact that
the ultimate thickness is not reached until about half a blade spacing downstream,
both imply very sharp leading edges.

One of the common features of all of these free streamline solutions is that there
exists a certain minimum cavitation number at which the cavity becomes infinitely
long and below which there are no solutions. This minimum cavitation number is
called the choked cavitation number, o.. Were such a flow to occur in practice, it
would permit large deviation angles at discharge and a major degradation of per-
formance. Consequently the choked cavitation number, o., is often considered an
approximation to the breakdown cavitation number, o, for the pump flow which
the cascade solution represents. The Brennen and Acosta solution yields a choked
cavitation number given by

[1+2smzsec&sin('gh2_ )—|—2dsm2ﬁbi| —1 (7.14)

which, since the solution is only valid for small incidence angles, «, and since f, is
normally small, yields

o ~a(fy —a) + pid (7.15)

Furthermore, at a general cavitation number, o, the maximum thickness, b, of the
cavity is given by

™ [d— (1+0)? +sin(,3b—oz)/sin,3b] (7.16)



7.10 Partially Cavitating Cascades 129

h sin B,d(r)
CAVITY
F{T1
. r
H sin Byrd(Rry) Bo(r)
Riy dr
r
Por HUB
INDUCER h(r)
TIP
H SPEED, QR

Figure 7.35. The subdivision of the flow through an axial inducer into radial annuli for cascade analysis.
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As a rough example, consider a 10° helical inducer (8, = 10°) with a fractional
blade thickness of d = 0.15 operating at a flow coefficient, ¢ = 0.08, so that the
incidence angle, o = 4° (see figure 7.38). Then, according to the relation 7.15, the
choked cavitation number is o. = 0.0119 which is close to the observed breakdown
cavitation number (see figure 7.40). It is important to note the role played by the blade
thickness in this typical calculation because with d = 0 the result is o, = 0.0073.
Note also that with infinitely thin blades, the expression 7.15 predicts o, = 0 at zero
incidence. Thus, the blade thickness is important in estimating the choked cavitation
number in any pump.

Most pumps or inducer designs incorporate significant variations in «, B and d
over the inlet plane and hence the above analysis has to be performed as a function
of the inlet radial position as indicated in figure 7.35. Typical input data for such
calculations are shown in figures 7.36, 7.38, and 7.39 for the Saturn J2 and F1 liquid
oxygen turbopumps, for the 9° helical inducer, Impeller III, and for the SSME low
pressure liquid oxygen impeller, Impeller I'V. To proceed with an evaluation of the
flow, the cascade at each radial annulus must then be analyzed in terms of the cavitation
number, o (), pertaining to that particular radius, namely

1
o(r)=(p1—pv) /EpLszzrz (7.18)

Specific values of this cavitation number at which choking occurs in each cascade can
then be obtained from equations 7.14 or 7.15; we denote these by o.(r). It follows
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Figure 7.36. Radial variations of the blade angle, B, blade thickness to normal spacing ratio, d, and
incidence angle o (for ¢ = 0.097) for the oxidizer turbopumps in the Saturn J1 and F1 engines (from
Brennen and Acosta 1973).

that the overall pump cavitation number at which the flow in each annulus will be
choked is given by o, (r) where

oer(r) = oc(r)r* | R, (7.19)

Typical data for o.7(r) for the Saturn J2 and F1 oxidizer pumps are plotted in
figure 7.37; additional examples for Impellers Il and I'V are shown in figure 7.40. Note
that, in theory, the flow at one particular radial location will become choked before
that at any other radius. The particular location will depend on the radial distributions
of blade angle and blade thickness and may occur near the hub (as in the cases shown
in figure 7.37) or near the tip. However, one might heuristically argue that once the
flow at any radius becomes choked, the flow through the pump will reach breakdown.
On this basis, the data of figure 7.37 would predict breakdown in the J2-O turbopump
at o, ~ 0.019 and at 0.0125 for the F1-O turbopump. In table 7.2 and figure 7.37
these predictions are compared with the observed values from tests in which water is
used. The agreement appears quite satisfactory. Some data obtained from tests with
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Figure 7.37. The tip cavitation numbers at which the flow at each radial location becomes choked. Data
is shown for the Saturn J2 and F1 oxidizer turbopumps (see figure 7.36); experimentally observed
breakdown cavitation numbers in water and propellant are also shown (from Brennen and Acosta 1973).

propellant rather than water is also shown in figure 7.37 and exhibits less satisfactory
agreement; this is probably the result of thermal effects in the propellant which are not
present in the water tests. Moreover, as expected, the predicted results do change with
flow coefficient (since this alters the angle of incidence) as illustrated in figure 7.40.

Perhaps the most exhaustive experimental investigation of breakdown cavitation
numbers for inducers is the series of experiments reported by Stripling (1962) in which
inducers with blade angles at the tip, Sp71, varying from 5.6° to 18°, various leading
edge geometries, blade numbers of 3 and 4 and two hub-to-tip ratios were investigated.
Some of Stripling’s experimental data is presented in figure 7.41 where the o}, values
are plotted against the flow coefficient, ¢1. In his paper Stripling argues that the data
correlate with the parameter ¢ sin Sp71/(1 + cos Bpr1) but, in fact, the experimental
data are much better correlated with ¢ alone as demonstrated in figure 7.41. There
is no satisfactory explanation for the fact that o}, correlates better with ¢;.

Stripling correlates his data with the theoretical values of the choked cavitation
number which one would obtain from the above theory in the case of infinitely thin
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Figure 7.38. Radial variations of the blade angle, B, blade thickness to normal spacing ratio, d, and
incidence angle, «, for the 9° helical inducer, Impeller III (from Brennen and Acosta 1976).

blades. (In this limit the expression for o, is more easily obtained by simultaneous
solution of the Bernoulli equation and an equation for the momentum parallel with the
blades as Stripling demonstrates.) More specifically, Stripling uses the blade angles,
Bp1, and incidence angles at the rms radius, Rgyss, where

1

1 2|7
Rrys = E(RTl—i-RHl) (7.20)

His theoretical results then correspond to the dashed lines in figure 7.41. When the
blade thickness term is added as in equation 7.15 the choked cavitation numbers are
given by the solid lines in figure 7.41 which are considerably closer to the experimental
values of g, than the dashed lines. The remaining discrepancy could well be due to the
fact that the o, values are larger at some radius other than R g s s and hence breakdown
occurs first at that other radius.

Up to this point we have only discussed the calculation of the choked or breakdown
cavitation number from the analysis of a partially cavitating cascade. There remains
the issue of how to predict the degradation in the head or the cavitation head losses
prior to breakdown. The problem here is that calculation of the lift from these analyses
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Table 7.2. Theoretical predictions of breakdown cavitation
numbers compared with those observed during water tests
with various inducer pumps.

Inducer Theory o, Observed o},
Saturn J2 Oxidizer Inducer 0.019 0.020
Saturn F1 Oxidizer Inducer 0.012 0.013
SSME Low Pressure LOX Pump 0.011 0.012
9° Helical Impeller II1 0.009 0.012

produces little for, as one could anticipate, a small partial cavity will not significantly
alter the performance of a cascade of higher solidity since the discharge, with or
without the cavity, is essentially constrained to follow the direction of the blades. The
hydraulic losses which one seeks are additional (or possibly negative) frictional losses
generated by the disruption to the flow caused by the cavitation. A number of authors,
including Stripling and Acosta (1962), have employed modifications to cascade anal-
yses in order to evaluate the loss of head, A H, due to cavitation. One way to view this
loss is to recognize that the presence of a cavity in the blade passage causes a reduction
in the cross-sectional area available to the liquid flow. When the cavity collapses this
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Impellers III and IV (see figures 7.38 and 7.39) and different flow coefficients, ¢; (from Brennen and
Acosta 1976).

area increases creating a “diffuser” which is not otherwise present. Hydraulic losses
in this “diffuser” flow could be considered responsible for the cavitation head loss
and could be derived from knowledge of the cavity blockage, b/n.

7.11 Cavitation Performance Correlations

Finally we provide brief mention of several of the purely empirical methods which
are used in practice to generate estimates of the cavitation head loss in pumps. These
often consist of an empirical correlation between the cavitation head loss, AH, the
net positive suction head, NPSH, and the suction specific speed, S. Commonly this
correlation is written as

AH = P(S) x NPSH (7.21)

where the dimensionless parameter, P(S), is established by prior experience. A typical
function, P(S), is presented in figure 7.42. Such methods can only be considered
approximate; there is no fundamental reason to believe that A H /NPSH is a function
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RRMm s, with blade thickness (solid line) and without blade thickness (dashed line).

only of the suction specific speed, S, for all pumps though it will certainly correlate
with that parameter for a given pump and a given liquid at a given Reynolds number
and a given temperature. A more informed approach is to select a value of the cavitation
number, oy, which is most fundamental to the interaction of the flow and the pump
blade namely

1
ow = (p1 _pV)/Epr% (7.22)
Then, using the definition of NPSH (section 5.2) and the velocity triangle,
NPSH = ((1 +ow)va, +owS*R%,) /28 (7.23)

It is interesting to observe that the estimate of the cavitation-free NPSH for mixed
flow pumps obtained empirically by Gongwer (1941) namely

1.8v2, +0.23Q%R2,) /2¢ (7.24)
ml T1
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Figure 7.42. Some data on the cavitation head loss parameter, P = A H /NPSH, for axial inducer pumps.
The two symbols are for two different pumps.

and his estimate of the breakdown NPSH namely

(1.49v%, +0.085Q2°R%,) /2¢ (7.25)

ml

correspond quite closely to specific values of oy, namely oy =~ 0.3 and oy =~ 0.1
respectively.
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8.1 Introduction

The trend toward higher speed, high power density liquid turbomachinery has
inevitably increased the potential for fluid/structure interaction problems, and the
severity of those problems. Even in the absence of cavitation and its complications,
these fluid structure interaction phenomena can lead to increased wear and, under the
worst conditions, to structural failure. Exemplifying this trend, the Electrical Power
Research Institute (Makay and Szamody 1978) has recognized that the occurrence
of these problems in boiler feed pumps has contributed significantly to downtime in
conventional power plants.

Unlike the cavitation issues, unsteady flow problems in liquid turbomachines do
not have a long history of research. In some ways this is ironic since, as pointed out
by Ek (1957) and Dean (1959), the flow within a turbomachine must necessarily be
unsteady if work is to be done on or by the fluid. Yet many of the classical texts on
pumps or turbines barely make mention of unsteady flow phenomena or of design
considerations that might avoid such problems. In contrast to liquid turbomachinery,
the literature on unsteady flow problems in gas turbomachinery is considerably more
extensive, and there are a number of review papers that provide a good survey of
the subject (for example, McCroskey 1977, Cumpsty 1977, Mikolajczak et al. 1975,
Platzer 1978, Greitzer 1981). We will not attempt a review of this literature but
we will try, where appropriate, to indicate areas of useful cross-reference. It is also
clear that this subject incorporates a variety of problems ranging, for example, from
blade flutter to fluid-induced rotordynamic instability. Because of this variety and the
recent vintage of the fundamental research, no clear classification system for these
problems has yet evolved and there may indeed be some phenomena that have yet to
be properly identified. It follows that the classification system that we will attempt
here will be tentative, and not necessarily comprehensive. Nevertheless, it seems that
three different categories of flow oscillation can occur, and that there are a number
phenomena within each of the three categories. We briefly list them here and return
to some in the sections that follow.
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[A] Global Flow Oscillations. A number of the identified vibration problems involve
large scale oscillations of the flow. Specific examples are:

[A1]

[A3]

[A4]

[A5]

[A6]

Rotating stall or rotating cavitation occurs when a turbomachine is required
to operate at a high incidence angle close to the value at which the blades
may stall. It is often the case that stall will first be manifest on a small
number of adjacent blades and that this “stall cell” will propagate cir-
cumferentially at some fraction of the main impeller rotation speed. This
phenomenon is called rotating stall and is usually associated with turbo-
machines having a substantial number of blades (such as compressors). It
has, however, also been reported in centrifugal pumps. When the turbo-
machine cavitates the same phenomenon may still occur, perhaps in some
slightly altered form. Such circumstances will be referred to as “rotating
stall with cavitation.” But there is also a different phenomenon which can
occur in which one or two blades manifest a greater degree of cavitation
and this “cell” propagates around the rotor in a manner superficially similar
to the propagation of rotating stall. This phenomenon is known as “rotating
cavitation.”

Surge is manifest in a turbomachine that is required to operate under highly
loaded circumstances where the slope of the head rise/flow rate curve
is positive. It is a system instability to which the dynamics of all the
components of the system (reservoirs, valves, inlet and suction lines and
turbomachine) contribute. It results in pressure and flow rate oscillations
throughout the system. When cavitation is present the phenomenon is
termed “auto-oscillation” and can occur even when the slope of the head
rise/flow rate curve is negative.

Partial cavitation or supercavitation can become unstable when the length
of the cavity approaches the length of the blade so that the cavity collapses
in the region of the trailing edge. Such a circumstance can lead to violent
oscillations in which the cavity length oscillates dramatically.

Line resonance occurs when one of the blade passing frequencies in a
turbomachine happens to coincide with one of the acoustic modes of the
inlet or discharge line. The pressure oscillation magnitudes associated with
these resonances can often cause substantial damage.

It has been speculated that an axial balance resonance could occur if
the turbomachine is fitted with a balance piston (designed to equalize
the axial forces acting on the impeller) and if the resonant frequency
of the balance piston system corresponds with the rotating speed or
some blade passing frequency. Though there exist several apocryphal
accounts of such resonances, the phenomenon has yet to be documented
experimentally.

Cavitation noise can sometimes reach a sufficient amplitude to cause
resonance with structural frequencies of vibration.
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[A7] The above items all assume that the turbomachine is fixed in a non-

accelerating reference frame. When this is not the case the dynamics of
the turbomachine may play a crucial role in generating an instability that
involves the vibration of that machine as a whole. Such phenomena, of
which the Pogo instabilities are, perhaps, the best documented examples,
are described further in section 8.13.

[B] Local Flow Oscillations. Several other vibration problems involve more
localized flow oscillations and vibration of the blades:

[C]

[B1]

[B2]

(B3]

Blade flutter. As in the case of airfoils, there are circumstances under which
an individual blade may begin to flutter (or diverge) as a consequence of
the particular flow condition (incidence angle, velocity), the stiffness of
the blade, and its method of support.

Blade excitation due to rotor-stator interaction. While [B1] would occur
in the absence of excitation it is also true that there are a number of possi-
ble mechanisms of excitation in a turbomachine that can cause significant
blade vibration. This is particularly true for a row of stator blades oper-
ating just downstream of a row of impeller blades or vice versa. The
wakes from the upstream blades can cause a serious vibration problem
for the downstream blades at blade passing frequency or some multiple
thereof. Non-axisymmetry in the inlet, the volute, or housing can also
cause excitation of impeller blades at the impeller rotation frequency.
Blade excitation due to vortex shedding or cavitation oscillations. In addi-
tion to the excitation of [B2], it is also possible that vortex shedding or the
oscillations of cavitation could provide the excitation for blade vibrations.

Radial and Rotordynamic Forces. Global forces perpendicular to the axis of
rotation can generate several types of problem:

[C1]

[C2]

Radial forces are forces perpendicular to the axis of rotation caused by
circumferential nonuniformities in the inlet flow, casing, or volute. While
these may be stationary in the frame of the pump housing, the loads that
act on the impeller and, therefore, the bearings can be sufficient to create
wear, vibration, and even failure of the bearings.

Fluid-induced rotordynamic forces occur as the result of movement of the
axis of rotation of the impeller-shaft system of the turbomachine. Con-
tributions to these rotordynamic forces can arise from the seals, the flow
through the impeller, leakage flows, or the flows in the bearings them-
selves. Sometimes these forces can cause a reduction in the critical speeds
of the shaft system, and therefore an unforeseen limitation to its operating
range. One of the common characteristics of a fluid-induced rotordynamic
problem is that it often occurs at subsynchronous frequency.

Two of the subjects included in this list have a sufficiently voluminous litera-

ture to merit separate chapters. Consequently, chapter 10 is devoted to radial and
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rotordynamic forces, and chapter 9 to the subject of system dynamic analysis and
instabilities. The remainder of this chapter will briefly describe some of the other
unsteady problems encountered in liquid turbomachines.

Before leaving the issue of classification, it is important to emphasize that many
of the phenomena that cause serious vibration problems in turbomachines involve
an interaction between two or more of the above mentioned items. Perhaps the
most widely recognized of these resonance problems is that involving an interaction
between blade passage excitation frequencies and acoustic modes of the suction or dis-
charge lines. But the literature contains other examples. For instance, Dussourd (1968)
describes flow oscillations which involve the interaction of rotating stall and acoustic
line frequencies. Another example is given by Marscher (1988) who investigated a
resonance between the rotordynamic motions of the shaft and the subsynchronous
unsteady flows associated with flow recirculation at the inlet to a centrifugal impeller.

8.2 Frequencies of Oscillation

One of the diagnostics which is often, but not always, useful in addressing a turbo-
machine vibration problem is to examine the dominant frequencies and to investigate
how they change with rotating speed. Table 8.1 is intended as a rough guide to the
kinds of frequencies at which the above problems occur. We have attempted to place
the phenomena in rough order of increasing frequency partly in order to illustrate the
fact that the frequencies can range all the way from a few H z up to tens of k Hz. Some
of the phenomena scale with the impeller rotating speed, 2. Others, such as surge,
may vary somewhat with € but not linearly; still others, like cavitation noise, will be
largely independent of 2.

Of the frequencies listed in table 8.1, the blade passing frequencies need some
further clarification. We will denote the numbers of blades on an adjacent rotor and
stator by Zr and Zg, respectively. Then the fundamental blade passage frequency
in so far as a single stator blade is concerned is Zg2 since that stator blade will
experience the passage of Zg rotor blades each revolution of the rotor. Consequently,
this will represent the fundamental frequency of blade passage excitation insofar as
the inlet or discharge lines or the static structure is concerned. Correspondingly, Zs<2
is the fundamental frequency of blade passage excitation insofar as the rotor blades
(or the impeller structure) are concerned. However, the excitation is not quite as
simple as this for both harmonics and subharmonics of these fundamental frequencies
can often be important. Note first that, while the phenomenon is periodic, it is not
neccessarily sinusoidal, and therefore the excitation will contain higher harmonics,
mZrS2 and mZg<2 where m is an integer. But more importantly, when the integers
Zr and Zg have a common factor, say Zcr, then, in the framework of the stator,
a particular pattern of excitation is repeated at the subharmonic, ZgQ2/ZcF, of the
fundamental, Zr<2. Correspondingly, in the framework of the rotor, the structure
experiences subharmonic excitation at Zs$2/Z¢c . These subharmonic frequencies
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Table 8.1. Typical frequency ranges of pump vibration problems

Vibration Category Frequency Range
A2 Surge System dependent,
3-10 Hz in compressors
A2 Auto-oscillation System dependent, 0.12—0.4<2
Al Rotor rotating stall 0.52—-0.7Q
A1l Vaneless diffuser stall 0.052—-0.25Q
Al Rotating cavitation 1.1Q-1.2Q
A3 Partial cavitation oscillation <
C1 Excessive radial force Some fraction of 2
C2 Rotordynamic vibration Fraction of 2 when critical speed

is approached.
A4 Blade passing excitation ZRrQ/Zcr, ZR2,mZR<2
(or B2) (in stator frame)
ZsU/ZcF,Zs2,mZg<2
(in rotor frame)

B1 Blade flutter Natural frequencies of blade in liquid
B3 Vortex shedding Frequency of vortex shedding
A6 Cavitation noise 1-20kHz

can be more of a problem than the fundamental blade passage frequencies because
the fluid and structural damping is smaller for these lower frequencies. Consequently,
turbomachines are frequently designed with values of Zg and Zg which have no
common factors, in order to eliminate subharmonic excitation. Further discussion of
blade passage excitation frequencies is included in section 8.8.

Before proceeding to a discussion of the specific vibrational problems outlined
above, it may be valuable to illustrate the spectral content of the shaft vibration of a
typical centrifugal pump in normal, nominally steady operation. Figure 8.1 presents
examples of the spectra (for two frequency ranges) taken from the shaft of the five-
bladed centrifugal Impeller X operating in the vaneless Volute A (no stator blades)
at 300 rpm (5 Hz). Clearly the synchronous vibration at the shaft fundamental of
5 Hz dominates the low frequencies; this excitation may be caused by mechanical
imperfections in the shaft such as an imbalance or by circumferential nonuniformities
in the flow such as might be generated by the volute. It is also clear that the most
dominant harmonic of shaft frequency occurs at 52 because there are 5 impeller
blades. Note, however, that there are noticeable peaks at 22 and 32 arising from
significantly nonsinusoidal excitation at the shaft frequency, 2. The other dominant
peaks labeled 1 — 4 represent structural resonant frequencies unaffected by shaft
rotational speed.

At higher rotational speeds, more coincidence with structural frequencies occurs
and the spectra contain more noise. However, interesting features can still be discerned.
Figure 8.2 presents examples, taken from Miskovish and Brennen (1992), of the
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Figure 8.1. Typical spectra of vibration for a centrifugal pump (Impeller X/Volute A) operating at 300 rpm
(Chamieh et al. 1985).

spectra for all six shaft forces and moments as measured in the rotating frame of
Impeller X by the balance onto which that impeller was mounted. F1, F are the two
rotating radial forces, M1, M, are the corresponding bending moments, F3 is the thrust,
and M3 is the torque. In this example, the shaft speed is 3000 rpm (2 =100 rad /sec)
and the impeller is also being whirled at a frequency, w = I2/J, where I /J =3/10.
Note that there is a strong peak in all the forces and moments at the shaft frequency, €2,
because of the steady radial forces caused by volute asymmetry. Rotordynamic forces
would be manifest in this rotating frame at the beat frequencies (J &+ )2/ J; note that
the predominant rotordynamic effect occurs at the lower of these beat frequencies,
(J —1)2/J. The moments M| and M, are noisy because the line of action of the
forces F1 and F; is close to the chosen axial location of the origin of the coordinate
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Figure 8.2. Typical frequency content of Fi, Fy, F3, M1, M, M3 for Impeller X/Volute A for tests at
3000 rpm, ¢ = 0.092, and I/J = 3/10. Note the harmonics €2, (J £ 1)2/J and the blade passing
frequency, 5.

system, the mid-point of the impeller discharge. Consequently, the magnitudes of the
moments are small. One of the more surprising features in this data is the fact that
the unsteady thrust contains a significant component at the blade passing frequency,
5Q. Miskovish and Brennen (1992) indicate that the magnitude of this unsteady thrust
is about 0.2 — 0.5% of the steady thrust and that the peaks occur close to the times
when blades pass the volute cutwater. While this magnitude may not seem large, it
could give rise to significant axial vibration at the blade passing frequency in some
applications.

8.3 Unsteady Flows

Many of the phenomena listed in section 8.1 require some knowledge of the unsteady
flows corresponding to the steady cascade flows discussed in sections 3.2 and 3.5.
In the case of non-cavitating axial cascades, a large volume of literature has been
generated in the context of gas turbine engines, and there exist a number of extensive
reviews including those by Woods (1961), McCroskey (1977), Mikolajczak et al.
(1975) and Platzer (1978). Much of the analytical work utilizes linear cascade theory,
for example, Kemp and Sears (1955), Woods (1955), Schorr and Reddy (1971), and
Kemp and Ohashi (1975). Some of this has been applied to the analysis of unsteady
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flows in pumps and extended to cover the case of radial or mixed flow machines. For
example, Tsukamoto and Ohashi (1982) utilized these methods to model the start-up
transients in centifugal pumps and Tsujimoto et al. (1986) extended the analysis to
evaluate the unsteady torque in mixed flow machines.

However, most of the available methods are restricted to lightly loaded cascades
and impellers at low angles of incidence. Other, more complex, theories (for example,
Adamczyk 1975) are needed at larger angles of incidence and for highly cambered
cascades when there is a strong coupling between the steady and unsteady flow (Platzer
1978). Moreover, most of the early theories were only applicable to globally uniform
unsteady flows in which the blades all move in unison. Samoylovich (1962) appears to
have been the first to consider oscillations with arbitrary interblade phase differences,
the kind of analysis needed for flutter investigations (see below).

When the incidence angles are large so that the blades stall, one must resort to
unsteady free streamline methods in order to model the flows (Woods 1961). Apart
from the work of Sisto (1967), very little analytical work has been done on this problem
which is of considerable importance in the context of turbomachinery. One of the fluid
mechanical complexities is the unsteady or dynamic response of a separated flow that
may lead to significant departures from the sucession of events one might construct
based on a quasistatic approach. Some progress has been made in understanding the
“dynamic stall” for a single foil (see, for example, Ham 1968). However, it would
appear that more work is needed to understand the complex dynamic stall phenomena
in turbomachines.

Unsteady free streamline analyses can be more confidentally applied to the analysis
of cavitating cascades because the cavity or free streamline pressure is usually known
and constant whereas the corresponding pressure for the wake flows may be varying
with time in a way that is difficult to predict. Thus, for example, the unsteady response
for a single supercavitating foil (Woods 1957, Martin 1962, Parkin 1962) has been
compared with experimental measurements by Acosta and DeLong (1971). As an
example, we present (figure 8.3) some data from Acosta and DeLong on the unsteady
forces on a single foil undergoing heave oscillations at various reduced frequencies,
w* = wc/2U. The oscillating heave motion, d, is represented by

d = Re {czefwf} (8.1)

where the complex quantity, d, contains the amplitude and phase of the displace-
ment. The resulting lift coefficient, C, is decomposed (using the notation of the next
chapter) into

C, =Cp + Re {éu,efw’} (8.2)

and the real and imaginary parts of Crj, /w+ which are plotted in figure 8.3 represent
the unsteady lift characteristics of the foil. It is particularly important to note that
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Figure 8.3. Fluctuating lift coefficient, C, for foils undergoing heave oscillations at a reduced fre-
quency, @* = wc/U. Real and imaginary parts of C; j,/w* are presented for (a) non-cavitating flow at
mean incidence angles of 0° and 6° (b) cavitating data for a mean incidence of 8°, for very long choked
cavities (LJ) and for cavities 3 chords in length (¢). Adapted from Acosta and DeLong (1971).

substantial departures from quasistatic behavior occur for reduced frequencies as low
as 0.2, though these departures are more significant in the noncavitating flow than
in the cavitating flow. The lines without points in figure 8.3 present results for the
corresponding linear theories and we observe that the agreement between the theory
and the experiments is fairly good. Notice also that the Re{—Cy} for noncavitating
foils is negative at low frequencies but becomes positive at larger w whereas the values
in the cavitating case are all positive. Similar data for cavitating cascades would be
necessary in order to analyse the potential for instability in cavitating, axial flow
pumps. The author is not aware of any such data or analysis.
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The information is similarly meagre for all of the corresponding dynamic charac-
teristics of radial rather than axial cascades and, consequently, our ability to model
dynamic instabilities in centrifugal pumps is very limited indeed.

8.4 Rotating Stall

Rotating stall is a phenomenon which may occur in a cascade of blades when these
are required to operate at a high angle of incidence close to that at which the blades
will stall. In a pump this usually implies that the flow rate has been reduced to a point
close to or below the maximum in the head characteristic (see, for example, figures 7.5
and 7.6). Emmons et al. (1955) first provided a coherent explanation of propagating
stall. The cascade in figure 8.4 will represent a set of blades (a rotor or a stator)
operating at a high angle of incidence. Then, if blade B were stalled, this generates a
separated wake and therefore increased blockage to the flow in the passage between
blades B and A. This, in turn, would tend to deflect the flow away from this blockage
in the manner indicated in the figure. The result would be an increase in the angle of
incidence on blade A and a decrease in the angle of incidence on blade C. Thus, blade
A would tend to stall while any stall on blade C would tend to diminish. Consequently,
the stall “cell” would tend to move upwards in the figure or in a direction away from the
oncoming flow. Of course, the stall cell could consist of a larger number of blades with
more than one exhibiting increased separation or stall. The stall cell will rotate around
the axis and hence the name “rotating stall.” Moreover, the speed of propagation will
clearly be some fraction of the circumferential component of the relative velocity,
either vy in the case of a stator or wy in the case of a rotor. Consequently, in the case
of a rotor, the stall rotates in the same direction as the rotor but with 50-70% of the
rotor angular velocity.

In distinguishing between rotating stall and surge, it is important to note that the
disturbance depicted in figure 8.4 does not necessarily imply any oscillation in the
total mass flow rate through the turbomachine. Rather it implies a redistribution of that
flow. On the other hand, it is always possible that the perturbation caused by rotating
stall could resonate with, say, one of the acoustic modes in the inlet or discharge lines,
in which case significant oscillation of the mass flow rate could occur.

While rotating stall can occur in any turbomachine, it is most frequently observed
and most widely studied in compressors with large numbers of blades. Excellent
reviews of this literature have been published by Emmons et al. (1959) and more
recently by Greitzer (1981). Both point to a body of work designed to predict both the
onset and consequences of rotating stall. A useful approximate criterion is that rotating
stall in the rotor occurs when one approaches a maximum in the total head rise as the
flow coefficient decreases. This is, however, no more than a crude approximation
and Greitzer (1981) quotes a number of cases in which rotating stall occurs while the
slope of the performance curve is still negative. A more sophisticated criterion that is
widely used is due to Leiblein (1965), and involves the diffusion factor, Df, defined
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Figure 8.4. Schematic of a stall cell in rotating stall or rotating cavitation.

previously in equation 3.20. Experience indicates that rotating stall may begin when
Df is increased to a value of about 0.6.

Though most of the observations of rotating stall have been made for axial com-
pressors, Murai (1968) observed and investigated the phenomenon in a typical axial
flow pump with 18 blades, a hub/tip radius ratio of 0.7, a tip solidity of 1.15, and a
tip blade angle of 20°. His data on the rotating speed of the stall cell are reproduced
in figure 8.5. Note that the onset of the rotating stall phenomenon occurs when the
flow rate is reduced to a point below the maximum in the head characteristic. Notice
also that the stall cell propagation velocities have typical values between 0.45 and 0.6
of the rotating speed. Rotating stall has not, however, been reported in pumps with a
small number of blades perhaps because Df will not approach 0.6 for typical axial
pumps or inducers with a small number of blades. Most of the stability theories (for
example, Emmons et al. 1959) are based on actuator disc models of the rotor in which
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Figure 8.5. The head characteristic for an 18-bladed axial flow pump along with the measurements of
the propagation velocity of the rotating stall cell relative to the shaft speed. Adapted from Murai (1968).
Data is shown for three different inlet pressures. Flow and head scales are dimensionless.

it is assumed that the stall cell is much longer than the distance between the blades.
Such an assumption would not be appropriate in an axial flow pump with three or four
blades.

Murai (1968) also examined the effect of limited cavitation on the rotating stall
phenomenon and observed that the cavitation did cause some alteration in the propa-
gation speed as illustrated by the changes with inlet pressure seen in figure 8.5. It is,
however, important to emphasize the difference between the phenomenon observed
by Murai in which cavitation is secondary to the rotating stall and the phenomenon to
be discussed below, namely rotating cavitation, which occurs at a point on the head-
flow characteristic at which the slope is negative and stable, and at which rotating
stall would not occur.

Turning now to centrifugal pumps, there have been a number of studies in which
rotating stall has been observed either in the impeller or in the diffuser/volute. Hergt
and Benner (1968) observed rotating stall in a vaned diffuser and conclude that it
only occurs with some particular diffuser geometries. Lenneman and Howard (1970)
examined the blade passage flow patterns associated with rotating stall and present
data on the ratio, Qgs / 2, of the propagation velocity of the stall cell to the impeller
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speed, 2. They observed ratios ranging from 0.54 to 0.68 with, typically, lower values
of the ratio at lower impeller speeds and at higher flow coefficients.

Perhaps the most detailed study is the recent research of Yoshida et al. (1991)
who made the following observations on a 7-bladed centrifugal impeller operating
with a variety of diffusers, with and without vanes. Rotating stall with a single cell
was observed to occur in the impeller below a certain critical flow coefficient which
depended on the diffuser geometry. In the absence of a diffuser, the cell speed was
about 80—90% of the impeller rotating speed; with diffuser vanes, this cell speed
was reduced to the range 50—80%. When impeller rotating stall was present, they
also detected the presence of some propagating disturbances with 2, 3, and 4 cells
rather than one. These are probably due to nonlinearities and an interaction with blade
passage excitation. Rotating stall was also observed to occur in the vaned diffuser with
a speed less than 10% of the impeller speed. It was most evident when the clearance
between the impeller and diffuser vanes was large. As this clearance was decreased,
the diffuser rotating stall tended to disappear.

Even in the absence of blades, it is possible for a diffuser or volute to exhibit a
propagating rotating “stall.” Jansen (1964) and van der Braembussche (1982) first
described this flow instability and indicate that the flow pattern propagates with a
speed in the range of 5-25% of the impeller speed. Yoshida ez al. (1991) observed a
four-cell rotating stall in their vaneless diffusers over a large range of flow coefficients
and measured its velocity as about 20% of the impeller speed.

Finally, we note that rotating stall may resonate with an acoustic mode of the
inlet or discharging piping to produce a serious pulsation problem. Dussourd (1968)
identified such a problem in a boiler feed system in which the rotating stall frequency
was in the range 0.15Q — 0.25€2, much lower than usual. He also made use of the
frequency domain methods of chapter 9 in modeling the dynamics of this multistage
centrifugal pump system. This represents a good example of one of the many hybrid
problems that can arise in systems with turbomachines.

8.5 Rotating Cavitation

Inducers or impellers in pumps that do not show any sign of rotating stall while oper-
ating under noncavitating conditions may exhibit a superficially similar phenemenon
known as “rotating cavitation” when they are required to operate at low cavitation
numbers. However, it is important to emphasize the fundamental difference in the two
phenomena. Rotating stall occurs at locations along the head-flow characteristic at
which the blades may stall, usually at flow rates for which the slope of the head/flow
characteristic is positive and therefore unstable in the sense discussed in the next
section. On the other hand, rotating cavitation is observed to occur at locations where
the slope is negative. These would normally be considered stable operating points in
the absence of cavitation. Consequently, the dynamics of the cavitation are essential
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Figure 8.6. Occurrence of rotating cavitation and auto-oscillation in the performance of the cavitating
inducer tested by Kamijo et al. (1977).

to rotating cavitation. Another difference between the phenomena is the difference in
the propagating speeds.

Rotating cavitation was first explicitly identified by Kamijo, Shimura and Watan-
abe (1977) (see also 1980), though some evidence of it can be seen in the shaft
vibration measurements of Rosemann (1965). When it has been observed, rotating
cavitation generally occurs when the cavitation number, o, is reduced to a value at
which the head is beginning to be affected by the cavitation as seen in figure 8.6 taken
from Kamijo et al. (1977). Rosenmann (1965) reported that the vibrations (that we
now recognize as rotating cavitation) occurred for cavitation numbers between two
and three times the breakdown value and were particularly evident at the lower flow
coefficients at which the inducer was more heavily loaded.

Usually, further reduction of o below the value at which rotating cavitation occurs
will lead to auto-oscillation or surge (see below and figure 8.6). It is not at all clear
why some inducers and impellers do not exhibit rotating cavitation at all but proceed
directly to auto-oscillation if that instability is going to occur.

Unlike rotating stall whose rotational velocities are less than that of the rotor,
rotating cavitation is characterized by a propagating velocity that is slightly larger
than the impeller speed. Kamijo et al. (1977) (see also Kamijo et al. 1992) observed
propagating velocities Q¢ / Q= 1.15, and this is very similar to one of the somewhat
ambigous propagating disturbance velocities of 1.1€2 reported by Rosemann (1965).

Recently, Tsujimoto et al. (1992) have utilized the methods of chapter 9 to model
the dynamics of rotating cavitation. They have shown that the cavitation compliance
and mass flow gain factor (see section 9.14) play a crucial role in determining the
instability of rotating cavitation in much the same way as these parameters influence



8.6 Surge 151

the stability of an entire system which includes a cavitating pump (see section 8.7).
Also note that the analysis of Tsujimoto ef al. (1992) predicts supersynchronous prop-
agating speeds in the range Qgc / Q = 1.1 to 1.4, consistent with the experimental
observations.

8.6 Surge

Surge and auto-oscillation (see next section) are system instabilities that involve not
just the characteristics of the pump but those of the rest of the pumping system.
They result in pressure and flow rate oscillations that can not only generate excessive
vibration and reduce performance but also threaten the structural integrity of the
turbomachine or other components of the system. In chapter 9 we provide more detail
on general analytical approaches to this class of system instabilities. But for present
purposes, it is useful to provide a brief outline of some of the characteristics of these
system instabilities. To do so, consider first figure 8.7(a) in which the steady-state
characteristic of the pump (head rise versus mass flow rate) is plotted together with
the steady-state characteristic of the rest of the system to which the pump is connected
(head drop versus mass flow rate). In steady-state operation the head rise across the
pump must equal the head drop for the rest of the system, and the flow rates must be
the same so that the combination will operate at the intersection, O. Consider, now,
the response to a small decrease in the flow to a value just below this equilibrium
point, O. Pump A will then produce more head than the head drop in the rest of the
system, and this discrepancy will cause the flow rate to increase, causing a return to
the equilibrium point. Therefore, because the slope of the characteristic of Pump A is
less than the slope of the characteristic of the rest of the system, the point O represents
a quasistatically stable operating point. On the other hand, the system with Pump B
is quasistatically unstable. Perhaps the best known example of this kind of instability
occurs in multistage compressors in which the characteristics generally take the shape
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A
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Figure 8.7. Quasistatically stable and unstable operation of pumping systems.
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shown in figure 8.7(b). It follows that the operating point A is stable, point B is
neutrally stable, and point C is unstable. The result of the instability at points such as
C is the oscillation in the pressure and flow rate known as “compressor surge.”

While the above description of quasistatic stability may help in visualizing the
phenomenon, it constitutes a rather artificial separation of the total system into a
“pump” and “the rest of the system.” A more general analytical perspective is obtained
by defining a resistance, R}, for each of the series components of the system (one of
which would be the pump) distinguished by the subscript, i:

or_ d(AH)
! dm

(8.3)

where A H is the quasistatic head drop across that component (inlet head minus dis-
charge head) and is a function of the mass flow rate, m. By this definition, the slope of
the pump characteristic in figure 8.7(a) is — R, p» and the slope of the characteristic
of the rest of the system is Ry 7 5, It follows that the earlier established criterion
for stability is equivalent to

> R >0 (8.4)

In other words, the system is quasistatically stable if the total system resistance is
positive.

Perhaps the most satisfactory interpretation of the above formulation is in terms
of the energy balance of the total system. The net flux of energy out of each of the
elements of the system is m(AH);. Consequently, the net energy flux out of the
system is

m» (AH); =0 (8.5)

which is zero at a steady state operating point.

Suppose the stability of the system is now explored by inserting somewhere in the
system a hypothetical perturbing device which causes an increase in the flow rate by
dm. Then the new net energy flux out of the system, E*, is given by

d) (AH))

E*=dm | (AH)+m——

. (8.6)

1

=mdmYy R} (8.7)
i

where the relations 8.3 and 8.5 have been used. The quantity E* could be interpreted as
the energy flux that would have to be supplied to the system through the hypothetical
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device in order to reestablish equilibrium. Clearly, then, if the required energy flux,
E*, is positive, the original system is stable. Therefore the criterion 8.4 is the correct
condition for stability.

All of the above is predicated on the changes to the system being sufficiently slow
for the pump and the system to follow the steady state operating curves. Thus the
analysis is only applicable to those instabilities whose frequencies are low enough to
lie within some quasistatic range. At higher frequency, it is necessary to include the
inertia and compressibility of the various components of the flow. Greitzer (1976) (see
also 1981) has developed such models for the prediction of both surge and rotating
stall in axial flow compressors.

It is important to observe that, while quasisteady instabilities will certainly occur
when ), R} <0, there may be other dynamic instabilities that occur even when the
system is quasistatically stable. One way to view this possibility is to recognize that the
resistance of any flow is frequently a complex function of frequency once a certain
quasisteady frequency has been exceeded. Consequently, the resistances, R}, may
be different at frequencies above the quasistatic limit. It follows that there may be
operating points at which the total dynamic resistance over some range of frequencies
is negative. Then the system would be dynamically unstable even though it may
still be quasistatically stable. Such a description of dynamic instability is instructive
but overly simplistic and a more systematic approach to this issue must await the
methodologies of chapter 9.

8.7 Auto-Oscillation

In many installations involving a pump that cavitates, violent oscillations in the pres-
sure and flow rate in the entire system occur when the cavitation number is decreased
to values at which the head rise across the pump begins to be affected (Braisted and
Brennen 1980, Kamijo et al. 1977, Sack and Nottage 1965, Natanzon et al. 1974,
Miller and Gross 1967, Hobson and Marshall 1979). These oscillations can also cause
substantial radial forces on the shaft of the order of 20% of the axial thrust (Rosenmann
1965). This surge phenomenon is known as auto-oscillation and can lead to very large
flow rate and pressure fluctuations in the system. In boiler feed systems, discharge
pressure oscillations with amplitudes as high as 14 bar have been reported informally.
It is a genuinely dynamic instability in the sense described in the last section, for it
occurs when the slope of the pump head rise/flow rate curve is still strongly nega-
tive. Another characteristic of auto-oscillation is that it appears to occur more readily
when the inducer is more heavily loaded; in other words at lower flow coefficients.
These are also the circumstances under which backflow will occur. Indeed, Badowski
(1969) puts forward the hypothesis that the dynamics of the backflow are responsi-
ble for cavitating inducer instability. Further evidence of this connection is provided
by Hartmann and Soltis (1960) but with an atypical inducer that has 19 blades. It is
certainly the case that the limit cycle associated with a strong auto-oscillation appears
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to involve large periodic oscillations in the backflow. Consequently, it would seem that
any nonlinear model purporting to predict the magnitude of auto-oscillation should
incorporate the dynamics of the backflow. While most of the detailed investigations
have focussed on axial pumps and inducers, Yamamoto (1991) has observed and
investigated auto-oscillation occurring in cavitating centrifugal pumps. He also noted
the important role played by the backflow in the dynamics of the auto-oscillation.

Unlike compressor surge, the frequency of auto-oscillation, €24, usually scales
with the shaft speed of the pump. Figure 8.8 demonstrates this by plotting €24/ <2
against the shaft rpm (602/2m) for a particular helical inducer. Figure 8.9 (also
from Braisted and Brennen 1980) shows how this reduced auto-oscillation frequency,
Q4 / 2, varies with flow coefficient, ¢, cavitation number, o, and impeller geometry.
While still noting that the frequency, €24, will, in general, be system dependent,
nevertheless the expression

Q4/Q=(20)? (8.8)

appears to provide a crude estimate of the auto-oscillation frequency.
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Figure 8.8. Data from Braisted and Brennen (1980) on the ratio of the auto-oscillation frequency to the
shaft frequency as a function of the latter for a 9° helical inducer operating at a cavitation number of
0.02 and a flow coefficient of 0.055.
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Figure 8.9. Data from Braisted and Brennen (1980) on the ratio of the frequency of auto-oscillation to
the frequency of shaft rotation for several inducers: SSME Low Pressure LOX Pump models: 7.62 cm
diameter: x (9000 rpm) and + (12000 rpm), 10.2 cm diameter: o (4000 rpm) and O (6000 rpm);
9° helical inducers: 7.58 c¢m diameter: * (9000 rpm): 10.4 ¢m diameter: v (with suction line flow
straightener) and A (without suction line flow straightener). The flow coefficients, ¢1, are as labeled.

Some data from Yamamoto (1991) on the frequencies of auto-oscillation of a cav-
itating centrifugal pump are presented in figure 8.10. This data exhibits a dependence
on the length of the suction pipe that reinforces the understanding of auto-oscillation
as a system instability. The figure also shows the limits of instability observed by
Yamamoto; these are unusual in that there appear to be two separate regions or zones
of instability. Finally, it is clear that the data of figures 8.9 and 8.10 show a similar
dependence of the auto-oscillation frequency on the cavitation number, o, though the
magnitudes of o differ considerably. However, it is likely that the relative sizes of
the cavities are similiar in the two cases, and therefore that the correlation between
the auto-oscillation frequency and the relative cavity size might be closer than the
correlation with cavitation number.

As previously stated, auto-oscillation occurs when the region of cavitation head
loss is approached as the cavitation number is decreased. Figure 8.11 provides an
example of the limits of auto-oscillation taken from the work of Braisted and Brennen
(1980). However, since the onset is even more dependent than the auto-oscillation
frequency on the detailed dynamic characteristics of the system, it would not even be
wise to quote any approximate guideline for onset. Our current understanding is that
the methodologies of chapter 9 are essential for any prediction of auto-oscillation.

It should be noted that chapter 9 describes linear perturbation models that can
predict the limits of oscillation but not the amplitude of the oscillation once it occurs.
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There do not appear to be any accepted analytical models that can make this important
prediction. Furthermore, the energy dissipated in the large amplitude oscillations
within the pump can lead to a major change in the mean (time averaged) performance
of the pump. One example of the effect of auto-oscillation on the head rise across a
cavitating inducer is shown in figure 8.12 (from Braisted and Brennen 1980) which
contains cavitation performance curves for three flow coefficients. The sequence of
events leading to these results was as follows. For each flow rate, the cavitation
number was decreased until the onset of auto-oscillation at the point labeled A, when
the head immediately dropped to the point B (an unavoidable change in the pump
inlet pressure and therefore in o would often occur at the same time). Increasing the
cavitation number again would not immediately eliminate the auto-oscillation. Instead
the oscillations would persist until the cavitation number was raised to the value at
the point C where the disappearance of auto-oscillation would cause recovery to the
point D. This set of experiments demonstrate (i) that under auto-oscillation conditions
(B, C) the head rise across this particular inducer was about half of the head rise
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Figure 8.11. Cavitation performance of the SSME low pressure LOX pump model, Impeller IV, showing
the onset and approximate desinence of the auto-oscillation at 6000 rpm (from Braisted and Brennen
1980).
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Figure 8.12. Data from a helical inducer illustrating the decrease in head with the onset of auto-oscillation
(A — B) and the auto-oscillation hysteresis occurring with subsequent increase in o (from Braisted and
Brennen 1980).

without auto-oscillation (A, D) and (ii) that a significant auto-oscillation hysteresis
exists in which the auto-oscillation inception and desinence cavitation numbers can
be significantly different. Neither of these nonlinear effects can be predicted by the
frequency domain methods of chapter 9. In other inducers, the drop in head with the
onset of auto-oscillation is not as large as in figure 8.12 but it is still present; it has
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also been reported by Rosenmann (1965). This effect may account for the somewhat
jagged form of the cavitation characteristic as breakdown is approached.

8.8 Rotor-Stator Interaction: Flow Patterns

In section 8.2, we described the two basic frequencies of rotor-stator interaction: the
excitation of the stator flow at Zz €2 and the excitation of the rotor flow at Zg<2. Apart
from the superharmonics mZrQ2 and mZg<Q2 that are generated by nonlinearities,
subharmonics can also occur. When they do they can cause major problems, since
the fluid and structural damping is smaller for these lower frequencies. To avoid such
subharmonics, turbomachines are usually designed with blade numbers, Zg and Zg,
which have small integer common factors.

The various harmonics of blade passage excitation can be visualized by generating
an “encounter” (or interference) diagram that is a function only of the integers Zg
and Zg. In these encounter diagrams, of which figures 8.13 and 8.14 are examples,
each of the horizontal lines represents the position of a particular stator blade. The
circular geometry has been unwrapped so that a passing rotor blade proceeds from top
to bottom as it rotates past the stator blades. Each vertical line represents a moment
in time, the period covered being one complete revolution of the rotor beginning at
the far left and returning to that moment on the far right. Within this framework, the
moment and position of all the rotor-stator blade encounters are shown by an “0.”
Such encounter diagrams allow one to examine the various frequencies and patterns
generated by rotor-stator interactions and this is perhaps best illustrated by referring
to the examples of figure 8.13 for the case of Zp =6, Zg = 7, and figure 8.14 for
the case of Zg = 6, Zs = 16. First, one can always follow the diagonal progress of
individual rotor blades as indicated by lines such as those marked 12 in the examples.
But other diagonal lines are also evident. For example, in figure 8.13 the perturbation
consisting of a single cell, and propagating in the reverse direction at 62 is strongly
indicated. Parenthetically we note that, in any machine in which Zg = Zg + 1, a
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Figure 8.13. Encounter diagram for rotor-stator interaction in a turbomachine with Zg =6, Zg = 7.
Each row is for a specific stator blade and time runs horizontally covering one revolution as one proceeds
from left to right. Encounters between a rotor blade and a stator blade are marked by an 0.
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Figure 8.14. Encounter diagram for rotor-stator interaction in a turbomachine with Zg =6, Zg = 16.

perturbation with a reverse speed of —Zr <2 is always present. Also in figure 8.14,
there are quite strong lines indicating an encounter pattern rotating at 9€2 and consisting
of two diametrically opposite cells. Other propagating disturbance patterns are also
suggested by figure 8.14. For example, the backward propagating disturbance rotating
at 3Q2 in the reverse direction and consisting of four equally spaced perturbation cells
is indicated by the lines marked —3. It is, of course, possible to connect up the
encounter points in a very large number of ways, but clearly only those disturbances
with a large number of encounters per cycle (high “density”) will generate a large
enough flow perturbation to be significant. However, among the top two or three
possibilities, it is not necessarily a simple matter to determine which will manifest
itself in the actual flow. That requires more detailed analysis of the flow.

The flow perturbations caused by blade passage excitation are nicely illustrated by
Miyagawa et al. (1992) in their observations of the flows in high head pump turbines.
One of the cases they explored was that of figure 8.14, namely Zr = 6, Zg = 16.
Figure 8.15 has been extracted from the videotape of their unsteady flow observations
and shows two diametrically opposite perturbation cells propagating around at nine
times the impeller rotating speed, one of the “dense” perturbation patterns predicted
by the encounter diagram of figure 8.14.

8.9 Rotor-Stator Interaction: Forces

When one rotor (or stator) blade passes through the wake of an upstream stator (or
rotor) blade, it will clearly experience a fluctuation in the fluid forces that act upon it.
In this section, the nature and magnitude of these rotor-stator interaction forces will
be explored. Experience has shown that these unsteady forces are a strong function of
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Figure 8.15. The propagation of a low pressure region (hatched) at nine times the impeller rotational
speed in the flow through a high head pump-turbine. The sketches show six instants in time equally
spaced within one sixth of a revolution. Made from videotape provided by Miyagawa et al. (1992).

the gap between the locus of the trailing edge of the upstream blade and the locus of
the leading edge of the downstream blade. This distance will be termed the interblade
spacing, and will be denoted by cp.

Most axial compressors and turbines operate with fairly large interblade spacings,
greater than 10% of the blade chord. As a result, the unsteady flows and forces
measured under these circumstances (Gallus 1979, Gallus et al. 1980, Dring et al.
1982, Iino and Kasai 1985) are substantially smaller than those measured for radial
machines (such as centrifugal pumps) in which the interblade spacing between the
impeller and diffuser blades may be only a few percent of the impeller radius. Indeed,
structural failure of the leading edge of centrifugal diffuser blades is not uncommon
in the industry, and is typically solved by increasing the interblade spacing, though at
the cost of reduced hydraulic performance.

Several early investigations of rotor-stator interaction forces were carried out using
single foils in a wind tunnel (for example, Lefcort 1965). However, Gallus et al.
(1980) appear to have been the first to measure the unsteady flows and forces due
to rotor-stator interaction in an axial flow compressor. They attempt to collate their
measurements with the theoretical analyses of Kemp and Sears (1955), Meyer (1958),
Horlock (1968) and others. The measurements were conducted with large interblade
spacing to axial chord ratios of about 50%, and involved documentation of the blade
wakes. The impingement of these wakes on the following row of blades causes pressure
fluctuations that are largest on the forward suction surface and small near the trailing
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Figure 8.16. Pressure distributions on a diffuser blade at two different instants during the passage of an
impeller blade. Data for an interblade spacing of 1.5% and ¢p = 0.12 (from Arndt ef al. 1989).

edge of those blades. These pressure fluctuations lead to a fluctuation in the lift
coefficient of +0.06. Moreover, Gallus et al. (1980) show that the forces vary roughly
inversely with the interblade spacing to axial chord ratio. Extrapolation would suggest
that the unsteady and steady components of the lift might be roughly the same if this
ratio were decreased to 5%. This estimate is confirmed by the measurements of Arndt
et al., described below. Before concluding this discussion of rotor-stator interaction
forces in axial flow machines, we note that Dring ef al. (1982) have examined the
flows and forces for an interblade spacing to axial chord ratio of 0.35 and obtained
results similar to those of Gallus ef al.

Recently, Arndt et al. (1989, 1990) (see also Brennen ef al. 1988) have made
measurements of the unsteady pressures and forces that occur in a radial flow machine
when an impeller blade passes a diffuser blade. Figure 8.16 presents instantaneous
pressure distributions (ensemble-averaged over many revolutions) for two particular
relative positions of the impeller and diffuser blades. In the upper graph the trailing
edge of the impeller blade has just passed the leading edge of the diffuser blade, causing
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spacings (from Arndt et al. 1989).

a large perturbation in the pressure on the suction surface of the diffuser blade. Indeed,
in this example, the pressure over a small region has fallen below the impeller inlet
pressure (C, < 0). The lower graph is the pressure distribution at a later time when
the impeller blade is about half-way to the next diffuser blade. The perturbation in
the diffuser blade pressure distribution has largely dissipated. Closer examination of
the data suggests that the perturbation takes the form of a wave of negative pressure
traveling along the suction surface of the diffuser blade and being attenuated as it
propagates. This and other observations suggest that the cause is a vortex shed from
the leading edge of the diffuser blade by the passage of the trailing edge of the impeller.
This vortex is then convected along the suction surface of the diffuser blade.

The difference between the maximum and minimum pressure coefficient, AC),,
experienced at each position on the surface of a diffuser blade is plotted as a function
of position in figure 8.17. Data is shown for two interblade spacings, ¢, = 0.015R73
and 0.045 R7,. This figure reiterates the fact that the pressure perturbations are largest
on the suction surface just downstream of the leading edge. It also demonstrates that
the pressure perturbations for the 1.5% interblade spacing are about double those for
the 4.5% interblade spacing. Figure 8.17 was obtained at a particular flow coefficient
of ¢» = 0.12; however, the same phenomena were encountered in the range 0.05 <
¢ < 0.15, and the magnitude of the pressure perturbation showed an increase of about
50% between ¢ = 0.05 and ¢» = 0.15.

Given both the magnitude and phase of the instantaneous pressures on the surface
of a diffuser blade, the result may be integrated to obtain the instantaneous lift, L, on
the diffuser blade. Here the lift coefficient is defined as C; = L/ %szR%2cb where
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L is the force on the blade perpendicular to the mean chord, ¢ is the chord, and b
is the span of the diffuser blade. Time histories of Cy, are plotted in figure 8.18 for
three different flow coefficients and an interblade spacing of 4.5%. Since the impeller
blades consisted of main blades separated by partial blades, two ensemble-averaged
cycles are shown for Cy though the differences between the passage of a full blade
and a partial blade are small. Notice that even for the larger 4.5% interblade spacing,
the instantaneous lift can be as much as three times the mean lift. Consequently, a
structural design criterion based on the mean lift on the blades would be seriously
flawed. Indeed, in this case it is clear that the principal structural consideration should
be the unsteady lift, not the steady lift.

Arndt et al. (1990) also examined the unsteady pressures on the upstream impeller
blades for a variety of diffusers. Again, large pressure fluctuations were encountered
as aresult of rotor-stator interaction. Typical results are shown in figure 8.19 where the
magnitude of the pressure fluctuations is presented as a function of flow coefficient
for three different locations on the surface of an impeller blade: (i) on the flat of the
trailing edge, (ii) on the suction surface at r/R7> = 0.937, and (iii) on the pressure
surface at ¥/ Rty = 0.987. The data are for a 5% interblade spacing and all data points
represent ensemble averages. The magnitudes of the fluctuations are of the same order
as the pressure fluctuations on the diffuser blades, indicating that the unsteady loads on
the upstream blade in rotor-stator interaction can also be substantial. Note, however,
that contrary to the trend with the diffuser blades, the magnitude of the pressure
fluctuations decrease with increasing flow coefficient. Finally, note that the magnitude
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of the pressure fluctuations are as large as the total head rise across the pump. This
raises the possibility of transient cavitation being caused by rotor-stator interaction.

Considering the magnitude of these rotor-stator interaction effects, it is surprising
that there is such a limited quantity of data available on the unsteady forces.

8.10 Developed Cavity Oscillation

There are several circumstances in which developed cavities can exhibit self-sustained
oscillations in the absence of any external excitation. One of these is the instability
associated with a partial cavity whose length is approximately equal to the chord of
the foil. Experimentally, it is observed that when the cavitation number is decreased
to the level at which the attached partial cavity on a single hydrofoil approaches about
0.7 of the chord, c, of the foil, the cavity will begin to oscillate violently (Wade and
Acosta 1966). It will grow to a length of about 1.5¢, at which point the cavity will
be pinched off at about 0.5¢, and the separated cloud will collapse as it is convected
downstream. This collapsing cloud of bubbles carries with it shed vorticity, so that
the lift on the foil oscillates at the same time. This phenomenon is called “partial
cavitation oscillation.” It persists with further decrease in cavitation number until a
point is reached at which the cavity collapses at some critical distance downstream
of the trailing edge that is usually about 0.3¢. For cavitation numbers lower than this,
the flow again becomes quite stable. The frequency of partial cavitation oscillation
on a single foil is usually less than 0.1U /¢, where U is the velocity of the oncoming
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stream, and c is the chord length of the foil. In cascades or pumps, supercavitation is
usually only approached in machines of low solidity, but, under such circumstances,
partial cavitation oscillation can occur, and can be quite violent. Wade and Acosta
(1966) were the first to observe partial cavitation oscillation in a cascade. During
another set of experiments on cavitating cascades, Young, Murphy, and Reddcliff
(1972) observed only “random unsteadiness of the cavities.”

One plausible explanation for this partial cavitation instability can be gleaned from
the free streamline solutions for a cavitating foil that were described in section 7.8. The
results from equations 7.9 to 7.12 can be used to plot the lift coefficient as a function
of angle of attack for various cavitation numbers, as shown in figure 8.20. The results
from both the partial cavitation and the supercavitation analyses are shown. Moreover,
we have marked with a dotted line the locus of those points at which the supercavitating
solution yields dCy, /da = 0; it is easily shown that this occurs when £ = 4¢/3. We
have also marked with a dotted line the locus of those points at which the partial
cavitation solution yields dCy, /da = oo; it can also be shown that this occurs when
£ = 3c/4. Note that these dotted lines separate regions for which dCy /da > 0 from
that region in which dCp /da < 0. Heuristically, it could be argued that dCy, /da < 0
implies an unstable flow. It would follow that the region between the dotted lines in
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Figure 8.20. The lift coefficient for a flat plate from the partial cavitation analysis of Acosta (1955)
(dashed lines) and the supercavitating analysis of Tulin (1953) (solid lines); Cy, is shown as a function

of angle of attack, «, for several cavitation numbers, o. The dotted lines are the boundaries of the region
in which the cavity length is between 3/4 and 4/3 of a chord, and in which dC /da < 0.
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figure 8.20 represents a regime of unstable operation. The boundaries of this regime
are % < % < %, and do, indeed, seem to correspond quite closely to the observed
regime of unstable cavity oscillation (Wade and Acosta 1966).

A second circumstance in which a fully developed cavity may exhibit natural
oscillations occurs when the cavity is formed by introducing air to the wake of a foil
in order to form a “ventilated cavity.” When the flow rate of air exceeds a certain
critical level, the cavity may begin to oscillate, large pockets of air being shed at the
rear of the main cavity during each cycle of oscillation. This problem was studied
by Silberman and Song (1961) and by Song (1962). The typical radian frequency for
these oscillations is about 6U /£, based on the length of the cavity, £. Clearly, this
second phenomenon is less relevant to pump applications.

8.11 Acoustic Resonances

In the absence of cavitation or flow-induced vibration, flow noise generated within
the turbomachine itself is almost never an issue when the fluid is a liquid. One reason
for this is that the large wavelength of the sound in the liquid leads to internal acoustic
resonances that are too high in frequency and, therefore, too highly damped to be
important. This contrasts with the important role played by internal resonances in the
production of noise in gas turbines and compressors (Tyler and Sofrin 1962, Cumpsty
1977). In noncavitating liquid turbomachinery, the higher acoustic velocity and the
smaller acoustic damping mean that pipeline resonances play the same kind of role
that the internal resonances play in the production of noise in gas turbomachinery.

In liquid turbomachines, resonances exterior to the machine or resonances associ-
ated with cavitation do create a number of serious vibration problems. As mentioned
in the introduction, pipeline resonances with the acoustic modes of the inlet or dis-
charge piping can occur when one of the excitation frequencies produced by the
pump or hydraulic turbine happens to coincide with one of the acoustic modes of
those pipelines. Jaeger (1963) and Strub (1963) document a number of cases of res-
onance in hydropower systems. Many of these do not involve excitation from the
turbine but some do involve excitation at blade passing frequencies (Strub 1963).
One of the striking features of these phenomena is that very high harmonics of the
pipelines can be involved (20th harmonics have been noted) so that damage occurs
at a whole series of nodes equally spaced along the pipeline. The cases described by
Jaeger involve very large pressure oscillations, some of which led to major fail-
ures of the installation. Sparks and Wachel (1976) have similarly documented a
number of cases of pipeline resonance in pumping systems. They correctly iden-
tify some of these as system instabilities of the kind discussed in section 8.6 and
chapter 9.

Cavitation-induced resonances and vibration problems are dealt with in other
sections of this chapter. But it is appropriate in the context of resonances to men-
tion one other possible cavitation mechanism even though it has not, as yet, been



8.12 Blade Flutter 167

demonstrated experimentally. One might judge that the natural frequency, wp, of
bubbles given by equation 6.14 (section 6.5), being of the order of k Hz, would be
too high to cause vibration problems. However, it transpires that a finite cloud of
bubbles may have much smaller natural frequencies that could resonant, for exam-
ple, with a blade passage frequency to produce a problem. d’Agostino and Brennen
(1983) showed that the lowest natural frequency, wc, of a spherical cloud of bubbles
of radius, A, consisting of bubbles of radius, R, and with a void fraction of « would
be given by

=

(8.9)

4 A% «
372 R2 11—«

a)c=a)p|:1+

It follows that, if @ A%/ R? >> 1, then the cloud frequency will be significantly smaller
than the bubble frequency. This requires that the void fraction be sufficiently large so
that @ > R?/A?. However, this could be relatively easily achieved in large clouds of
small bubbles. Though the importance of cloud cavitation in pumps has been clearly
demonstrated (see section 6.3), the role played by the basic dynamic characteristics
of clouds has not, as yet, been elucidated.

8.12 Blade Flutter

Up to this point, all of the instabilities have been essentially hydrodynamic and would
occur with a completely rigid structure. However, it needs to be observed that structural
flexibility could modify any of the phenomena described. Furthermore, if a hydrody-
namic instability frequency happens to coincide with the frequency of a major mode of
vibration of the structure, the result will be a much more dangerous vibration problem.
Though the hydroelastic behavior of single hydrofoils has been fairly well established
(see the review by Abramson 1969), it would be virtually impossible to classify all
of the possible fluid-structure interactions in a turbomachine given the number of
possible hydrodynamic instabilities and the complexity of the typical pump structure.
Rather, we shall confine attention to one of the simpler interactions and briefly discuss
blade flutter. Though the rotor-stator interaction effects outlined above are more likely
to cause serious blade vibration problems in turbomachines, it is also true that a blade
may flutter and fail even in the absence of such excitation.

It is well known (see, for example, Fung 1955) that the incompressible, unstalled
flow around a single airfoil will not exhibit flutter when permitted only one degree
of freedom of flutter motion. Thus, classic aircraft wing flutter requires the coupling
of two degrees of flutter motion, normally the bending and torsional modes of the
cantilevered wing. Turbomachinery flutter is quite different from classic aircraft wing
flutter and usually involves the excitation of a single structural mode. Several different
phenomena can lead to single degree of freedom flutter when it would not otherwise
occur in incompressible, unseparated (unstalled) flow. First, there are the effects of
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compressibility that can lead to phenomena such as supersonic flutter and choke flutter.
These have been the subject of much research (see, for example, the reviews of Miko-
lajczak et al. (1975), Platzer (1978), Sisto (1977), McCroskey (1977)), but are not
of direct concern in the context of liquid turbomachinery, though the compressibility
introduced by cavitation might provide some useful analogies. Of greater importance
in the context of liquid turbomachinery is the phenomenon of stall flutter (see, for
example, Sisto 1953, Fung 1955). A blade which is stalled during all or part of a cycle
of oscillation can exhibit single degree of freedom flutter, and this type of flutter has
been recognized as a problem in turbomachinery for many years (Platzer 1978, Sisto
1977). Unfortunately, there has been relatively little analytical work on stall flutter
and any modern theory must at least consider the characteristics of dynamic stall
(see McCroskey 1977). Like all single degree of freedom flutter problems, including
those in turbomachines, the critical incident speed for the onset of stall flutter, Uc,
is normally given by a particular value of a reduced speed, Ucg = 2U¢/cwF, where
c is the chord length and wr is the frequency of flutter or the natural frequency of
the participating structural vibration mode. The inverse of Ucg is the reduced fre-
quency, kc g, or Strouhal number. Fung (1955) points out that the reduced frequency
for stall flutter with a single foil is a function of the difference, 6, between the mean
angle of incidence of the flow and the static angle of stall. A crude guide would
be kcgp = 0.3 +4.56, 0.1 < kcr < 0.8. The second term in the expression for kcg
reflects the decrease in the critical speed with increasing incidence.

Of course, in a turbomachine or cascade, the vibration of one blade will generate
forces on the neighboring blades (see, for example, Whitehead 1960), and these
interactions can cause significant differences in the flutter analyses and critical speeds;
often they have a large unfavorable effect on the flutter characteristics (McCroskey
1977). One must allow for various phase angles between neighboring blades, and
examine waves which travel both forward and backward relative to the rotation of
the rotor. A complete analysis of the vibrational modes of the rotor (or stator) must
be combined with an unsteady fluid flow analysis (see, for example, Verdon 1985) in
order to accurately predict the flutter boundaries in a turbomachine. Of course, most
of the literature deals with structures that are typical of compressors and turbines.
The lowest modes of vibration in a pump, on the other hand, can be very different
in character from those in a compressor or turbine. Usually the blades have a much
smaller aspect ratio so that the lowest modes involve localized vibration of the leading
or trailing edges of the blades. Consequently, any potential flutter is likely to cause
failure of portions of these leading or trailing edges.

The other major factor is the effect of cavitation. The changes which developed
cavitation cause in the lift and drag characteristics of a single foil, also cause a fun-
damental change in the flutter characteristics with the result that a single cavitating
foil can flutter (Abramson 1969). Thus a cavitating foil is unlike a noncavitating,
nonseparated foil but qualitatively similar to a stalled foil whose flow it more closely
resembles. Abramson (1969) provides a useful review of both the experiments and the
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Figure 8.21. Sketch of the leading edge flutter of a cavitating hydrofoil or pump blade.

analyses of flutter of rigid cavitating foils. However, as we previously remarked, the
most likely form of flutter in a pump will not involve global blade motion but flexure
of the leading or trailing edges. Since cavitation occurs at the leading edges, and since
these are often made thin in order to optimize the hydraulic performance, leading
edge flutter seems the most likely concern (figure 8.21). Data on this phenomenon
was obtained by Brennen, Oey, and Babcock (1980), and is presented in figure 8.22.
The critical incident fluid velocity, Uc, is nondimensionalized using wr, the lowest
natural frequency of oscillation of the leading edge immersed in water, and a dimen-
sion, cF, that corresponds to the typical chordwise length of the foil from the leading
edge to the first node of the first mode of vibration. The data shows that Uc/croFr
is almost independent of the incidence angle, and is consistent for a wide range of
natural frequencies. Brennen ef al. also utilize the unsteady lift and moment coeffi-
cients calculated by Parkin (1962) to generate a theoretical estimate of Uc/crwr of
0.14. From figure 8.22 this seems to constitute an upper design limit on the reduced
critical speed. Also note that the value of 0.14 is much smaller than the values of 1-3
quoted earlier for the stall flutter of a noncavitating foil. This difference emphasizes
the enhanced flutter possibilities caused by cavitation. Brennen et al. also tested their
foils under noncavitating conditions but found no sign of flutter even when the tunnel
velocity was much larger than the cavitating flutter speed.

One footnote on the connection between the flutter characteristics of figure 8.22
and the partial cavitation oscillation of section 8.10 is worth adding. The data of figure
8.22 was obtained with long attached cavities, covering the entire suction surface of
the foil as indicated in figure 8.21. At larger cavitation numbers, when the cavity length
was decreased to about two chord lengths, the critical speed decreased markedly, and
the leading edge flutter phenomenon began to metamorphose into the partial cavitation
oscillation described in section 8.10.

8.13 Pogo Instabilities

All of the other discussion in this chapter has assumed that the turbomachine as a whole
remains fixed in a nonaccelerating reference frame or, at least, that a vibrational degree
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of freedom of the machine is not necessary for the instability to occur. However, when
a mechanism exists by which the internal flow and pressure oscillations can lead to
vibration of the turbomachine as a whole, then a new set of possibilities are created.
We refer to circumstances in which flow or pressure oscillations lead to vibration of
the turbomachine (or its inlet or discharge pipelines) which in turn generate pressure
oscillations that feed back to create instability. An example is the class of liquid-
propelled rocket vehicle instabilities known as Pogo instabilities (NASA 1970). Here
the longitudinal vibration of the rocket causes flow and pressure oscillation in the
fuel tanks and, therefore, in the inlet lines. This, in turn, implies that the engines
experience fluctuating inlet conditions, and as a result they produce a fluctuating
thrust that promotes the longitudinal vibration of the vehicle. Rubin (1966) and Vaage
et al. (1972) provide many of the details of these phenomena that are beyond the
scope of this text. It is, however, important to note that the dynamics of the cavitating
inducer pumps are crucial in determining the limits of these Pogo instabilities, and
provide one of the main motivations for the measurements of the dynamic transfer
functions of cavitating inducers described in chapter 9.
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In closing, it is important to note that feedback systems involving vibrational
motion of the turbomachine are certainly not confined to liquid propelled rock-
ets. However, detailed examinations of the instabilities are mostly confined to this
context. In section 9.15 of the next chapter, we provide a brief introduction to the fre-
quency domain methods which can be used to address problems involving oscillatory,
translational or rotational motions of the whole hydraulic sytem.



Unsteady Flow in Hydraulic Systems

9.1 Introduction

This chapter is devoted to a description of the methods available for the analysis of
unsteady flows in pumps and their associated hydraulic systems. There are two basic
approaches to the solution of unsteady internal flows: solution in the time domain or
in the frequency domain. The traditional time domain methods for hydraulic systems
are treated in depth elsewhere (for example, Streeter and Wylie 1967, 1974), and will
only be touched upon here. They have the great advantage that they can incorporate the
nonlinear convective inertial terms in the equations of fluid flow, and are best suited to
evaluating the transient response of flows in long pipes in which the equations of the
flow and the structure are fairly well established. However, they encounter great diffi-
culties when either the geometry is complex (for example inside a pump), or the fluid
is complex (for example in the presence of cavitation). Under these circumstances,
frequency domain methods have distinct advantages, both analytically and experi-
mentally. On the other hand, the nonlinear convective inertial terms cannot readily
be included in the frequency-domain methodology and, consequently, these methods
are only accurate for small perturbations from the mean flow. This does permit eval-
uation of stability limits, but not the evaluation of the amplitude of large unstable
motions.

It should be stressed that many unsteady hydraulic system problems can and should
be treated by the traditional time domain or “water-hammer” methods. However, since
the focus of this monograph is on pumps and cavitation, we place an emphasis here
on frequency domain methods. Sections 9.5 through 9.10 constitute an introduction
to these frequency domain methods. This is followed by a summary of the transfer
functions for simple components and for pumps, both noncavitating and cavitating.
Up to the beginning of section 9.15, it is assumed that the hydraulic system is at rest in
some inertial or nonaccelerating frame. However, as indicated in section 8.13, there
is an important class of problems in which the hydraulic system itself is oscillating in
space. In section 9.15, we present a brief introduction to the treatment of this class of
problems.

172
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9.2 Time Domain Methods

The application of time domain methods to one-dimensional fluid flow normally
consists of the following three components. First, one establishes conditions for the
conservation of mass and momentum in the fluid. These may be differential equations
(as in the example in the next section) or they may be jump conditions (as in the anal-
ysis of a shock). Second, one must establish appropriate thermodynamic constraints
governing the changes of state of the fluid. In almost all practical cases of single-
phase flow, it is appropriate to assume that these changes are adiabatic. However,
in multiphase flows the constraints can be much more complicated. Third, one must
determine the response of the containing structure to the pressure changes in the fluid.

The analysis is made a great deal simpler in those circumstances in which it is
accurate to assume that both the fluid and the structure behave barotropically. By
definition, this implies that the change of state of the fluid is such that some ther-
modynamic quantity (such as the entropy) remains constant, and therefore the fluid
density, p(p), is a simple algebraic function of just one thermodynamic variable, for
example the pressure. In the case of the structure, the assumption is that it deforms
quasistatically, so that, for example, the cross-sectional area of a pipe, A(p), is a
simple, algebraic function of the fluid pressure, p. Note that this neglects any inertial
or damping effects in the structure.

The importance of the assumption of a barotropic fluid and structure lies in the
fact that it allows the calculation of a single, unambiguous speed of sound for waves
traveling through the piping system. The sonic speed in the fluid alone is given by co
where

1
Coo =(dp/dp)~2 O.1)
In a liquid, this is usually calculated from the bulk modulus, « = p/(dp/dp), since
1
Coo =(K/p) 2 9.2)

However the sonic speed, ¢, for one-dimensional waves in a fluid-filled duct is
influenced by the compressibility of both the liquid and the structure:

1
1d(pA)] 2
c= | LAPA (9.3)
A dp
or, alternatively,
1 . 1 (dA 9.4)
pc?  pcd,  A\dp '

The left-hand side is the acoustic impedance of the system, and the equation reveals
that this is the sum of the acoustic impedance of the fluid alone, 1/ ,ocgo, plus an
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“acoustic impedance” of the structure given by (dA/dp)/A. For example, for a thin-
walled pipe made of an elastic material of Young’s modulus, E, the acoustic impedance
of the structure is 2a/E§, where a and é are the radius and the wall thickness of the
pipe (6 < a). The resulting form of equation 9.4,

1
1 2pa | 2
=|-+— 9.5
‘ [cgﬁEa} ©-2)

is known as the Joukowsky water hammer equation. It leads, for example, to values of
¢ of about 1000 m /s for water in standard steel pipes compared with coo = 1400 m/s.
Other common expressions for ¢ are those used for thick-walled tubes, for concrete
tunnels, or for reinforced concrete pipes (Streeter and Wylie 1967).

9.3 Wave Propagation in Ducts

In order to solve unsteady flows in ducts, an expression for the sonic speed is combined
with the differential form of the equation for conservation of mass (the continuity
equation)

a a
S (0A) + (0 Au) =0 (9.6)

where u(s,t) is the cross-sectionally averaged or volumetric velocity, s is a coordi-
nate measured along the duct, and ¢ is time. The appropriate differential form of the
momentum equation is

8u+ au ap pfulu|
T au— = _
p ot as 4a

=5 — P8s

as

(9.7)

where g; is the component of the acceleration due to gravity in the s direction, f is
the friction factor, and a is the radius of the duct.
Now the barotropic assumption 9.3 allows the terms in equation 9.6 to be written as

d Adp 9d(pA) Adp 0A
2 pay=2720. _ 2o —‘ 9.8
ot (p4) c? ot as c? 9s p ds Ip ©-8)
so the continuity equation becomes
10p uadp ou udA
——+5— —+—— |=0 9.9
293t 2 0s p[8s+A ds p] ©9)

Equations 9.7 and 9.9 are two simultaneous, first order, differential equations for the
two unknown functions, p(s,t) and u(s,t). They can be solved given the barotropic
relation for the fluid, p(p), the friction factor, f, the normal cross-sectional area of
the pipe, Ag(s), and boundary conditions which will be discussed later. Normally the
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last term in equation 9.9 can be approximated by pu(dAg/ds)/Ag. Note that ¢ may
be a function of s.

In the time domain methodology, equations 9.7 and 9.9 are normally solved using
the method of characteristics (see, for example, Abbott 1966). This involves finding
moving coordinate systems in which the equations may be written as ordinary rather
than partial differential equations. Consider the relation that results when we multiply
equation 9.9 by XA and add it to equation 9.7:

ALY 3p+ + or
—+(u —|+= u
Pl ot 9s ot s

pur dAg pflulu

=0 .10
o Tes 9.10)

If the coefficients of 5% 8” and 8’7 inside the square brackets were identical, in other
words if A = =£c, then the expressmns in the square brackets could be written as
ou ap ap

B——i—(uic)— and E—i-(u:i:c)a (9.11)

and these are the derivatives 2% I “ and ‘;’; on Zf =u %+ c¢. These lines Zi =u + ¢ are the

characteristics, and on them we may write:

ds

1. In a frame of reference moving with velocity u +c oron & = u +c:

du 1 dp ucdAy fulu|
o g
dt pcdt Ag ds 4a

=0 (9.12)

2. In a frame of reference moving with velocity # — ¢ or on Zf =u—c:

du 1 dp uc dA() fulu|
dt pcdt A ds 4a

=0 (9.13)

A simpler set of equations result if the piezometric head, 2*, defined as

ne=2 4 [ &4 (9.14)

rg 8
is used instead of the pressure, p, in equations 9.12 and 9.13. In almost all hydraulic
problems of practical interest p/prc? <« 1 and, therefore, the term p~'dp/dt in
equations 9.12 and 9.13 may be approximated by d(p/p)/dt. It follows that on the
two characteristics

1 dp gdh* u
— 4 ~ = — —g 9.15
pc dt & c dt cg‘ ( )



176

At
-~

N
CHARACTERISTICS < N\
ol
yd

E(/
\

Figure 9.1. Method of characteristics.

and equations 9.12 and 9.13 become

1. OnZ—f:u—l—c

du n gdh* 1 dAy

dt ¢ dt Aoy ds
2. On%:u—c

du gdh* 1 dAg

dt ¢ dt Ao ds

Unsteady Flow in Hydraulic Systems

b

“8s o =0 (9.16)
c 4a

+ 48 L =0 (9.17)
c 4a

These are the forms of the equations conventionally used in unsteady hydraulic water-
hammer problems (Streeter and Wylie 1967). They are typically solved by relating
the values at a time ¢ + 8¢ (for example, point C of figure 9.1) to known values at the
points A and B at time ¢. The lines AC and BC are characteristics, so the following
finite difference forms of equations 9.16 and 9.17 apply:

(uc—up) g (hp—n%) 1 dAg ua(gs)a  faualual
8 U -0
5t Ten o Ny as )T e T 4a
(9.13)
and
(uc —up) _ﬁ(h*c_h}}) —upcp 1 dAg n up(gs)B . fBuplupl _0
ot CcB St A, ds )p CcB 4a

(9.19)
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If c4 = cp = ¢, and the pipe is uniform, so that dAg/ds =0 and f4 = fp = f, then
these reduce to the following expressions for uc and A

(ua+up) g * ot
Ue =——>— + % (hj\ — hg) + % [ua(gs)a —up(gs)B]
ot
L ual + uglugl] (9.20)
8a
h* 4+ h* c St
hzzgJL—lQ+——wA—uB»+——mA@oA+uB@oﬂ
2 2g 2¢g
cot
L Al — uglug] 9.21)
8ag

9.4 Method of Characteristics

The typical numerical solution by the method of characteristics is depicted graphically
in figure 9.2. The time interval, §¢, and the spatial increment, s, are specified. Then,
given all values of the two dependent variables (say u and /£*) at one instant in time,
one proceeds as follows to find all the values at points such as C at a time ¢ later. The
intersection points, A and B, of the characteristics through C are first determined.
Then interpolation between the known values at points such as R, S and T are used to
determine the values of the dependent variables at A and B. The values at C follow
from equations such as 9.20 and 9.21 or some alternative version. Repeating this for
all points at time ¢ 4 5¢ allows one to march forward in time.

There is, however, a maximum time interval, §¢, that will lead to a stable numerical
solution. Typically this requires that ¢ be less than 5x/c. In other words, it requires
that the points A and B of figure 9.2 lie inside of the interval RST . The reason for this
condition can be demonstrated in the following way. Assume for the sake of simplicity

.
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Figure 9.2. Example of numerical solution by method of characteristics.
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that the slopes of the characteristics are 4-c; then the distances AS = S B = ¢ét. Using
linear interpolation to find u 4 and up from ug,us and ur leads to

< (St) cdt
upa=us|l—c— |+urp—

o8 88
ot cot

up=us|l—c— ) +ur— (9.22)
o8 S8

Consequently, an error in ug of, say, du would lead to an error in u4 of cdudt/§s
(and similarly for ur and u ). Thus the error would be magnified with each time step
unless ¢8¢/8s < 1 and, therefore, the numerical integration is only stable if §¢ < §x/c.
In many hydraulic system analyses this places a quite severe restriction on the time
interval 8¢, and often necessitates a large number of time steps.

A procedure like the above will also require boundary conditions to be specified
at any mesh point which lies either, at the end of a pipe or, at a junction of the pipe
with a pipe of different size (or a pump or any other component). If the points S
and C in figure 9.2 were end points, then only one characteristic would lie within
the pipe and only one relation, 9.18 or 9.19, can be used. Therefore, the boundary
condition must provide a second relation involving uc or h¢, (or both). An example is
an open-ended pipe for which the pressure and, therefore, 4* is known. Alternatively,
at a junction between two sizes of pipe, the two required relations will come from
one characteristic in each of the two pipes, plus a continuity equation at the junction
ensuring that the values of uAg in both pipes are the same at the junction. For this
reason it is sometimes convenient to rewrite equations 9.16 and 9.17 in terms of the
volume flow rate Q = uAg instead of u so that

1. On%:u—i—c

dQ  Aogdh*  QcdAy Qgs f
- — =0 9.23
dt + c dt +A0 ds c +4aA0Q|Q| ( )

2. On‘é—fzu—c

dQ Aogdh* QcdAy  0gs f
—_—— =0 9.24
dt c dt Ao ds + c +4aA0Q|Q| ( )

Even in simple pipe flow, additional complications arise when the instantaneous
pressure falls below vapor pressure and cavitation occurs. In the context of water-
hammer analysis, this is known as “water column separation,” and is of particular
concern because the violent collapse of the cavity can cause severe structural damage
(see, for example, Martin 1978). Furthermore, the occurrence of water column sepa-
ration can trigger a series of cavity formations and collapses, resulting in a series of
impulsive loads on the structure. The possibility of water column separation can be
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tracked by following the instantaneous pressure. To proceed beyond this point requires
a procedure to incorporate a cavity in the waterhammer calculation using the method
of characteristics. A number of authors (for example, Tanahashi and Kasahara 1969,
Weyler et al. 1971, Safwat and van der Polder 1973) have shown that this is possible.
However the calculated results after the first collapse can deviate substantially from
the observations. This is probably due to the fact that the first cavity is often a single,
coherent void. This will shatter into a cloud of smaller bubbles as a result of the vio-
lence of the first collapse. Subsequently, one is dealing with a bubbly medium whose
wave propagation speeds may differ significantly from the acoustic speed assumed
in the analytical model. Other studies have shown that qualitatively similar changes
in the water-hammer behavior occur when gas bubbles form in the liquid as a result
of dissolved gas coming out of solution (see, for example, Wiggert and Sundquist
1979).

In many time domain analyses, turbomachines are treated by assuming that the
temporal rates of change are sufficiently slow that the turbomachine responds qua-
sistatically, moving from one steady state operating point to another. Consequently, if
points A and B lie at inlet to and discharge from the turbomachine then the equations
relating the values at A and B would be

Op=0a=0 (9.25)
p=hy+H(Q) (9.26)

where H (Q) is the head rise across the machine at the flow rate, Q. Data presented
later will show that the quasistatic assumption is only valid for rates of change less
than about one-tenth the frequency of shaft rotation. For frequencies greater than this,
the pump dynamics become important (see section 9.13).

For more detailed accounts of the methods of characteristics the reader is referred
to Streeter and Wylie (1967), or any modern text on numerical methods. Furthermore,
there are a number of standard codes available for time domain analysis of transients
in hydraulic systems, such as that developed by Amies, Levek and Struesseld (1977).
The methods work well so long as one has confidence in the differential equations and
models which are used. In other circumstances, such as occur in two-phase flow, in
cavitating flow, or in the complicated geometry of a turbomachine, the time domain
methods may be less useful than the alternative frequency domain methods to which
we now turn.

9.5 Frequency Domain Methods

When the quasistatic assumption for a device like a pump or turbine becomes ques-
tionable, or when the complexity of the fluid or the geometry makes the construction
of a set of differential equations impractical or uncertain, then it is clear that experi-
mental information on the dynamic behavior of the device is necessary. In practice,
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such experimental information is most readily obtained by subjecting the device to
fluctuations in the flow rate or head for a range of frequencies, and measuring the fluc-
tuating quantities at inlet and discharge. Such experimental results will be presented
later. For present purposes it is sufficient to recognize that one practical advantage
of frequency domain methods is the capability of incorporation of experimentally
obtained dynamic information and the greater simplicity of the experiments required
to obtain the necessary dynamic data. Another advantage, of course, is the core of
fundamental knowledge that exists regarding such methodology (see, for example,
Pipes 1940, Hennyey 1962, Paynter 1961, Brown 1967). As stated earlier, the dis-
advantage is that the methods are limited to small linear perturbations in the flow
rate. When the perturbations are linear, Fourier analysis and synthesis can be used to
convert from transient data to individual frequency components and vice versa. All
the dependent variables such as the mean velocity, u, mass flow rate, m, pressure, p,
or total pressure, p’, are expressed as the sum of a mean component (denoted by an
overbar) and a complex fluctuating component (denoted by a tilde) at a frequency, w,
which incorporates the amplitude and phase of the fluctuation:

p(s,) = p(s) + Re | p(s,00e!”" | 9.27)
P75, = 5 () + Re |57 (s, )¢/} (9.28)
m(s,1) = mi(s) + Re {%(s,w)ejw’} (9.29)

where j is (— 1)% and Re denotes the real part. Since the perturbations are assumed
linear (|it| < u,|m| < m, etc.), they can be readily superimposed, so a summation
over many frequencies is implied in the above expressions. In general, the perturbation
quantities will be functions of the mean flow characteristics as well as position, s, and
frequency, w.

We should note that there do exist a number of codes designed to examine the
frequency response of hydraulic systems using frequency domain methods (see, for
example, Amies and Greene 1977).

9.6 Order of the System

The first step in any unsteady flow analysis is to subdivide the system into compo-
nents; the points separating two (or more) components will be referred to as system
nodes. Typically, there would be nodes at the inlet and discharge flanges of a pump.
Having done this, it is necessary to determine the order of the system, N, and this
can be accomplished in one of several equivalent ways. The order of the system is
the minimum number of independent fluctuating quantities which must be specified
at a system node in order to provide a complete description of the unsteady flow at
that location. It is also equal to the minimum number of independent, simultaneous
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first order differential equations needed to describe the fluid motion in, say, a length
of pipe. In this summary we shall confine most of our discussion to systems of order
two in which the dependent variables are the mass flow rate and either the pressure or
the total head. This includes most of the common analyses of hydraulic systems. It is,
however, important to recognize that order two systems are confined to

1. Incompressible flows at the system nodes, definable by pressure (or head), and
flow rate.

2. Barotropic compressible flows in which, p(p), so only the pressure (or head) and
flow rate need be specified at system nodes. This category also includes those
flexible structures for water-hammer analysis in which the local area is a function
only of the local pressure. If, on the other hand, the local area depends on the area
and the pressure elsewhere, then the system is of order 3 or higher.

3. Two-phase flows at the system nodes that can be represented by a homogeneous
flow model that neglects the relative velocity between the phases. Any of the more
accurate models that allow relative motion produce higher order systems.

Note that the order of the system can depend on the choice of system nodes. Con-
sequently, an ideal evaporator or a condenser can be incorporated in an order two
system provided the flow at the inlet node is single-phase (of type 2) and the flow at
the discharge node also single-phase. A cavitating pump or turbine also falls within
this category, provided the flow at both the inlet and discharge is pure liquid.

9.7 Transfer Matrices

The transfer matrix for any component or device is the matrix which relates the fluc-
tuating quantities at the discharge node to the fluctuating quantities at the inlet node.
The earliest exploration of such a concept in electrical networks appears to be due to
Strecker and Feldtkeller (1929) while the utilization of the idea in the context of fluid
systems owes much to the pioneering work of Pipes (1940). The concept is the follow-
ing. If the quantities at inlet and discharge are denoted by subscripts i =1 and i =2,
respectively, and, if {g/'},n = 1,2 — N denotes the vector of independent fluctuating
quantities at inlet and discharge for a system of order N, then the transfer matrix, [7],
is defined as

la4} =1T1{a}) (9.30)

It is a square matrix of order N. For example, for an order two system in which the
independent fluctuating variables are chosen to be the total pressure, j' , and the mass
flow rate, m, then a convenient transfer matrix is

{ﬁ{}z[Tn le]{ﬁlT} 931)
s o1 Too | | 1y .
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The words transfer function and transfer matrix are used interchangeably here to
refer to the matrix [7']. In general it will be a function of the frequency, w, of the
perturbations and the mean flow conditions in the device.

The most convenient independent fluctuating quantities for a hydraulic system of
order two are usually

1. Either the pressure, j, or the instantaneous total pressure, ' . Note that these are
related by
)
~T ~ UL ~
=p+7p+puu+gzp (9.32)
where p is the mean density, p is the fluctuating density which is barotropically
connected to p, and z is the vertical elevation of the system node. Neglecting the
0 terms as is acceptable for incompressible flows
~T _ =~ J—
p =p+puu (9.33)
2. Either the velocity, i, the volume flow rate, Aii +iiA, or the mass flow rate,
i = pAil + pilA + iAp. Incompressible flow at a system node in a rigid pipe
implies

m=pAu (9.34)

The most convenient choices are { 5,7} or {p”, 1}, and, for these two vectors, we
will respectively use transfer matrices denoted by [7*] and [T'], defined as

{5122}:[ *]{5111}; {,%Z}—[T]{le} (9.35)

If the flow is incompressible and the cross-section at the nodes is rigid, then the [7*]
and [7'] matrices are clearly connected by

Ui u Uy Uy
T = Ty, T ;o Tp=T)——T +—T),— ——T,
11 11+ 21 =1y “+A2 27 4 A, 2
uj
Ty =T5; T22=T2§—A—1T2*1 (9-36)

and hence one is readily constructed from the other. Note that the determinants of the
two matrices, [T] and [T*], are identical.
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9.8 Distributed Systems

In the case of a distributed system such as a pipe, it is also appropriate to define a
matrix [ F] (see Brown 1967) so that

d
o 1§"} = -[F$)1{3"} (9.37)

Note that, apart from the frictional term, the equations 9.12 and 9.13 for flow in a
pipe will lead to perturbation equations of this form. Furthermore, in many cases the
frictional term is small, and can be approximated by a linear term in the perturbation
equations; under such circumstances the frictional term will also fit into the form
given by equation 9.37.

When the matrix [ F] is independent of location, s, the distributed system is called
a “uniform system” (see section 9.10). For example, in equations 9.12 and 9.13, this
would require p, ¢, a, f and Ag to be approximated as constants (in addition to the
linearization of the frictional term). Under such circumstances, equation 9.37 can be
integrated over a finite length, £, and the transfer matrix [7T'] of the form 9.35 becomes

[T]=e FK (9.38)

where e!F1 is known as the “transmission matrix.” For a system of order two, the

explicit relation between [T] and [F] is

Th=jFn (e_jw —e_jM)/()»z — A1)
+ (Xze_jwZ - Kle_jkzz“]) /(A2 — A1)
Tio=jFi2 (e_jm - e_jm) /(A2 — A1)
T = jFy <e_j)”21Z —e_j)"lz) /(A2 — A1)
T =jF» (e_jm - e_jm) /(A2 — A1)

+ (xze*ﬁﬂ —Ale*ﬂl’f) /(g — A1) (9.39)
where A1, 1, are the solutions of the equation
A+ jA(F11+ Fap) — (Fi1 Fap — Fi2F1) =0 (9.40)

Some special features and properties of these transfer functions will be explored in
the sections which follow.
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9.9 Combinations of Transfer Matrices

When components are connected in series, the transfer matrix for the combination is
clearly obtained by multiplying the transfer matrices of the individual components
in the reverse order in which the flow passes through them. Thus, for example, the
combination of a pump with a transfer matrix, [T A], followed by a discharge line
with a transfer matrix, [7 B], would have a system transfer matrix, [T S], given by

[TS]=[TB][TA] (9.41)

The parallel combination of two components is more complicated and does not
produce such a simple result. Issues arise concerning the relations between the pres-
sures of the inlet streams and the relations between the pressures of the discharge
streams. Often it is appropriate to assume that the branching which creates the two
inlet streams results in identical fluctuating total pressures at inlet to the two com-
ponents, ﬁlT. If, in addition, mixing losses at the downstream junction are neglected,
so that the fluctuating total pressure, ﬁZT , can be equated with the fluctuating total
pressure at discharge from the two components, then the transfer function, [T S], for
the combination of two components (order two transfer functions denoted by [T A]
and [T B]) becomes

TSu=TAnTBi+TBnTA12)/(TA2+TB12)
TS12=TAnTB12/(TA12+TB12)
TS =TAxn+TBx
—(TAn —TB1)(TAx—TBx»)/(TA2+TB12)
TSy =(TAnTBi12+TBx»TA)/(TAn+TBi2) (9.42)

On the other hand, the circumstances at the junction of the two discharge streams
may be such that the fluctuating static pressures (rather than the fluctuating total
pressures) are equal. Then, if the inlet static pressures are also equal, the combined
transfer matrix, [7'S*], is related to those of the two components ([7A*] and [T B*])
by the same relations as given in equations 9.42. Other combinations of choices are
possible, but will not be detailed here.

Using the above combination rules, as well as the relations 9.36 between the [T']
and [T =] matrices, the transfer functions for very complicated hydraulic networks can
be systematically synthesized.

9.10 Properties of Transfer Matrices

Transfer matrices (and transmission matrices) have some fundamental properties that
are valuable to recall when constructing or evaluating the dynamic properties of a
component or system.
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We first identify a “uniform” distributed component as one in which the differ-
ential equations (for example, equations 9.12 and 9.13 or 9.37) governing the fluid
motion have coefficients which are independent of position, s. Then, for the class of
systems represented by the equation 9.37, the matrix [F] is independent of s. For a
system of order two, the transfer function [7'] would take the explicit form given by
equations 9.39.

To determine another property of this class of dynamic systems, consider that
the equations 9.37 have been manipulated to eliminate all but one of the unknown
fluctuating quantities, say ¢'. The resulting equation will take the form

N -

4" 1

Y a5 =0 (9.43)
ds™

n=0

In general, the coefficients a,, (s), n =0 — N, will be complex functions of the mean
flow and of the frequency. It follows that there are N independent solutions which,
for all the independent fluctuating quantities, may be expressed in the form

{3"} =[B(s)]{A) (9.44)
where [ B(s)] is a matrix of complex solutions and { A} is a vector of arbitrary complex

constants to be determined from the boundary conditions. Consequently, the inlet and
discharge fluctuations denoted by subscripts 1 and 2, respectively, are given by

{a1}=[BG6sD{A}; {35} =[B(s2)]{A} (9.45)
and therefore the transfer function
[T]=[B(s)][B(s)]™! (9.46)

Now for a uniform system, the coefficients a, and the matrix [B] are independent
of s. Hence the equation 9.43 has a solution of the form

[B(s)]=[C][E] 9.47)
where [C] is a known matrix of constants, and [E] is a diagonal matrix in which
Epp = el (9.48)

where y,,, n =1 to N, are the solutions of the dispersion relation

N
Zanyn =0 (9.49)
n=0
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Note that y,, are the wavenumbers for the N types of wave of frequency, w, which can
propagate through the uniform system. In general, each of these waves has a distinct
wave speed, ¢, given by ¢, = —w/y,. It follows from equations 9.47, 9.48, and 9.46
that the transfer matrix for a uniform distributed system must take the form

[T]=[CI[E*][C]™ (9.50)
where [ E*] is a diagonal matrix with

Ef =eltnt (9.51)
and £ = sy — 51.

An important diagnostic property arises from the form of the transfer matrix, 9.50,
for a uniform distributed system. The determinant, Dy, of the transfer matrix [7T'] is

Dr =exp{j(y1+y2+---+vyn) ¥} (9.52)

Thus the value of the determinant is related to the sum of the wavenumbers of
the N different waves which can propagate through the uniform distributed system.
Furthermore, if all the wavenumbers, y;,, are purely real, then

|Dr| =1 (9.53)

The property that the modulus of the determinant of the transfer function is unity will

be termed “quasi-reciprocity” and will be discussed further below. Note that this will

only be the case in the absence of wave damping when y,, and ¢, are purely real.
Turning now to another property, a system is said to be “reciprocal” if, in the matrix

[Z] defined by
~T ~
P mi
=[Z 9.54
{ﬁzT } : ]{—ﬁlz} 39

the transfer impedances Z15 and Z; are identical (see Brown 1967 for the general-
ization of this property in systems of higher order). This is identical to the condition
that the determinant, D7, of the transfer matrix [7'] be unity:

Dr=1 (9.55)

We shall see that a number of commonly used components have transfer functions
which are reciprocal. In order to broaden the perspective we have introduced the
property of “quasi-reciprocity” to signify those components in which the modulus of
the determinant is unity or

|Dr| =1 (9.56)



9.10 Properties of Transfer Matrices 187

We have already noted that uniform distributed components with purely real
wavenumbers are quasi-reciprocal. Note that a uniform distributed component
will only be reciprocal when the wavenumbers tend to zero, as, for example, in
incompressible flows in which the wave propagation speeds tend to infinity.

By utilizing the results of section 9.9 we can conclude that any series or parallel
combination of reciprocal components will yield a reciprocal system. Also a series
combination of quasi-reciprocal components will be quasi-reciprocal. However it is
not necessarily true that a parallel combination of quasi-reciprocal components is
quasi-reciprocal.

An even more restrictive property than reciprocity is the property of “symmetry.”
A “symmetric” component is one that has identical dynamical properties when turned
around so that the discharge becomes the inlet, and the directional convention of the
flow variables is reversed (Brown 1967). Then, in contrast to the regular transfer
matrix, [T'], the effective transfer matrix under these reversed circumstances is [T R]
where

—mj —m3

=T =T
{p£ }z[TR]{p% } (9.57)
and, comparing this with the definition 9.31, we observe that

TR\ =Tx/Dr; TRip=Tn/Dr
TRy1 =T21/Dr; TRx=T/Dr (9.58)

Therefore symmetry, [T] = [T R], requires
Tii=T» and Dr=1 (9.59)

Consequently, in addition to the condition, D7 = 1, required for reciprocity, symmetry
requires 711 = T»3.

As with the properties of reciprocity and quasi-reciprocity, it is useful to consider
the property of a system comprised of symmetric components. Note that accord-
ing to the combination rules of section 9.9, a parallel combination of symmetric
components is symmetric, whereas a series combination may not retain this prop-
erty. In this regard symmetry is in contrast to quasi-reciprocity in which the reverse
is true.

In the case of uniform distributed systems, Brown (1967) shows that symmetry
requires

Fii=F»p=0 (9.60)
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so that the solution of the equation 9.40 for A is A = £A™ where A* = (F21F12)% is
known as the “propagation operator” and the transfer function 9.39 becomes

Ti1 = Top = coshA*¢
Ti» = Zc sinhA*¢
To1 = Zg ' sinh A*¢ 9.61)

where Z¢ = (F12/F21)% = (le/Tzl)% is known as the “characteristic impedance.”

In addition to the above properties of transfer functions, there are also properties
associated with the net flux of fluctuation energy into the component or system.
These will be elucidated after we have examined some typical transfer functions
for components of hydraulic systems.

9.11 Some Simple Transfer Matrices

The flow of an incompressible fluid in a straight, rigid pipe will be governed by the
following versions of equations 9.6 and 9.7:

9
P _p (9.62)
as
apT pfulul ou
— X 9.63
ds 4a o (9-63)

If the velocity fluctuations are small compared with the mean velocity denoted by U
(positive in direction from inlet to discharge), and the term u|u| is linearized, then the
above equations lead to the transfer function

[T]=[ (1) _(Rtij) ] (9.64)

where (R + jwL) is the “impedance” made up of a “resistance,” R, and an “inertance,”
L, given by

£ £
r=JYt [ _¢
2aA A

(9.65)

where A, a, and £ are the cross-sectional area, radius, and length of the pipe. A number
of different pipes in series would then have

fiti ¢
R= . L=) - 9.66
in:2a A¥ Zl,:Ai 060

1
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where Q is the mean flow rate. For a duct of non-uniform area

¢ ¢
[ Swds s
k= Q/o 2a) A2 - —/0 A0) (9.67)

Note that all such ducts represent reciprocal and symmetric components.

A second, common hydraulic element is a simple “compliance,” exemplified by
an accumulator or a surge tank. It consists of a device installed in a pipeline and
storing a volume of fluid, V,, which varies with the local pressure, p, in the pipe. The
compliance, C, is defined by

dv,
C=p—Lt (9.68)
dp
In the case of a gas accumulator with a mean volume of gas, Vg, which behaves
according to the polytropic index, k, it follows that

C=pVg/kp (9.69)

where p is the mean pressure level. In the case of a surge tank in which the free surface
area is Ag, it follows that

C=As/g (9.70)
The relations across such compliances are
iy =ri — joCp's pl =p3 =p' (9.71)

Therefore, using the definition 9.35, the transfer function [T'] becomes

1 0
[T1=[ jeC 1 } (9.72)

Again, this component is reciprocal and symmetric, and is equivalent to a capacitor
to ground in an electrical circuit.

Systems made up of lumped resistances, R, inertances, L, and compliances, C,
will be termed LRC systems. Individually, all three of these components are both
reciprocal and symmetric. It follows that any system comprised of these components
will also be reciprocal (see section 9.10); hence all LRC systems are reciprocal. Note
also that, even though individual components are symmetric, LRC systems are not
symmetric since series combinations are not, in general, symmetric (see section 9.10).

An even more restricted class of systems are those consisting only of inertances,
L, and compliances, C. These systems are termed “dissipationless” and have some
special properties (see, for example, Pipes 1963) though these are rarely applicable in
hydraulic systems.
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As a more complicated example, consider the frictionless ( f = 0) compressible
flow in a straight uniform pipe of mean cross-sectional area, Ag. This can readily be
shown to have the transfer function

T}, = (cos® + jM sin0) e/M

T}y =—jUsinge/’™ [ AgM

TSy = —jAoM(1 — M?)sin0e/™M [T

5, = (cos® — jMsin@) e/ (9.73)

where U is the mean fluid velocity, M = U /c is the Mach number, and 6 is a reduced
frequency given by

0 =wl/c(l—M?) (9.74)

Note that all the usual acoustic responses can be derived quite simply from this transfer
function. For example, if the pipe opens into reservoirs at both ends, so that appropriate
inlet and discharge conditions are p; = p, = 0, then the transfer function, equation
9.35, can only be satisfied with m # 0 if T}, = 0. According to equations 9.73, this
can only occur if sinf =0, 0 = nm or

w=nwc(l—M?) /¢ 9.75)

which are the natural organ-pipe modes for such a pipe. Note also that the determinant
of the transfer matrix is

Dy = Dp» = ¢2M (9.76)

Since no damping has been included, this component is an undamped distributed
system, and is therefore quasi-reciprocal. At low frequencies and Mach numbers, the
transfer function 9.73 reduces to

jwl
h—1;, T5— _Jes
Ao
Aol
Ty — —j <—g> w; Tyh—1 (9.77)
c

and so consists of an inertance, £/Ao, and a compliance, Aol/c?.
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When friction is included (as is necessary in most water-hammer analyses) the
transfer function becomes

T}, = (k1" = kaek?) / (k1 — k2)

T = —U(j6 + f*) (ek‘ . ek2> /AoM (ky — k2)

T} = —j0AcM(1 — M?) (ekl =) 0 (1~ ko)

T3 = (klek2 - kzekl) / (k1 — k2) (9.78)
in which f* = fe¢M/2a(1 — M?) and k1, k, are the solutions of

kK2 —kMQjO+ f*)— jo(l —M?*)(jo+ f*)=0 9.79)
The determinant of this transfer matrix [7*] is

Dy» =itk (9.80)

Note that this component is only quasi-reciprocal in the undamped limit, f — 0.

9.12 Fluctuation Energy Flux

It is clearly important to be able to establish the net energy flux into or out of a hydraulic
system component (see Brennen and Braisted 1980). If the fluid is incompressible,
and the order two system is characterized by the mass flow rate, m, and the total
pressure, p’, then the instantaneous energy flux through any system node is given by
mpT / p where the density is assumed constant. Substituting the expansions 9.28, 9.29
for pT and m, it is readily seen that the mean flux of energy due to the fluctuations,
E, is given by

Ezi{nafaﬂrn%ﬁT} 9.81)
4p

where the overbar denotes a complex conjugate. Superimposed on E are fluctuations
in the energy flux whose time-average value is zero, but we shall not be concerned
with those fluctuations. The mean fluctuation energy flux, E, is of more consequence
in terms, for example, of evaluating stability. It follows that the net flux of fluctuation
energy into a component from the fluid is given by

1 ~ ~ ~ ~ ~ o~ ~ ~
El—EzzAE:%[mlplT—}—mlplT—mszT—mzpzT] (9.82)
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and when the transfer function form 9.31 is used to write this in terms of the inlet
fluctuating quantities

1 ST = A ~ = = .z o~
AE= [—FlplTplT — Tyt + (1= Taying pT + (1 — F3)m1p1T] (9.83)
where
Iy =TT + T Th
I =TT+ T2 T
T3=TiTn+TaTi (9.84)
and
T3> = D7+ T, (9.85)

Using the above relations, we can draw the following conclusions:

1. A component or system which is “conservative” (in the sense that A £ = 0 under
all circumstances, whatever the values of ﬁlT and m1) requires that

r=r,=0 TI3=1 (9.86)

and these in turn require not only that the system or component be “quasi-
reciprocal” (| Dr| = 1) but also that

Tn_ _To_ Tn_Tn_ |

S | e (9.87)
Ti T .0, T», Dr

Such conditions virtually never occur in real hydraulic systems, though any com-
bination of lumped inertances and compliances does constitute a conservative
system. This can be readily demonstrated as follows. An inertance or compliance
has D7 =1, purely real 71, and T, so that T7; = T1; and Thy = Thy, and purely
imaginery T>; and 71, so that T»| = —T5; and T12 = —Ty2. Hence individual
inertances or compliances satisfy equations 9.86 and 9.87. Furthermore, from
the combination rules of section 9.9, it can readily be seen that all combination
of components with purely real 77; and 7> and purely imaginery 7>1 and 71>
will retain the same properties. Consequently, any combination of inertance and
compliance satisfies equations 9.86 and 9.87 and is conservative.

2. Acomponent or system will be considered “completely passive” if AE is positive
for all possible values of 7] and ﬁlT. This implies that a net external supply of
energy to the fluid is required to maintain any steady state oscillation. To find
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the characteristics of the transfer function which imply “complete passivity” the
expression 9.83 is rewritten in the form

~T,2
_|p1|

4p

AE

[T —Moxi + (1 = T3)x + (1 — ['3)x] (9.88)

where x =/ ﬁlT. It follows that the sign of A E is determined by the sign of the
expression in the square brackets. Moreover, if I'; < 0, it is readily seen that this
expression has a minimum and is positive for all x if

> |1—T3)7 (9.89)

which, since I'; < 0, implies I'; < 0. It follows that necessary and sufficient
conditions for a component or system to be completely passive are

<0 and G<0 (9.90)
where
G=|1-T3?=TiT2=|Dr)?+1—2Re{l'3} (9.91)

The conditions 9.90 also imply I'> < 0. Conversely a “completely active” com-
ponent or system which always has AE < 0 occurs if and only if ' > 0 and
G < 0 which imply I'; > 0. These properties are not, of course, the only possi-
bilities. A component or system which is not completely passive or active could
be “potentially active.” That is to say, A E could be negative for the right combi-
nation of m and ﬁlT, which would, in turn, depend on the rest of the system to
which the particular component or system is attached. Since I'| is almost always
negative, it transpires that most components are either completely passive or
potentially active, depending on the sign of the quantity, G, which will there-
fore be termed the “dynamic activity.” These circumstances can be presented
graphically as shown in figure 9.3.

In practice, of course, both the transfer function, and properties like the dynamic
activity, G, will be functions not only of frequency but also of the mean flow condi-
tions. Hence the potential for system instability should be evaluated by tracking the
graph of G against frequency, and establishing the mean flow conditions for which
the quantity G becomes negative within the range of frequencies for which transfer
function information is available.

While the above analysis represents the most general approach to the stability
of systems or components, the results are not readily interpreted in terms of com-
monly employed measures of the system or component characteristics. It is therefore
instructive to consider two special subsets of the general case, not only because of the
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Figure 9.3. Schematic of the conditions for completely active, completely passive and potentially active
components or systems.

simplicity of the results, but also because of the ubiquity of these special cases. Con-
sider first a system or component that discharges into a large, constant head reservoir,
so that [72T = 0. It follows from the expression 9.82 that

|y |?

2p

AE = Re{pi /m1} (9.92)
Note that AE is always purely real and that the sign only depends on the real part of
the “input impedance”

Pl iy = =T/ T (9.93)

Consequently a component or system with a constant head discharge will be
dynamically stable if the “input resistance” is positive or

Re{—le/TU} >0 (9.94)

This relation between the net fluctuation energy flux, the input resistance, and the
system stability, is valuable because of the simplicity of its physical interpretation. In
practice, the graph of input resistance against frequency can be monitored for changes
with mean flow conditions. Instabilities will arise at frequencies for which the input
resistance becomes negative.

The second special case is that in which the component or system begins with a
constant head reservoir rather than discharging into one. Then

| |* -
AE="2 Re{—p{/mg} (9.95)
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and the stability depends on the sign of the real part of the “discharge impedance”
—p3 [y =—Ti [T (9.96)

Thus a constant head inlet component or system will be stable when the “discharge
resistance” is positive or

Re {—le/Tzz} >0 (9.97)

In practice, since 771 and T3 are close to unity for many components and systems,
both the condition 9.94 and the condition 9.97 reduce to the approximate condition that
the system resistance, Re{—T12}, be positive for system stability. While not always
the case, this approximate condition is frequently more convenient and more readily
evaluated than the more precise conditions detailed above and given in equations 9.94
and 9.97. Note specifically, that the system resistance can be obtained from steady
state operating characteristics; for example, in the case of a pump or turbine, it is
directly related to the slope of the head-flow characteristic and instabilities in these
devices which result from operation in a regime where the slope of the characteristic
is positive and Re{—T7>} is negative are well known (Greitzer 1981) and have been
described earlier (section 8.6).

It is, however, important to recognize that the approximate stability criterion
Re{—T12} > 0, while it may provide a useful guideline in many circumstances, is
by no means accurate in all cases. One notable and important case in which this
criterion is inaccurate is the auto-oscillation phenomenon described in section 8.7.
This is not the result of a positive slope in the head-flow characteristic, but rather
occurs where this slope is negative and is caused by cavitation-induced changes in the
other elements of the transfer function. This circumstance will be discussed further in
section 9.14.

9.13 Non-Cavitating Pumps

Consider now the questions associated with transfer functions for pumps or other
turbomachines. In the simple fluid flows of section 9.11 we were able to utilize the
known equations governing the flow in order to construct the transfer functions for
those simple components. In the case of more complex fluids or geometries, one cannot
necessarily construct appropriate one-dimensional flow equations, and therefore must
resort to results derived from more global application of conservation laws or to
experimental measurements of transfer matrices. Consider first the transfer matrix,
[T P], for incompressible flow through a pump (all pump transfer functions will be
of the [T'] form defined in equation 9.35) which will clearly be a function not only
of the frequency, w, but also of the mean operating point as represented by the flow
coefficient, ¢, and the cavitation number, o. At very low frequencies one can argue
that the pump will simply track up and down the performance characteristic, so that,
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for small amplitude perturbations and in the absence of cavitation, the transfer function
becomes

1 daph)
dm
[TP]= (9.98)
0 1

where d(ApT)/dm is the slope of the steady state operating characteristic of total
pressure rise versus mass flow rate. Thus we define the pump resistance, Rp =
—d(ApT)/dm, where Rp is usually positive under design flow conditions, but may
be negative at low flow rates as discussed earlier (section 8.6). At finite frequencies,
the elements 7 P>; and T Py, will continue to be zero and unity respectively, since
the instantaneous flow rate into and out of the pump must be identical when the fluid
and structure are incompressible and no cavitation occurs. Furthermore, 7 P1; must
continue to be unity since, in an incompressible flow, the total pressure differences
must be independent of the level of the pressure. It follows that the transfer function
at higher frequencies will become

1 —Ip
[TP]= [ 0 1 i| (9.99)
where the pump impedence, /p, will, in general, consist of a resistive part, Rp, and
a reactive part, jwLp. The resistance, Rp, and inertance, Lp, could be functions
of both the frequency, w, and the mean flow conditions. Such simple impedance
models for pumps have been employed, together with transfer functions for the suction
and discharge lines (equation 9.73), to model the dynamics of pumping systems.
For example, Dussourd (1968) used frequency domain methods to analyse pulsation
problems in boiler feed pump systems. More recently, Sano (1983) used transfer
functions to obtain natural frequencies for pumping systems that agree well with
those observed experimentally.

The first fundamental investigation of the dynamic response of pumps seems to
have been carried out by Ohashi (1968) who analyzed the oscillating flow through a
cascade, and carried out some preliminary experimental investigations on a centrifu-
gal pump. These studies enabled him to evaluate the frequency at which the response
of the pump would cease to be quasistatic (see below). Fanelli (1972) appears to
have been the first to explore the nature of the pump transfer function, while the first
systematic measurements of the impedance of a noncavitating centrifugal pump are
those of Anderson, Blade, and Stevans (1971). Typical resistive and reactive compo-
nent measurements from the work of Anderson, Blade, and Stevans are reproduced in
figure 9.4. Note that, though the resistance approaches the quasistatic value at low fre-
quencies, it also departs significantly from this value at higher frequencies. Moreover,
the reactive part is only roughly linear with frequency. The resistance and inertance are
presented again in figure 9.5, where they are compared with the results of a dynamic
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Figure 9.4. Impedance measurements made by Anderson, Blade, and Stevans (1971) on a centrifugal
pump (impeller diameter of 18.9 c¢m) operating at a flow coefficient of 0.442 and a speed of 3000 rpm.
The real or resistive part of (—777) and the imaginary or reactive part of (777) are plotted against the
frequency of the perturbation.

model proposed by Anderson, Blade and Stevans. In this model, each pump impeller
passage is represented by a resistance and an inertance, and the volute by a series of
resistances and inertances. Since each impeller passage discharges into the volute at
different locations relative to the volute discharge, each impeller passage flow expe-
riences a different impedance on its way to the discharge. This results in an overall
pump resistance and inertance that are frequency dependent as shown in figure 9.5.
Note that the comparison with the experimental observations (which are also included
in figure 9.5) is fair, but not completely satisfactory. Moreover, it should be noted,
that the comparison shown is for a flow coefficient of 0.442 (above the design flow
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Figure 9.5. Typical inertance and resistance values from the centrifugal pump data of figure 9.4. Data do
not include the diffuser contribution. The lines correspond to analytical values obtained as described in
the text.

coefficient), and that, at higher flow coefficients, the model and experimental results
exhibited poorer agreement.

Subsequent measurements of the impedance of non-cavitating axial and mixed
flow pumps by Ng and Brennen (1978) exhibit a similar increase in the resistance
with frequency (see next section). In both sets of dynamic data, it does appear that
significant departure from the quasistatic values can be expected when the reduced
frequency, (frequency/rotation frequency) exceeds about 0.02 (see figures 9.5 and
9.6). This is roughly consistent with the criterion suggested by Ohashi (1968) who
concluded that non-quasistatic effects would occur above a reduced frequency of
0.05ZRr¢/ cos B. For the inducers of Ng and Brennen, Ohashi’s criterion yields values
for the critical reduced frequency of about 0.015.

9.14 Cavitating Inducers

In the presence of cavitation, the transfer function for a pump or inducer will be
considerably more complicated than that of equation 9.99. Even at low frequencies,
the values of T’ P11 will become different from unity, because the head rise will change
with the inlet total pressure, as manifest by the nonzero value of d(ApT)/ dplT ata
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Figure 9.6. Typical transfer functions for a cavitating inducer obtained by Brennen et al. (1982) for a
10.2 cm diameter inducer (Impeller VI) operating at 6000 »pm and a flow coefficient of ¢ = 0.07. Data
is shown for four different cavitation numbers, o = (A) 0.37, (C) 0.10, (D) 0.069, (G) 0.052, and (H)
0.044. Real and imaginary parts are denoted by the solid and dashed lines respectively. The quasistatic
pump resistance is indicated by the arrow (adapted from Brennen ez al. 1982).

given mass flow rate, m. Furthermore, the volume of cavitation, V¢ ( plT,ml), will
vary with both the inlet total pressure, plT (or N PSH or cavitation number), and with
the mass flow rate, m (or with angle of incidence), so that

d(ApT) dApT
1+ dplr |m1 dm, |p1T
[TP]= (9.100)

. dVe . dVe
]prdplT Im) 1+]w'0Ldm1 |171T

Brennen and Acosta (1973, 1975, 1976) identified this quasistatic or low frequency
form for the transfer function of a cavitating pump, and calculated values of the
cavitation compliance, —pr (dVc/d plT )m, and the cavitation mass flow gain factor,
—pr(dVe/dmy) Pl using the cavitating cascade solution discussed in section 7.10.
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Both the upper limit of frequency at which this quasistatic approach is valid and the
form of the transfer function above this limit cannot readily be determined except
by experiment. Though it was clear that experimental measurements of the dynamic
transfer functions were required, these early investigations of Brennen and Acosta
did highlight the importance of both the compliance and the mass flow gain factor in
determining the stability of systems with cavitating pumps.

Ng and Brennen (1978) and Brennen et al. (1982) conducted the first experiments
to measure the complete transfer function for cavitating inducers. Typical transfer
functions are those for the 10.2 ¢m diameter Impeller VI (see section 2.8), whose
noncavitating steady state performance was presented in figure 7.15. Transfer matrices
for that inducer are presented in figure 9.6 as a function of frequency (up to 32 Hz),
for a speed of 6000 rpm, a flow coefficient ¢; = 0.07 and for five different cavitation
numbers ranging from data set A that was taken under noncavitating conditions, to
data set C that showed a little cavitation, to data set H that was close to breakdown. The
real and imaginary parts are represented by the solid and dashed lines, respectively.
Note, first, that, in the absence of cavitation (Case A), the transfer function is fairly
close to the anticipated form of equation 9.99 in which T P11 =T Py =1, T P, =0.
Also, the impedance (7T P;7) is comprised of an expected inertance (the imaginary
part of T Py; is linear in frequency) and a resistance (real part of —7 Pj,) which is
consistent with the quasistatic resistance from the slope of the head rise characteristic
(shown by the arrow in figure 9.6 at T P12 Rr1/ 2 = 1.07). The resistance appears to
increase with increasing frequency, a trend which is consistent with the centrifugal
pump measurements of Anderson, Blade and Stevans (1971) which were presented in
figure 9.5.

It is also clear from figure 9.6 that, as the cavitation develops, the transfer function
departs significantly from the form of equation 9.99. One observes that 7 P;; and
T Py depart from unity, and develop nonzero imaginary parts that are fairly linear
with frequency. Also T P>; becomes nonzero, and, in particular, exhibits a compliance
which clearly increases with decreasing cavitation number. All of these changes mean
that the determinant, Dt p, departs from unity as the cavitation becomes more exten-
sive. This is illustrated in figure 9.7, which shows the determinant corresponding to
the data of figure 9.6. Note that Drp ~ 1 for the non-cavitating case A, but that it
progressively deviates from unity as the cavitation increases. We can conclude that
the presence of cavitation can cause a pump to assume potentially active dynamic
characteristics when it would otherwise be dynamically passive.

Polynomials of the form

n*
TPj=) Aj(jo) (9.101)
n=0

were fitted to the experimental transfer function data using values of n* of 3 or 5. To
illustrate the result of such curve fitting we include figure 9.8, which depicts the result
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of curve fitting figure 9.6. We now proceed to examine several of the coefficients A,;;
that are of particular interest (note that Ag11 = Ag22 =1, Agz1 = 0 forreasons described
earlier). We begin with the inertance, —A 112, which is presented nondimensionally
in figure 9.9. Though there is significant scatter at the lower cavitation numbers, the
two different sizes of inducer pump appear to yield similar inertances. Moreover, the
data suggest some decrease in the inertance with decreasing o. On the other hand,
the corresponding data for the compliance, — A 1,1, which is presented in figure 9.10
seems roughly inversely proportional to the cavitation number. And the same is true
for both the mass flow gain factor, —A13;, and the coefficient that defines the slope
of the imaginary part of T P11, A111; these are presented in figures 9.11 and 9.12,
respectively. All of these data appear to conform to the physical scaling implicit in the
nondimensionalization of each of the dynamic characteristics.

It is also valuable to consider the results of figures 9.9 to 9.12 in the context of an
analytical model for the dynamics of cavitating pumps (Brennen 1978). We present
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ber for two axial inducer pumps (Impellers IV and VI) with the same geometry but different diameters.
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stances as described in figure 9.9.

here a brief physical description of that model, the essence of which is depicted
schematically in figure 9.13, which shows a developed, cylindrical surface within
the inducer. The cavitation is modeled as a bubbly mixture which extends over a
fraction, €, of the length, ¢, of each blade passage before collapsing at a point where
the pressure has risen to a value which causes collapse. The mean void fraction of the
bubbly mixture is denoted by «g. Thus far we have described a flow which is nominally
steady. We must now consider perturbing both the pressure and the flow rate at inlet,
since the relation between these perturbations, and those at discharge, determine the
transfer function. Pressure perturbations at inlet will cause pressure waves to travel
through the bubbly mixture and this part of the process is modeled using a mixture
compressibility parameter, K, to determine that wave speed. On the other hand,
fluctuations in the inlet flow rate produce fluctuations in the angle of incidence which
cause fluctuations in the rate of production of cavitation at inlet. These disturbances
would then propagate down the blade passage as kinematic or concentration waves
which travel at the mean mixture velocity. This process is modeled by a factor of
proportionality, M, which relates the fluctuation in the angle of incidence to the
fluctuations in the void fraction. Neither of the parameters, K or M, can be readily
estimated analytically; they are, however, the two key features in the bubbly flow
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Figure 9.11. The mass flow gain factor, —Aj7>, nondimensionalized as —Ajy>Q2 for the same
circumstances as described in figure 9.9.

model. Moreover they respectively determine the cavitation compliance and the mass
flow gain factor, two of the most important factors in the transfer function insofar as
the prediction of instability is concerned.

The theory yields the following expressions for A111, A112, A121, and Az, at small
dimensionless frequencies (Brennen 1978, 1982):

K
A Q> % {cot Byp1 + @1/ sin” By1 }

AnaRr1 2 —¢ [47 sin® By
A12192/R71 o~ —7TK{€/4

Alzzﬁz—%e{M/qbl — K1/ sin? By} (9.102)

where ¢ =€Zg /R where £ is the axial length of the inducer, and Z is the number
of blades. Evaluation of the transfer function elements can be effected by noting that
the experimental observations suggest € ~ 0.02 /0. Consequently, the A,;; character-
istics from equations 9.102 can be plotted against cavitation number. Typical results
are shown in figures 9.9 through 9.12 for various choices of the two undetermined
parameters K and M. The inertance, A 112, which is shown in figure 9.9, is independent
of K and M. The calculated value of the inertance for these impellers is about 9.2; the
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described in figure 9.9.
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Figure 9.13. Schematic of the bubbly flow model for the dynamics of cavitating pumps (adapted from
Brennen 1978).
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Figure 9.14. Transfer functions for Impellers VI and IV at ¢; = 0.07 calculated from the bubbly flow
model using K = 1.3 and M = 0.8 (adapted from Brennen ef al. 1982).

actual value may be somewhat larger because of three-dimensional geometric effects
that were not included in the calculation (Brennen ez al. 1982). The parameter M only
occurs in Aj22, and it appears from figure 9.11 as though values of this parameter
in the range 0.8 — 0.95 provide the best agreement with the data. Also, a value of
K ~ 1.3 seems to generate a good match with the data of figures 9.10, 9.11, and 9.12.

Finally, since K = 1.3 and M = 0.8 seem appropriate values for these impellers,
we reproduce in figure 9.14 the complete theoretical transfer functions for various
cavitation numbers. These should be directly compared with the transfer func-
tions of figure 9.8. Note that the general features of the transfer functions, and
their variation with cavitation number, are reproduced by the model. The most
notable discrepency is in the real part of 7 P,;; this parameter is, however, usu-
ally rather unimportant in determining the stability of a hydraulic system. Most
important from the point of view of stability predictions, the cavitation compli-
ance and mass flow gain factor components of the transfer function are satisfactorily
modeled.
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9.15 System with Rigid Body Vibration

All of the preceding analysis has assumed that the structure of the hydraulic system is
at rest in some inertial coordinate system. However, there are a number of important
problems in which the oscillation of the hydraulic system itself may play a central role.
For instance, one might seek to evaluate the unsteady pressures and flow rates in a
hydraulic system aboard a vehicle undergoing translational or rotational oscillations.
Examples might be oil or water pumping systems aboard a ship, or the fuel and
hydraulic systems on an aircraft. In other circumstances, the motion of the vehicle
may couple with the propulsion system dynamics to produce instabilities, as in the
simplest of the Pogo instabilities of liquid propelled rocket engines (see section 8.13).

In this section we give a brief outline of how rigid body oscillations of the hydraulic
system can be included in the frequency domain methodology. For convenience we
shall refer to the structure of the hydraulic system as the “vehicle.” There are, of
course, more complex problems in which the deformation of the vehicle is important.
Such problems require further refinement of the methods presented here.

In order to include the rigid body oscillation of the vehicle in the analysis, it is
first necessary to define a coordinate system, x, which is fixed in the vehicle, and
a separate inertial or nonaccelerating coordinate system, x ,. The mean location of
the origin of the x system is chosen to coincide with the origin of the x , system.
The oscillations of the vehicle are then described by stating that the translational and
rotational displacements of the x coordinate system in the x 4, system are respectively
given by

Re {Qef'w’}; Re {Qef'wf} (9.103)

It follows that the oscillatory displacement of any vector point, x, in the vehicle is
given by

Re{@ +é X)_c)ej‘”’} (9.104)

and the oscillatory velocity of that point will be
Re{jw@+é><)_c)efw’} (9.105)
Then, if the steady and oscillatory velocities of the flow in the hydraulic system, and
relative to that system, are given as in the previous sections by u# and & respectively,
it follows that the oscillatory velocity of the flow in the nonaccelerating frame, i 4, is

given by

iy =ii+jod+6xx) (9.106)
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Furthermore, the acceleration of the fluid in the nonaccelerating frame, a 4, is given
by

y=joi —’d— 0 x x +2jod x i (9.107)

The last three terms on the right-hand side are vehicle-induced accelerations of the
fluid in the hydraulic system. It follows that these accelerations will alter the difference
in the total pressure between two nodes of the hydraulic system denoted by subscripts 1
and 2. By integration one finds that the total pressure difference, ( ﬁzT — ﬁ]T), is related
to that which would pertain in the absence of vehicle oscillation, ( ﬁZT — ﬁlT)o, by

33— B =51 — 5o+ pe? @y —x))-d+ sy xx)-8) ©9.108)

where x, and x; are the locations of the two nodes in the frame of reference of the
vehicle.

The inclusion of these acceleration-induced total pressure changes is the first step
in the synthesis of models of this class of problems. Their evaluation requires the input
of the location vectors, x;, for each of the system nodes, and the values of the system
displacement frequency, w, and amplitudes, 4 and 6. In an analysis of the response of
the hydraulic system, the vibration amplitudes, d and 6, would be included as inputs.
In a stability analysis, they would be initially unknown. In the latter case, the system
of equations would need to be supplemented by those of the appropriate feedback
mechanism. An example would be a set of equations giving the unsteady thrust of
an engine in terms of the fluctuating fuel supply rate and pressure and giving the
accelerations of the vehicle resulting from that fluctuating thrust. Clearly a complete
treatment of such problems would be beyond the scope of this book.
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Radial and Rotordynamic Forces

10.1 Introduction

This chapter is devoted to a discussion of the various fluid-induced radial and rotor-
dynamic forces which can occur in pumps and other turbomachines. It has become
increasingly recognized that the reliability and acceptability of modern turbomachines
depend heavily on the degree of vibration and noise which those machines produce
(Makay and Szamody 1978), and that one of the most common sources of vibration is
associated with the dynamics of the shaft and its related components, bearings, seals,
and impellers (Duncan 1966—67, Doyle 1980, Ehrich and Childs 1984). It is clear
that the modern pump designer (see, for example, Ek 1978, France 1986), or turbine
designer (see, for example, Pollman ez al. 1978), must pay particular attention to the
rotordynamics of the shaft to ensure not only that the critical speeds occur at expected
rotational rates, but also that the vibration levels are minimized. It is, however, impor-
tant to note that not all shaft vibrations are caused by rotordynamic instability. For
example, Rosenmann (1965) reports oscillating radial forces on cavitating inducers
that are about 20% of the axial thrust, and are caused by flow oscillations, not rotor-
dynamic oscillations. Also, Marscher (1988) investigated shaft motions induced by
the unsteady flows at inlet to a centrifugal impeller operating below the design flow
rate.

Texts such as Vance (1988) provide background on the methods of rotordynamic
analysis. We focus here only on some of the inputs which are needed for that analy-
sis, namely the forces caused by fluid motion in the bearing, seal, or impeller. One
reason for this emphasis is that these inputs represent, at present, the area of greatest
uncertainty insofar as the rotordynamic analysis is concerned.

We shall attempt to present data from many different sources using a common nota-
tion and a common nondimensionalizing procedure. This background is reviewed in
the next section. Subsequently, we shall examine the known fluid-induced rotordy-
namic effects in hydrodynamic bearings, seals, and other devices. Then the forces
acting on an impeller, both steady radial and rotordynamic forces, will be reviewed
both for centrifugal pumps and for axial flow inducers.

209
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10.2 Notation

The forces that the fluid imparts to the rotor in a plane perpendicular to the axis
of rotation are depicted in figure 10.1, and are decomposed into components in the
directions x and y, where this coordinate system is fixed in the framework of the
pump. The instantaneous forces are denoted by F;'(t), F;‘ (1), and the time-averaged
values of these forces in the stationary frame are denoted by Fg, F(;ky. By definition,
these are the steady forces commonly referred to as the radial forces or radial thrust.
Sometimes it is important to know the axial position of the line of action of these forces.
Alternatively, one can regard the x, y axes as fixed at some convenient axial location.
Then, in addition to the forces, F;(¢) and F. y* (1), the fluid-induced bending moments,
M} (t) and M ;‘ (1), would be required information. The time-averaged moments will
be defined by M, and M(’)ky.

Even if the location of the center of rotation were stationary at the origin of the
xy plane (figure 10.1) the forces F} (z), Fy*(t) and moments M} (1), M;'f (t) could still
have significant unsteady components. For example, rotor-stator interaction could
lead to significant forces on the impeller at the blade passing frequencies. Similarly,
there could be blade passing frequency components in the torque, 7 (¢), and the axial
thrust, as discussed earlier in section 8.2. For simplicity, however, they will not be
included in the present mathematical formulation.

IMPELLER
F*_ CENTER

ORBIT OF AXIS
OF ROTATION

.
> F - X

L FIXED

CENTER

Figure 10.1. Schematic showing the relationship between the forces in the pump frame, F}, Fy* , the
rotordynamic forces, F,, F}*, the impeller center, the whirl orbit, and the volute geometry.
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The other set of forces with which this chapter will be concerned are the fluid-
induced rotordynamic forces that are caused by the displacement and motion of the
axis of rotation. It will be assumed that this displacement is sufficiently small so that
a linear perturbation model is accurate. Then

Fr@ | _ | Fo r {x(t)} 10.1
{Fy*w} [ng}+[ o b

where the displacement is given by x(¢) and y(¢), and [A*] is known as the “rotordy-
namic force matrix,” which, in the linear model, would be independent of time, ¢. In
virtually all cases that we shall be describing here, the displacements are sinusoidal.
The “whirl” frequency of these motions will be denoted by w (rad/s). Then, in gen-
eral, the matrix [A*] will not only be a function of the turbomachine geometry and
operating condition, but also of the whirl frequency, w. In an analogous manner the
rotordynamic moment matrix, [ B*], is defined by

M(t) ng " {x(t)}
= B 10.2
{M;fm] {Ma‘y}” o e

The radial forces will be presented here in nondimensional form (denoted by the
same symbols without the asterisk) by dividing the forces by px Q2R%2L, where the
selected length L may vary with the device. In seals and bearings, L is the axial
length of the component. For centrifugal pumps, it is appropriate to use the width of
the discharge so that L = B;. With axial inducers, the axial extent of the blades is
used for L. The displacements are nondimensionalized by R. In seals and bearings,
the radius of the rotor is used; in centrifugal pump impellers, the discharge radius
is used so that R = Ry. It follows that the matrix [A] is nondimensionalized by
pr P RAL. Correspondingly, the radial moments and the moment matrix [B] are
nondimensionalized by p7 Q>R*L and p Q> R3L respectively. Thus

Fx(t) F()x x(t)/R
= A 10.3
{Fy(z)} {Foy}ﬂ ]{y(r)/R} (103)

Mo@0)) (Mo *(0)/R
— B 104
{Mya)} {Moy}” ]{y(z)/R} (104)

The magnitude of the dimensionless radial force will be denoted by Fp = (Fozx + Fozy) 2 ,
and its direction, 6, will be measured from the tongue or cutwater of the volute in the
direction of rotation.

One particular feature of the rotordynamic matrices, [A] and [ B], deserves special
note. There are many geometries in which the rotordynamic forces should be invariant
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to a rotation of the x, y axes. Such will be the case only if

Avx=Ay; Ay =—Ay (10.5)
Bex = Byy: By =—By, (10.6)

This does appear to be the case for virtually all of the experimental measurements that
have been made in turbomachines.

The prototypical displacement will clearly consist of a circular whirl motion of
“eccentricity”, €, and whirl frequency, w, so that x () = e coswt and y(¢) = e sinwt.
As indicated in figure 10.1, an alternative notation is to define “rotordynamic forces”,
F}f and F, that are normal and tangential to the circular whirl orbit at the instantaneous
position of the center of rotation. Note that F," is defined as positive outward and F*
as positive in the direction of rotation, 2. It follows that

Fr=e(As+A3,) /2 (10.7)
Fr=c¢ (A;x - A;y) /2 (10.8)

and it is appropriate to define dimensionless normal and tangential forces, F; and
F;, by dividing by pm Q?R?Le. Then the conditions of rotational invariance can be
restated as

A=Ay, =F, (10.9)
Ap=—A,=F (10.10)

Since this condition is met in most of the experimental data, it becomes convenient to
display the rotordynamic forces by plotting F;,, and F; as functions of the geometry,
operating condition and frequency ratio, w/ €2. This presentation of the rotordynamic
forces has a number of advantages from the perspective of physical interpretation.
In many applications the normal force, F),, is modest compared with the potential
restoring forces which can be generated by the bearings and the casing. The tangential
force has greater significance for the stability of the rotor system. Clearly a tangential
force that is in the same direction as the whirl velocity (F; > 0 for w > 0 or F; < 0 for
w < 0) will be rotordynamically destabilizing, and will cause a fluid-induced reduction
in the critical whirl speeds of the machine. On the other hand, an F; in the opposite
direction to w will be whirl stabilizing.

Furthermore, it is conventional among rotordynamicists to decompose the matrix
[A] into added mass, damping and stiffness matrices according to

4 x/R) [ M m][i/RQ? C ¢ [%/RQ K k7 (x/R
: ]{y/R}‘_[—mMHy/mz}_[—cC]{y'/Rsz}_[—kKHy/R}
(10.11)
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where the dot denotes differentiation with respect to time, so that the added mass
matrix, [M], multiplies the acceleration vector, the damping matrix, [C], multiplies
the velocity vector, and the stiffness matrix, [ K], multiplies the displacement vector.
Note that the above has assumed rotational invariance of [A], [M], [C] and [K]; M
and m are respectively termed the direct and cross-coupled added mass, C and c the
direct and cross-coupled damping, and K and & the direct and cross-coupled stiffness.
Note also that the corresponding dimensional rotordynamic coefficients, M*, m*, C*,
c*, K*, and k* are related to the dimensionless versions by

M*,m* Cc*c* K* k*

Mm=———; C,c=—=—o——; =——
"= IRL T ARILS o R2L?

(10.12)

b

The representation of equation 10.11 is equivalent to assuming a quadratic dependence
ofthe elements of [ A] (and the forces F},, F;) on the whirl frequency, or frequency ratio,
w/ Q. It should be emphasized that fluid mechanical forces do not always conform to
such a simple frequency dependence. For example, in section 10.6, we shall encounter
a force proportional to w2 Nevertheless, it is of value to the rotordynamicists to fit
quadratics to the plots of F,, and F; against w/ €2, since, from the above relations, it
follows that

Fy=M(0/Q)?*—c(w/Q)—K (10.13)
F=—-m(w/Q)?—C(w/Q)+k (10.14)

and, therefore, all six rotordynamic coefficients can be directly evaluated from
quadratic curve fits to the graphs of F,, and F; against w/ 2.

Since m is often small and is frequently assumed to be negligible, the sign of the
tangential force is approximately determined by the quantity k2 / wC. Thus rotordy-
namicists often seek to examine the quantity k/C = k*/ QC™*, which is often called the
“whirl ratio” (not to be confused with the whirl frequency ratio, w/ €2). Clearly larger
values of this whirl ratio imply a larger range of frequencies for which the tangential
force is destabilizing and a greater chance of rotordynamic instability.

In the last few paragraphs we have focused on the forces, but it is clear that a parallel
construct is relevant to the rotordynamic moments. It should be recognized that each
of the components of a turbomachine will manifest its own rotordynamic coefficients
which will all need to be included in order to effect a complete rotordynamic analysis
of the machine. The methods used in such rotordynamic analyses are beyond the
scope of this book. However, we shall attempt to review the origin of these forces in
the bearings, seals, and other components of the turbomachine. Moreover, both the
main flow and leakage flows associated with the impeller will generate contributions.
In order to permit ease of comparison between the rotordynamic effects contributed
by the various components, we shall use a similar nondimensionalization for all the
components.
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10.3 Hydrodynamic Bearings and Seals

Hydrodynamic bearings, seals, and squeeze-film dampers constitute a class of devices
that involve the flow in an annulus between two cylinders; the inner cylinder is gener-
ally the shaft (radius, R) which is rotating at a frequency, €2, and may also be whirling
with an amplitude or eccentricity, €, and a frequency, w. The outer cylinder is generally
static and fixed to the support structure. The mean clearance (width of the annulus)
will be denoted by &, and the axial length by L. In both hydrodynamic bearings and
seals, the basic fluid motion is caused by the rotation of the shaft. In a seal, there is an
additional axial flow due to the imposed axial pressure difference. In a squeeze-film
damper, there is no rotational motion, but forces are generated by the whirl motion of
the “rotor.”

The Reynolds number is an important parameter in these flows, and it is useful
to evaluate three different Reynolds numbers based on the rotational velocity, on the
mean axial velocity, V (given by V = Q / 2w RS where Q is the volumetric axial
flow rate), and on the velocity associated with the whirl motion. These are termed the
rotational, axial and whirl Reynolds numbers and are defined, respectively, by

Req=QRé8/v, Rey=V§/v, Re,=wRs/v (10.15)

where v is the kinematic viscosity of the fluid in the annulus. In a hydrodynamic
bearing, the fluid must be of sufficiently high viscosity so that Req < 1. This is
because the bearing depends for its operation on a large fluid restoring force or stiffness
occurring when the shaft or rotor is displaced from a concentric position. Typically a
bearing will run with a mean eccentricity that produces the fluid forces that counteract
the rotor weight or other radial forces. It is important to recognize that the fluid only
yields such a restoring force or stiffness when the flow in the annulus is dominated by
viscous effects. For this to be the case, it is necessary that Req < 1. If this is not the
case, and Regq > 1 then, as we shall discuss later, the sign of the fluid force is reversed,
and, instead of tending to decrease eccentricity, the fluid force tends to magnify it.
This is called the “Bernoulli effect” or “inertia effect”, and can be simply explained
as follows. When an eccentricity is introduced, the fluid velocities will be increased
over that part of the rotor circumference where the clearance has been reduced. At
Reynolds numbers much larger than unity, the Bernoulli equation is applicable, and
higher velocities imply lower pressure. Therefore the pressure in the fluid is decreased
where the clearance is small and, consequently, there will be a net force on the rotor
in the direction of the displacement. This “negative stiffness” (K < 0) is important in
the rotordynamics of seals and impellers.

Another parameter of importance is the ratio of the axial length to radius, L/R,
of the bearing or seal. For large L/R, the predominant fluid motions caused by the
rotordynamic perturbations occur in the circumferential direction. On the other hand,
in a short seal or bearing, the predominant effect of the rotordynamic perturbation is
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Figure 10.2. Schematic of a short seal demonstrating the Lomakin effect.

to cause circumferential variation in the axial fluid velocity. This gives rise to the so-
called “Lomakin effect” in short seals operating at high Reynolds numbers (Lomakin
1958). The circumstances are sketched in figure 10.2, in which we use a cylindrical
coordinate system, (r,6,z), to depict a plain annular seal with a clearance, §. The
fluid velocity, u_, is caused by the pressure difference, Ap = (p1 — p2). We denote
the axial velocity averaged over the clearance by u,, and this will be a function of
6 when the rotor is displaced by an eccentricity, €. The Lomakin effect is caused
by circumferential variations in the entrance losses in this flow. On the side with the
smaller clearance, the entrance losses are smaller because i, is smaller. Consequently,
the mean pressure is larger on the side with the smaller clearance, and the result is
a restoring force due to this circumferential pressure distribution. This is known as
the Lomakin effect, and gives rise to a positive fluid-induced stiffness, K. Note that
the competing Bernoulli and Lomakin effects can cause the sign of the fluid-induced
stiffness of a seal to change as the geometry changes.

In the following sections we examine more closely some of the fluid-induced
rotordynamic effects in bearings, seals, and impellers.

10.4 Bearings at Low Reynolds Numbers

The rotordynamics of a simple hydrodynamic bearing operating at low Reynolds
number (Reg < 1) will be examined first. The conventional approach to this problem
(Pinkus and Sternlicht 1961) is to use Reynolds’ approximate equation for the fluid
motions in a thin film. In the present context, in which the fluid is contained between
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Figure 10.3. Schematic of fluid-filled annulus between a stator and a rotating and whirling rotor.

two circular cylinders (figure 10.3) this equation becomes

LA (9P 2 (p39P _g, 07 10 ) (10.16)
R2a0 \"" 90 ) Tz \" 3z ) T %o T R0 '

where (0,z) are the circumferential and axial coordinates. This equation must be
solved to find the pressure, p(6,z,t), in the fluid (averaged over the radial extent
of the clearance gap) given the clearance, H(6,t), and the surface velocity, U, of
the inner cylinder (U = QR). An eccentricity, €, at a whirl frequency of w leads
to a clearance, H, given by é — € cos(wt — 6) and substituting for H completes the
formulation of equation 10.16 for the pressure.

The rotordynamic forces, F, and F}*, then follow from

Fr L r2m (_cos(wt —6
e =Rf / pl 7@ =D (10.17)
F; o Jo sin(wt —0)
where L is the axial length of the bearing.
Two simple asymptotic solutions are readily forthcoming for linear perturbations
in which € « §. The first is termed the “long bearing” solution, and assumes, as

discussed in the last section, that the dominant perturbations to the velocity occur in
the circumferential velocities rather than the axial velocities. It follows that the second
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term in equation 10.16 can be neglected as small relative to the first term. Neglecting,
in addition, all terms quadratic or higher order in €, integration of equation 10.16
leads to

6uRZe (Q — 2) sin(wr 0)+12“R2d s(otf —6) (10.18)
= ) sin(wt — — cos(wt — .
P="% 53 di
and to the following rotordynamic forces:
127 uR3L de 6w uR3Le
* . *
F, =% 7’ F'= B—(Q 2w) (10.19)

In steady whirling motion, de / dt = 0. The expression for F;* implies the following
rotordynamic coefficients:

. 2k%  127pRL
C*= o= 5 (10.20)
and K¥*=c*=M*=m*=0.

The second, or “short bearing”, solution assumes that the dominant perturbations
to the velocities occur in the axial velocities; this usually requires L/R to be less
than about 0.5. Then, assuming that the pressure is measured relative to a uniform
and common pressure at both ends, z = 0 and z = L, integration of equation 10.16
leads to

nde
=z(L—2) [ ST — cos(wt —0) — lée (2 —2w) sin(wt — 0)] (10.21)
and, consequently,
RLd RL3e
Ff= _W8_3d_j L FF = ’”‘2—(9 2w) (10.22)

Therefore, in the short bearing case,

2k* TuRL?
Q283

C*= (10.23)
in contrast to the result in equation 10.20. Notice that, for both the long and short
bearing, the value of the whirl ratio, k* / QC*, is 0.5. Later, we will compare this
value with that obtained for other flows and other devices.

It is particularly important to note that the tangential forces in both the long and
short bearing solutions are negative for 2 < 2w, and become positive for Q > 2w. This
explains the phenomenon of “oil whip” in hydrodynamic bearings, first described by
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Newkirk and Taylor (1925). They reported that violent shaft motions occurred when
the shaft speed reached a value twice the critical speed of the shaft. This phenomenon is
the response of a dynamic system at its natural frequency when the exciting tangential
force becomes positive, namely when 2 > 2w (see Hori 1959). It is of interest to note
that a similar critical condition occurs for high Reynolds number flow in the film (see
equations 10.36 and 10.37).

The simple linear results described above can be augmented in several ways. First,
similar solutions can be generated for the more general case in which the eccentricity
is not necessarily small compared with the clearance. The results (Vance 1988) for the
long bearing become

127 uR3L 1 d
e S (10.24)
) (1_62/32)7 dt
6muR3L(Q—2
Fr="TH g @) € . (10.25)
8 (1—€2/82)(2+€2/82)2
and, in the short bearing case,
RL3 (142€%/8%) d
Fr=—TE2 ( / 5) ad (10.26)
8 (1—62/52)5 dt
RL3(Q -2
Fr="H (3 ) S (10.27)
26 (1— 62/82)7

These represent perhaps the only cases in which rotordynamic forces and coefficients
can be evaluated for values of the eccentricity, €, comparable with the clearance, §.
The nonlinear analysis leads to rotordynamic coefficients which are functions of the
eccentricity, €, and the variation with € / d is presented graphically in figure 10.4. Note
that the linear values given by equations 10.20 and 10.23 are satisfactory up to € / 8
of the order of 0.5.

Second, it is important to note that cavitation or gas dissolution in liquid-filled
bearings can often result in a substantial fraction of the annulus being filled by a gas
bubble or bubbles. The reader is referred to Dowson and Taylor (1979) for a review
of this complicated subject. Quite crude approximations are often introduced into
lubrication analyses in order to try to account for this “cavitation.” The most common
approximation is to assume that the two quadrants in which the pressure falls below
the mean are completely filled with gas (or vapor) rather than liquid. Called a 7 -film
cavitated bearing, this heuristic assumption leads to the following rotordynamic forces
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Figure 10.4. Dimensionless damping and cross-coupled stiffness for noncavitating long and short
bearings as functions of the eccentricity ratio, €/3.

(Vance 1988). For the cavitated (;r-film) long bearing

6uR3L 2|92 —2wle? de /dt
Fr=—212 2~ 2ole L e/ . (10.28)
b 822 +€%/82)(1—€2/82) 5(1—€2/52)2
6uR3L Q-2 4de /dt
Fr =2t e / - | +2RLpo
) (2—{—62/32)(1—62/82)7 (1—|—E/3)(1—6 /5 )
(10.29)

where pg is the pressure in the cavity. These expressions are similar to, but not identical
with, the expressions derived by Hori (1959) and used to explain oil whip. For the
cavitated (7 -film) short bearing

s URLY | |Q—2w|e?  w(1+2€/8%)de[dt (10.30)
n 52 32(1—62/32)2 25(1—62/82)% .
RL3 Q—2w)me 2ede [dt
Fr="2 ( me . 5 — | +2RLpy (10.31)
) 45(1—62/52)7 8%(1—¢ /5 )

It would, however, be appropriate to observe that rotordynamic coefficients under
cavitating conditions remain to be measured experimentally, and until such tests are
performed the above results should be regarded with some scepticism.
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Finally, we note that all of the fluid inertial effects have been neglected in the
above analyses, and, consequently, the question arises as to how the results might
change when the Reynolds number, Reg, is no longer negligibly small. Such analyses
require a return to the full Navier-Stokes equations, and the author has explored the
solutions of these equations in the case of long bearings (Brennen 1976). In the case of
whirl with constant eccentricity (de / dt = 0), it was shown that there are two separate
sets of asymptotic results for Re,, < 8° /R?, and for 8° /R® < Re,, <« 8% /R?. For
Re, < 83 / R3, the rotordynamic forces are

g SR (2 (10.32)

T4 88 Q '
while F;" is the same as given in equation 10.19. Notice that equation 10.32 implies
a direct stiffness, K, and cross-coupled damping, ¢, given by

RS

K==<=
2 48

Ao

(10.33)

On the other hand, for the range of Reynolds numbers given by 83 / R3 < Re, <
82 / R?, the rotordynamic forces are

165 (2 12884 2
Fp=—rs <—“’_1); F,:—(l——w) (10.34)
R Re3 \ Q 3R*Re}, Q
so that
168 2568%
K=t=—r C=2k=—2"_ (10.35)
2 RRé 3RRE},

In both cases the direct stiffness, K, is positive, implying a positive hydrodynamic
restoring force caused by the inertial terms in the equations of fluid motion.

10.5 Annulus at High Reynolds Numbers

Consider now the flows of the last section when the Reynolds numbers become much
greater than unity. The name “bearing” must be omitted, since the flow no longer
has the necessary rotordynamic characteristics to act as a hydrodynamic bearing.
Nevertheless, such flows are of interest since there are many instances in which rotors
are surrounded by fluid annuli. Fritz (1970) used an extension of a lubrication theory
in which he included fluid inertia and fluid frictional effects for several types of flow
in the annulus, including Taylor vortex flow and fully turbulent flow. Though some
of his arguments are heuristic, the results are included here because of their practical
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value. The rotordynamic forces which he obtains are

TpR3L Q 2 d% de
Ff = —— ———Qf— 10.36
n 5 [e (2 “’) a2 g (10.36)
TpR3L Q de
Fr =" [Qef(;—w +(@-20) (10.37)

where f is a fluid friction term that varies according to the type of flow in the annulus.
For laminar flow, f =12v/ 82 and the first term in the square bracket of F* and the
last term in F," are identical to the forces for a noncavitating long bearing as given in
equation 10.19. But, Fritz also constructs forms for f for Taylor vortex flow and for
turbulent flow. For example, for turbulent flow

f=114frR/S (10.38)

where fr is a friction factor that correlates with the Reynolds number, Reg.

The other terms in equations 10.36 and 10.37 that do not involve f are caused by
the fluid inertia and are governed by the added mass, M* = mpR3L / 8, which Fritz
confirms by experimental measurements. Note that equations 10.36 and 10.37 imply
rotordynamic coefficients as follows:

M=R/[8§; ¢=R/S; K=—R][4s
m=0;, C=fR/8; k=fR/25 (10.39)
The author also examined these flows using solutions to the Navier-Stokes equations

(Brennen 1976). For annuli in which § is not necessarily small compared with R, the
added mass becomes

_ mpLR*(R5+ R?)
 (RE-R?)

*

(10.40)

where Ry is the radius of the rigid stator.

10.6 Squeeze Film Dampers

A squeeze film damper consists of a nonrotating cylinder surrounded by a fluid annulus
contained by an outer cylinder. A shaft runs within the inner, nonrotating cylinder
so that the latter may perform whirl motions without rotation. The fluid annulus is
intended to damp any rotordynamic motions of the shaft. It follows that figure 10.3
can also represent a squeeze film damper as long as 2 is set to zero. The device is
intended to operate at low Reynolds numbers, Re,,, and several of the results already
described can be readily adopted for use in a squeeze-film damper. Clearly analyses
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can be generated for both long and short squeeze film dampers. The long squeeze film
damper is one flow for which approximate solutions to the full Navier-Stokes equations
can be found (Brennen 1976). Two sets of asymptotic results emerge, depending on
whether Re,, is much less than, or much greater than, 72 R / 3. In the case of thin films
(8§ < R), the rotordynamic forces for Re,, < 72R / 8 are

F} =6mnpR’Lw’e /58 (10.41)
F} =127 puR’Loe /8 (10.42)

where the F;" is the same as that for a noncavitating long bearing. On the other hand,
for Re,, >> 72R /5

1
TpR3 Lw’e 2v\?2
proP RO (2D 10.43
" ) + w82 ( )
20\
F*=npR*Lo’e [ o (10.44)
w8?

The w> dependent terms in these relations are very unfamiliar to rotordynamicists.
However, such frequency dependence is common in flows that are dominated by the
diffusion of vorticity.

The relations 10.41 to 10.44 are limited to small amplitudes, € < §, and to values
of we? / v & 1. At larger amplitudes and Reynolds numbers, we> / v, it is necessary
to resort to lubrication analyses supplemented, where necessary, with inertial terms
in the same manner as described in the last section. Vance (1988) delineates such an
approach to squeeze film dampers.

10.7 Turbulent Annular Seals

In an annular seal, the flows are usually turbulent because of the high Reynolds
numbers at which they operate. In this section we describe the approaches taken
to identify the rotordynamic properties of these flows. Black and his co-workers
(Black 1969, Black and Jensen 1970) were the first to attempt to identify and model
the rotordynamics of turbulent annular seals. Bulk flow models (similar to those
of Reynolds lubrication equations) were used. These employ velocity components,
u;(z,0) and ug(z,0), that are averaged over the clearance. Black and Jensen used
several heuristic assumptions in their model, such as the assumption that g = RQ2 / 2.
Moreover, their governing equations do not reduce to recognizable turbulent lubrica-
tion equations. These issues caused Childs (1983b) to publish a revised version of the
bulk flow model and we will focus on Childs’ model here. Childs (1987, 1989) has
also employed a geometric generalization of the same bulk flow model to examine the
rotordynamic characteristics of discharge-to-suction leakage flows around shrouded
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Figure 10.5. Sketch of fluid filled annulus between a rotor and a stator for turbulent lubrication analysis.

centrifugal pump impellers, and it is therefore convenient to include here the more
general form of his analysis. The geometry is sketched in figure 10.5, and is described
by coordinates of the meridian of the gap as given by Z(s) and R(s), 0 <s < L,
where the coordinate, s, is measured along that meridian. The clearance is denoted
by H(s,0,t) where the unperturbed value of H is §(s). The equations governing the
bulk flow are averaged over the clearance. This leads to a continuity equation of the
form

8H+ ( )+1 (H )—I—HdR 0 (10.45)
o1 Us) T g gg i) T Gt = '
where u; and ug are velocities averaged over the local clearance. The meridional and

circumferential momentum equations are

19 T T, U3 dR iy ilg ity _ il

__ 9P _ sso s 2o SR s 70 S b ig— (10.46)
pds pH pH R ds ot R 06 a0
1 dp _ Tps Tgr OUg Uy Ol dulg  upl, dR

oR 30  pH pH+W R0 oy TR ds

(10.47)

The approach used by Hirs (1973) is employed to determine the turbulent shear
stresses, Tgs and g, applied to the stator by the fluid in the s and 6 directions
respectively:

Tss Tos Asu myt

it~ pip 2 ~[1+ @ fas)?] 7 " (Rey)™ (10.48)
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and the stresses, 75 and tg,, applied to the rotor by the fluid in the same directions:

m9+1

[1+{G@o - 2R /is)’] © (Rep™  (10.49)

Tsr Tor N Ayug
pus  p(ug —2R) 2

where the local meridional Reynolds number
Reg=Hig [v (10.50)

and the constants Ay, A,, my, and my are chosen to fit the available data on turbulent
shear stresses. Childs (1983a) uses typical values of these constants

1
Ay = A, =0.0664; ms =mg=— (10.51)
The clearance, pressure, and velocities are divided into mean components (subscript
0) that would pertain in the absence of whirl, and small, linear perturbations (subscript
1) due to an eccentricity, €, rotating at the whirl frequency, w:

H(s,0,1) = Ho(s) + € Re {H1 (s)ei<9—wt>}
p(s,0,0) = po(s) +€Re {p] (s)ei(e—wt)}
us(s,0,1) =us0(s) +€Re {ﬁsl(s)ei((’—wt)}
ug(s,0,1) =ugo(s) +€Re {ﬁel(s)eiw—wt)} (10.52)

These expressions are substituted into the governing equations listed above to yield
a set of equations for the mean flow quantities (po, 50, and i1go), and a second set
of equations for the perturbation quantities (p1, is1, and ug1); terms which are of
quadratic or higher order in € are neglected.

With the kind of complex geometry associated, say, with discharge-to-suction
leakage flows in centrifugal pumps, it is necessary to solve both sets of equations
numerically in order to evaluate the pressures, and then the forces, on the rotor.
However, with the simple geometry of a plain, untapered annular seal where

R(s)=R, Ho(s)=4, s=z, Hi(s)=1 (10.53)
and in which
- 0
= =V 10.54
U0 =57 Re (10.54)

where Q is the volumetric flow rate, Childs (1983a) was able to obtain analytic
solutions to both the mean and perturbation equations. The resulting evaluation of the
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rotordynamic forces leads to the following rotordynamic coefficients:

2ApT > R ’
K= — 1o(L/2¢R 10.55
(,oVZ >¢> 2)»1L[M0 p2(L/2¢R)?| ( )
2ApT
Cook=(2AL )01 (10.56)
oVZ ) 25
2ApT L
M=c= (222 ) 12 (10.57)
sz 2)»1R

where ¢ is the flow coefficient (¢ = V / QR), and ApT is the total pressure drop
across the seal where

2ApT

pV?

=14+CgL+2X) (10.58)

and A, wo, u1, and wy are given by

3
8

A1 = 0.0664(Rey) ™ {1+1/4¢%} (10.59)
A=rL/$ (10.60)
1o = 53315 /2(1+ Cer +222) (10.61)
1
w1 =2x, {Ms + §K2M4(M5 + 1/6)} J/(1+Cpr+212) (10.62)
p2 =5 +1/6) /(1 + Cgr +212) (10.63)
pa=(1+7¢%/(1+4¢% (10.64)
ps=(1+Cgr)[2(1+ Cpr + jah2) (10.65)

where Cgy is an entrance loss coefficient for which the data of Yamada (1962) was
used. Note that there are two terms in K; the first, which contains pg, results from
the Lomakin effect, while the second, involving ., results from the Bernoulli effect
(section 10.3).

The results obtained by Black and Jensen (1970) are similar to the above except for
the expressions for some of the A and © quantities. Childs (1983a) contrasts the two
sets of expressions, and observes that one of the primary discrepancies is that the Black
and Jensen expressions yield a significant smaller added mass, M. We should also
note that Childs (1983a) includes the effect of inlet preswirl which has a significant
influence on the rotordynamic coefficients. Preswirl was not included in the results
presented above.

Typical results from the expressions 10.55 to 10.57 are presented in figures 10.6
and 10.7, which show the variations with flow coefficient, ¢, and the geometric
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Figure 10.6. Typical dimensionless rotordynamic coefficients from Childs’ (1983a) analysis of a plain,
untapered and smooth annular seal with §/R = 0.01, Rey = 5000, and Cg; =0.1.
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Figure 10.7. Typical dimensionless rotordynamic coefficients from Childs’ (1983a) analysis of a plain,
untapered and smooth annular seal with L/R =1, Rey = 5000, and Cg; =0.1.
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Figure 10.8. The measurements by Childs and Dressman (1982) of the rotordynamic forces for a straight,
smooth annular seal (L/R = 1.0,8/R = 0.01) for a range of Reynolds numbers, 2205 < Rey < 13390,
and under synchronous excitation. Also shown are the predictions of the theory of Childs (1983a) for
Rey = 10000 (solid lines) and 15000 (dashed lines) and two different entrance loss coefficients, Cgy,
as shown.

ratios, L/R and §/R. The effects of Reynolds number, Rey, and of the entrance
loss coefficient, are small as demonstrated in figure 10.8. Note the changes in sign
in the direct stiffness, K, that result from the Lomakin effect becoming larger than
the Bernoulli effect, or vice-versa. Note, also, that the whirl ratio, k / C,is 0.51n all
cases.

Childs and Dressman (1982) have published experimental measurements of the
rotordynamic forces in a plain, smooth, annular seal with a length, L, to radius, R,
ratio of 1.0, a clearance, §, to radius ratio of 0.01 at various flow rates and speeds.
The excitation was synchronous (o / Q =1) so that

w=M—c—K; F,=-m—C+k (10.66)
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Consequently, if one assumes the theoretical results M = ¢, m = 0 and C = 2k to be
correct, then

C
Fp=-K: F=—k=—3

(10.67)
The data of Childs and Dressman for Reynolds numbers in the ranges 2205 < Rey <
13390 and 2700 < Reg < 10660 are plotted in figure 10.8. It is readily seen that, apart
from the geometric parameters L/R and §/R, the rotordynamic characteristics are
primarily a function of the flow coefficient, ¢, defined as ¢ =V / QR = Rey / Req,
and only depend weakly on the Reynolds number itself. The results from Childs’
(1983a) theory using equations 10.55 to 10.57 are also shown and exhibit quite good
agreement with the measurements. As can be seen, the theoretical results are also only
weakly dependent on Rey or the entrance loss coefficient, Cgy .

Nordmann and Massman (1984) conducted experiments on a similar plain annular
sealwith L/R =1.67and §/R = 0.0167, and measured the forces for both synchronous
and nonsynchronous excitation. Thus, they were able to extract the rotordynamic
coefficients M, C, ¢, K, and k. Their results for a Reynolds number, Rey = 5265, are
presented in figure 10.9, where they are compared with the corresponding predictions
of Childs’ (1983a) theory (using Cgy, = 0.1). In comparing theory and experiment,
we must remember that the results are quite insensitive to Reynolds number, and the
theoretical data does not change much with changes in Cgy. Some of the Nordmann
and Massmann data exhibits quite a lot of scatter; however, with the notable exception
of the cross-coupled stiffness, k, the theory is in good agreement with the data. The
reason for the discrepancy in the cross-coupled stiffness is unclear. However, one must
bear in mind that the theory uses correlations developed from results for nominally
steady turbulent flows, and must be regarded as tentative until there exists a greater
understanding of unsteady turbulent flows.

In the last decade, a substantial body of data has been accumulated on the rotordy-
namic characteristics of annular seals, particularly as regards such geometric effects
as taper, various kinds of roughness, and the effects of labyrinths. We include here
only a few examples. Childs and Dressman (1985) conducted both theoretical and
experimental investigations of the effect of taper on the synchronous rotordynamic
forces. They showed that the introduction of a taper increases the leakage and the direct
stiffness, K*, but decreases the other rotordynamic coefficients. An optimum taper
angle exists with respect to both the direct stiffness and the ratio of direct stiffness to
leakage. Childs and Kim (1985) have examined the effects of directionally homoge-
neous surface roughness on both the rotor and the stator. Test results for four different
surface roughnesses applied to the stator or casing (so-called “damper seals” that have
smooth rotors) showed that the roughness increases the damping and decreases the
leakage.
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Figure 10.9. Dimensionless rotordynamic coefficients measured by Nordmann and Massmann (1984)
for a plain seal with L/R = 1.67, /R = 0.0167, and Rey = 5265. Also shown are the corresponding
theoretical results using Childs’ (1983a) theory with Cg; = 0.1.

10.8 Labyrinth Seals

Labyrinth seals with teeth on either the rotor or the stator are frequently used, because
the teeth help to minimize the leakage through the seals. However, the teeth also
have rotordynamic consequences which have been explored by Wachter and Benckert
(1980), Childs and Scharrer (1986), and others. Childs and Scharrer measured the
stiffness and damping coefficients for some labyrinth seals, and reached the following
conclusions. First, in all cases, the rotordynamic forces were independent of the
rotational speed, €2, and dependent on the axial pressure drop, A p. The appropriate
nondimensionalizing velocity is therefore the typical axial velocity caused by the axial
pressure drop, (2Ap / p)% . Childs and Scharrer suggest that the reason for this behavior
is that the mean fluid motions are dominated by throughflow over and between the
teeth, and that the shear caused by the rotation of the rotor has relatively little effect
on the flow at the high Reynolds numbers involved.

Typical dimensionless values of the rotordynamic coefficients K, k, and C are
presented in table 10.1, where we may observe that the cross-coupled stiffness, %,
is smaller for the teeth-on-stator configuration. This means that, since the damp-
ing, C, is similar for the two cases, the teeth-on-stator configuration is more stable
rotordynamically.
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Table 10.1. Rotordynamic characteristics of labyrinth seals with zero inlet swirl

(data from Childs and Scharrer 1986).

Teeth on Rotor Teeth on Stator
Mean Min. Max. Mean Min. Max.
K*2mr ApL —-1.17 —1.03 —1.25 —0.62 —0.45 —0.74
k*/2m ApL 1.15 0.79 1.68 0.86 0.67 1.07

C*/nRL(Z,oAp)% 0.0225  0.0168  0.0279  0.0219  0.0182  0.0244

However, Childs and Scharrer also found that the coefficients were very sensitive
to the inlet swirl velocity upstream of the seal. In particular, the cross-coupled stiffness
increased markedly with increased swirl in the same direction as shaft rotation. On the
other hand, imposed swirl in a direction opposite to shaft rotation causes a reversal
in the sign of the cross-coupled stiffness, and thus has a rotordynamically stabilizing
effect.

10.9 Blade Tip Rotordynamic Effects

In a seminal paper, Alford (1965) identified several rotordynamic effects arising from
the flow in the clearance region between the tip of an axial flow turbomachine blade
and the static housing. However, the so-called “Alford effects” are only some of the
members of a class of rotordynamic phenomena that can arise from the fluid-induced
effects of a finite number of blades, and, in this section, we shall first examine the
more general class of phenomena.

Consider the typical geometry of an unshrouded impeller of radius Ry and Zg
blades enclosed by a cylindrical housing so that the mean clearance between the blade
tips and the housing is § (figure 10.10). If the impeller is rotating at a frequency, €2,
and whirling at a frequency, w, with an amplitude, €, then the vector positions of the
blade tips at time, ¢, will be given by

x4 jy=z=Rpel HT2TNZR) o forn=1to Zg (10.68)

where the center of the housing is the origin of the (x, y) coordinate system. It follows
that the clearance at each blade tip is R7 + 8 — |z| which, to first order in €, is §* where

8" =8—ecosb,, n=1toZg (10.69)

and where, for convenience, 6, = Qt — wt +2wn/Zg.
Next, the most general form of the force, F*, acting on the tip of the blade is

F* = Fel (51 ,j(Qu+2mn/ZR) (10.70)
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Figure 10.10. Schematic of the position of an axial flow turbomachine blade tip relative to a static housing
as a result of the combination of rotational and whirl motion (details shown for only one of the Z g blade

tips).

where the functional forms of the force magnitude, F, and its inclination relative
to the blade, « (see figure 10.10), can, for the moment, remain unspecified. The
total rotordynamic forces, F,’ and F}*, acting on the impeller are then obtained by
appropriate summation of the individual tip forces, F*, followed by conversion to the
rotating frame. Nondimensionalizing the result, one then finds

ZR .

> jel*elF

n=1 AVERAGE (10.71)
anZRT Le

Fy+jF =

where the quantity in square brackets is averaged over a large time. This general result
may then be used, with various postulated relations for F and «, to investigate the
resulting rotordynamic effects.

One choice of the form of F and « corresponds to the Alford effect. Alford (1965)
surmised that the fluid force acting normal to each blade (¢ = 0 or ) would vary
according to the instantaneous tip clearance of that blade. Specifically, he argued that
an increase in the clearance, € cos6,, would produce a proportionate decrease in the
normal force, or

F = Fy+ Kecosb, (10.72)
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where Fy is the mean, time-averaged force normal to each blade and K is the factor
of proportionality. Moreover, for a pump o = 7, and for a turbine o = 0. Substituting
these values into equation 10.71, one obtains

F,=0; F,=FKZg/2mpQ*RrL (10.73)

where the upper sign refers to the pump case and the lower to the turbine case. It follows
that the Alford effect in pumps is stabilizing for positive whirl, and destabilizing for
negative whirl. In a turbine the reverse is true, and the destabilizing forces for positive
whirl can be quite important in the rotordynamics of some turbines.

As a second, but more theoretical example, consider the added mass effect that
occurs when a blade tip approaches the casing and squeezes fluid out from the inter-
vening gap. Such a flow would manifest a force on the blade proportional to the
acceleration d28* / dr?, so that

d*s*
a=m/2; F= ICW (10.74)
where C is some different proportionality factor. It follows from equation 10.71 that,
in this case,
K w2
Fnz—(l——) - F=0 (10.75)

2npRr L
This positive normal force is a Bernoulli effect, and has the same basic form as the
Bernoulli effect for the whirl of a plane cylinder (see section 10.3).

Other tip clearance flow effects, such as those due to viscous or frictional effects,
can be investigated using the general result in equation 10.71, as well as appropriate
choices for @ and F.

10.10 Steady Radial Forces

We now change the focus of attention back to pumps, and, more specifically, to the
kinds of radial and rotordynamic forces which may be caused by the flow through and
around an impeller. Unlike some of the devices discussed in the preceding sections, the
flow through a pump can frequently be nonaxisymmetric and so can produce a mean
radial force that can be of considerable importance. The bearings must withstand this
force, and this can lead to premature bearing wear and even failure. Bearing deflection
can also cause displacement of the axis of rotation of the impeller, that may, in turn,
have deleterious effects upon hydraulic performance. The existence of radial forces,
and attempts to evaluate them, date back to the 1930s (see Stepanoff’s comment in
Biheller 1965) or earlier.

The nonaxisymmetries and, therefore, the radial forces depend upon the geometry
of the diffuser and/or volute as well as the flow coefficient. Measurements of radial
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forces have been made with a number of different impeller/diffuser/volute combina-
tions by Agostonelli ef al. (1960), Iverson et al. (1960), Biheller (1965), Grabow
(1964), and Chamieh ef al. (1985), among others. Stepanoff (1957) proposed an
empirical formula for the magnitude of the nondimensional radial force,

1
| Fol = (Fg, + Fg,)> = 0.229¢ {1 - (Q/Qp)*} (10.76)
for centrifugal pumps with spiral volutes, and

|Fol = 0.229%:Q/Q0p (10.77)

for collectors with uniform cross-sectional area. Both formulae yield radial forces that
have the correct order of magnitude; however, measurements show that the forces also
depend on other geometric features of the impeller and its casing.

Some typical nondimensional radial forces obtained experimentally by Chamieh
et al. (1985) for the Impeller X/Volute A combination (see section 2.8) are shown in
figure 10.11 for a range of speeds and flow coefficients. First note that, as anticipated
in the nondimensionalization, the radial forces do indeed scale with the square of the
impeller speed. This implies that, at least within the range of rotational speeds used
for these experiments, the Reynolds number effects on the radial forces are minimal.
Second, focusing on Chamieh’s data, it should be noted that the “design” objective that
Volute A be well matched to Impeller X appears to be satisfied at a flow coefficient,
@2, 0f 0.092 where the magnitude of the radial force appears to vanish.

Other radial force data are presented in figure 10.12. The centrifugal pump tested
by Agostinelli, Nobles and Mockeridge (1960) had a specific speed, Np, of 0.61, and
was similar to that of Chamieh et al. (1985). On the other hand, the pump tested by
Iversen, Rolling and Carlson (1960) had a much lower specific speed of 0.36, and the
data of figure 10.12 indicates that their impeller/volute combination is best matched
at a flow coefficient of about 0.06. The data of Domm and Hergt (1970) is for a volute
similar to Volute A and, while qualitatively similar to the other data, has a significantly
smaller magnitude than the other three sets of data. The reasons for this are not clear.

The dependence of the radial forces on volute geometry is illustrated in figure
10.13 from Chamieh et al. (1985) which presents a comparison of the magnitude of
the force on Impeller X due to Volute A with the magnitude of the force due to a
circular volute with a circumferentially uniform cross-sectional area. In theory, this
second volute could only be well-matched at zero flow rate; note that the results do
exhibit a minimum at shut-off. Figure 10.13 also illustrates one of the compromises
that a designer may have to make. If the objective were to minimize the radial force
at a single flow rate, then a well-designed spiral volute would be appropriate. On
the other hand, if the objective were to minimize the force over a wide range of flow
rates, then a quite different design, perhaps even a constant area volute, might be more
effective. Of course, a comparison of the hydraulic performance would also have to be
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Figure 10.11. Radial forces for the centrifugal Impeller X/Volute A combination as a function of shaft
speed and flow coefficient (Chamieh et al. 1985).

made in evaluating such design decisions. Note from figure 7.1 that the spiral volute
is hydraulically superior up to a flow coefficient of 0.10 above which the results are
circular volute is superior.

As further information on the variation of the magnitude of the radial forces in
different types of pump, we include figure 10.14, taken from KSB (1975), which
shows how Fy/¢ may vary with specific speed and flow rate for a class of volute
pumps. The magnitudes of the forces shown in this figure are larger than those of figure
10.12. We should also note that the results of Jery and Franz (1982) indicate that the
presence of diffuser vanes (of typical low solidity) between the impeller discharge
and the volute has relatively little effect on the radial forces.

It is also important to recognize that small changes in the location of the impeller
within the volute can cause large changes in the radial forces. This gradient of forces
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Figure 10.12. Comparison of the radial forces measured by Iverson, Rolling, and Carlson (1960) on a
pump with a specific speed, Np, of 0.36, by Agostinelli, Nobles, and Mockeridge (1960), on a pump
with Np = 0.61, by Domm and Hergt (1970), and by Chamieh et al. (1985) on a pump with Np = 0.57.

is represented by the hydrodynamic stiffness matrix, [ K ] (see section 10.2), for which
data will be presented in the context of the rotordynamic coefficients. The dependence
of the radial force on the impeller position also implies that, for a given impeller/volute
combination at a particular flow coefficient, there exists a particular location of the
axis of impeller rotation for which the radial force is zero. As an example, the locus
of zero radial force positions for the Impeller X/Volute A combination is presented in
figure 10.15. Note that this location traverses a distance of about 10% of the impeller
radius as the flow rate increases from zero to a flow coefficient of 0.14.

Visualizing the centrifugal pump impeller as a control volume, one can recognize
three possible contributions to the radial force. First, circumferential variation in
the impeller discharge pressure (or volute pressure) will clearly result in a radial
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Figure 10.13. Comparison of the magnitude of the radial force (Fp) on Impeller X caused by Volute A
and by the circular Volute B with a circumferentially uniform area (Chamieh ez al. 1985).

force acting on the impeller discharge area. A second contribution could be caused
by the leakage flow from the impeller discharge to the inlet between the impeller
shroud and the pump casing. Circumferential nonuniformity in the discharge pressure
could cause circumferential nonuniformity in the pressure within this shroud-casing
gap, and therefore a radial force acting on the exterior of the pump shroud. For
convenience, we shall term this second contribution the leakage flow contribution.
Third, a circumferential nonuniformity in the flow rate out of the impeller would
imply a force due to the nonuniformity in the momentum flux out of the impeller. This
potential third contribution has not been significant in any of the studies to date. Both
the first two contributions appear to be important.

In order to investigate the origins of the radial forces, Adkins and Brennen (1988)
(see also Brennen et al. 1986) made measurements of the pressure distributions in the
volute, and integrated these pressures to evaluate the contribution of the discharge
pressure to the radial force. Typical pressure distributions for the Impeller X/Volute
A combination (with the flow separation rings of figure 10.17 installed) are presented
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in figure 10.16 for three different flow coefficients. Minor differences occur in the
pressures measured in the front sidewall of the volute at the impeller discharge (front
taps) and those in the opposite wall (back taps).

The experimental measurements in figure 10.18 are compared with theoretical
predictions based on an analysis that matches a guided impeller flow model with a
one-dimensional treatment of the flow in the volute. This same theory was used to
calculate rotordynamic matrices and coefficients presented in section 10.12. In the
present context, integration of the experimental pressure distributions yielded radial
forces in good agreement with both the overall radial forces measured using the force
balance and the theoretical predictions of the theory. These results demonstrate that it
is primarily the circumferential nonuniformity in the pressure at the impeller discharge
that generates the radial force. The theory clearly demonstrates that the momentum
flux contribution is negligible.

The leakage flow from the impeller discharge, between the impeller shroud and
the pump casing, and back to the pump inlet does make a significant contribution to
the radial force. Figure 10.17 is a schematic of the impeller, volute, and casing used
in the experiments of Chamieh et al. (1985) and Adkins and Brennen (1988), as well
as for the rotordynamic measurements discussed later. Adkins and Brennen obtained
data with and without the obstruction at the entrance to the leakage flow labeled “flow
separation rings”. The data of figures 10.16 and 10.18 were taken with these rings
installed (whereas Chamieh’s data was taken without the rings). The measurements
showed that, in the absence of the rings, the nonuniformity in the impeller discharge
pressure caused significant nonuniformity in the pressure in the leakage annulus, and,
therefore, a significant contribution from the leakage flow to the radial force. This
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was not the case once the rings were installed, for the rings effectively isolated the
leakage annulus from the impeller discharge nonuniformity. However, a compensating
mechanism exists which causes the total radial force in the two cases to be more or
less the same. The increased leakage flow without the rings tends to relieve some of
the pressure nonuniformity in the impeller discharge, thus reducing the contribution
from the impeller discharge pressure distribution.
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A number of other theoretical models exist in the literature. The analysis of Lorett
and Gopalakrishnan (1983) is somewhat similar in spirit to that of Adkins and Brennen
(1988). Earlier analyses, such as those of Domm and Hergt (1970) and Colding-
Jorgensen (1979), were based on modeling the impeller by a source/vortex within
the volute and solutions of the resulting potential flow. They represent too much of a
departure from real flows to be of much applicability.

Finally, we note that the principal focus of this section has been on radial forces
caused by circumferential nonuniformity in the discharge conditions. It must be clear
that nonuniformities in the inlet flow due, for example, to bends in the suction piping
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are also likely to generate radial forces. As yet, such forces have not been investigated.
Moreover, it seems reasonable to suggest that inlet distortion forces are more likely
to be important in axial inducers or pumps than in centrifugal pumps.

10.11 Effect of Cavitation

Franz et al. (1990) (see also Brennen ez al. 1988) have made measurements of the radial
forces for the Impeller X/Volute A combination under cavitating conditions. These
studies show that any loss of head can also cause major changes in the magnitude and
direction of the radial force. This is illustrated in figure 10.19, where the cavitation
performance is juxtaposed with the variation in the radial forces for three different
flow coefficients. Note that the radial force changes when the head rise across the
pump is affected by cavitation. Note also that the changes in the radial forces are
large, in some instances switching direction by 180° while the flow rate remains the
same. This result may be of considerable significance since pumps operating near
breakdown often exhibit fluctuations in which the operating point moves back and
forth over the knee of the cavitation performance curve. According to figure 10.19,
such performance fluctuations would result in large fluctuating forces that could well
account for the heavy vibration and rough running that is usually manifest by a pump
operating under cavitating conditions.

10.12 Centrifugal Pumps

Rotordynamic forces in a centrifugal pump were first measured by Hergt and Krieger
(1969-70), Ohashi and Shoji (1984b) and Jery et al. (1985). Typical data for the
dimensionless normal and tangential forces, F, and F;, as a function of the frequency
ratio, w/ 2, are presented in figure 10.20 for the Impeller X/Volute A combination.
The curve for Impeller X is typical of a wide range of results at different speeds, flow
coefficients, and with different impellers and volutes. Perhaps the most significant
feature of these results is that there exists a range of whirl frequencies for which
the tangential force is whirl destabilizing. A positive F; at negative whirl frequencies
opposes the whirl motion, and is, therefore, stabilizing, and fairly strongly so since the
forces can be quite large in magnitude. Similarly, at large, positive frequency ratios,
the F; is negative and is also stabilizing. However, between these two stabilizing
regions, one usually finds a regime at small positive frequency ratios where F; is
positive and therefore destabilizing.

As is illustrated by figure 10.20, the variation of F, and F; with the whirl fre-
quency ratio, @/ 2, can be represented quite accurately by the quadratic expressions
of'equations 10.13 and 10.14 (this is not true for axial flow pumps, as will be discussed
later). The rotordynamic coefficients, obtained from data like that of figure 10.20 for
a wide variety of speeds, flow rates, and impeller, diffuser, and volute geometries,
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are given in table 10.2 (adapted from Jery et al. 1985). Note, first, some of the gen-
eral characteristics of these coefficients. The direct stiffness, K, is always negative
because of the Bernoulli effect (see section 10.3). The cross-coupled stiffness, &, is
always positive, and is directly connected to the positive values of F; at low positive
whirl frequency ratios; consequently, k is a measure of the destabilizing effect of the
fluid. The direct damping, C, is positive, but usually less than half of the value of
the cross-coupled damping, c. Note that the value of k/C is usually a fairly accurate
measure of the whirl frequency ratio corresponding to the upper bound of the desta-
bilizing interval of whirl frequency ratios. From table 10.2 the values of k/C, for
actual impellers with volutes and with nonzero flow, range from 0.25 to 0.40, so the
range of subsynchronous speeds, for which these fluid forces are destabilizing, can
be quite large. Resuming the summary of the rotordynamic coefficients, note that the
cross-coupled added mass, m, is small in comparison with the direct added mass, M,
and can probably be neglected in many applications. Note that, since the direct added
mass is converted to dimensional form by 7 p R%z B>, it follows that typical values of
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Table 10.2. Rotordynamic coefficients for various centrifugal pump configurations (from
Jery et al. 1985). Volute E is a 17-bladed diffuser with a spiral volute. Volutes D, F, G,
and H are spiral volutes fitted with zero, 6, 6, and 12 vanes respectively. Impeller Y is a
6-bladed impeller. Impeller S is a solid mass with the same external profile as Impeller X

Impeller/Volute rpm 03 K k C c M m

Imp.X/Volute A 500 0.092 =251 1.10 3.14 7.91 6.52 —0.52
1000 0.092 —-2.61 1.12 3.28 8.52 6.24 —0.53
1500 0.092 —-2.47 0.99 3.00 8.71 6.87 —0.87
2000 0.092 —2.64 1.15 291 9.06 7.02 —0.67

Imp.X/Volute E 1000 0 —1.64 0.14 3.40 7.56 6.83 0.68
1000 0.060 —2.76 1.02 3.74 9.53 6.92 —1.01
1000 0.092 —-2.65 1.04 3.80 8.96 6.60 —0.90
1000 0.145 —2.44 .16  4.11 7.93 6.20 —0.55

Imp.X/none 1000 0.060 —0.55 0.67 1.24 3.60 4.38 1.68
Imp.X/Volute D 1000 0.060 —2.86 1.12 2.81 9.34 643 —0.15
Imp.X/Volute F 1000 0.060 —3.40 1.36 3.64 9.51 6.24 —0.72
Imp.X/Volute G 1000 0.060 —3.34 1.30 3.42 9.11 575 —-0.39
Imp.X/Volute H 1000 0.060 —3.42 1.33 3.75 10.34 724 —0.65

Imp.Y/Volute E 1000 0.092 —2.81 0.85 3.34 8.53 550 —-0.74
Imp.S/Volute A 1000 —0.42 0.41 1.87 3.81 6.54 —0.04

the added mass, M, are equivalent to the mass of about six such cylinders, or about
five times the volume of liquid inside the impeller.

Now examine the variations in the values of the rotordynamic coefficients in table
10.2. The first series of data clearly demonstrates that the nondimensionalization has
satisfactorily accounted for the variation with rotational speed. Any separate effect
of Reynolds number does not appear to occur within the range of speeds in these
experiments. The second series in table 10.2 illustrates the typical variations with
flow coefficient. Note that, apart from the stiffness at zero flow, the coefficients are
fairly independent of the flow coefficient. The third series utilized diffusers with
various numbers and geometries of vanes inside the same volute. The presence of
vanes appears to cause a slight increase in the stiffness; however, the number and
type of vanes do not seem to matter. Note that, in the absence of any volute or
diffuser, all of the coefficients (except m) are substantially smaller. Ohashi and Shoji
(1984b) made rotordynamic measurements within a much larger volute than any in
table 10.2; consequently their results are comparable with those given in table 10.2
for no volute. On the other hand, Bolleter, Wyss, Welte, and Sturchler (1985, 1987)
report rotordynamic coefficients very similar in magnitude to those of table 10.2.

The origins of the rotordynamic forces in typical centrifugal pumps have been
explored by Jery et al. (1985) and Adkins and Brennen (1988), among others. In order
to explore the effect of the discharge-to-suction leakage flow between the shroud
and the casing, Jery et al. (1985) compared the rotordynamic forces generated by
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the Impeller X/Volute A combination with those generated in the same housing by a
dummy impeller (Impeller S) with the same exterior profile as Impeller X. A pressure
difference was externally applied in order to simulate the same inlet to discharge
static pressure rise, and, therefore, produce a leakage flow similar to that in the
Impeller X experiments. As in the case of the radial forces, we surmise that unsteady
circumferential pressure differences on the impeller discharge and in the leakage flow
can both contribute to the rotordynamic forces on an impeller. As can be seen from
the coefficients listed in table 10.2, the rotordynamic forces with the dummy impeller
represented a substantial fraction of those with the actual impeller. We conclude that
the contributions to the rotordynamic forces from the unsteady pressures acting on the
impeller discharge and those from the unsteady pressures in the leakage flow acting
on the shroud are both important and must be separately investigated and evaluated.
We focus first on the impeller discharge contribution. Adkins and Brennen (1988)
used an extension of the theoretical model described briefly in section 10.10 to evaluate
the rotordynamic forces acting on the impeller discharge. They also made measure-
ments of the forces for an Impeller X/Volute A configuration in which the pump casing
structure external to the shroud was removed in order to minimize any contributions
from the leakage flow. The resulting experimental and theoretical values of F}, and F;
are presented in figure 10.21. First note that these values are significantly smaller than
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Figure 10.21. Comparison of the rotordynamic force contributions due to the impeller discharge pressure
variations as predicted by the theory of Adkins and Brennen (1988) (solid lines) with experimental
measurements using Impeller X and Volute A (at ¢y = 0.092) but with the casing surrounding the front
shroud removed to mimimize the leakage flow contributions.
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those of figure 10.20, indicating that the impeller discharge contributions are actually
smaller than those from the leakage flow. Second note that the theory of Adkins and
Brennen (1988) provides a reasonable estimate of the impeller discharge contribution
to the rotordynamic forces, at least within the range of whirl frequencies examined.

Using the Impeller X/Volute A configuration, Adkins and Brennen also made
experimental measurements of the pressure distributions in the impeller discharge flow
and in the leakage flow. These measurements allowed calculations of the stiffnesses,
K = F,(0) and k = F;(0). The results indicated that the leakage flow contributes
about 70% of K and about 40% of k; these fractional contributions are similar to
those expected from a comparison of figures 10.20 and 10.21.

About the same time, Childs (1987) used the bulk-flow model described in section
10.7 to evaluate the contributions to the rotordynamic forces from the discharge-
to-suction leakage flow. While his results exhibit some peculiar resonances not yet
observed experimentally, the general magnitude and form of Childs results are consis-
tent with the current conclusions. More recently, Guinzberg et al. (1990) have made
experimental measurements for a simple leakage flow geometry that clearly confirm
the importance of the rotordynamic effects caused by these flows. They also demon-
strate the variations in the leakage flow contributions with the geometry of the leakage
path, the leakage flow rate and the swirl in the flow at the entrance to the leakage path.

It is important to mention previous theoretical investigations of the rotordynamic
forces acting on impellers. A number of the early models (Thompson 1978, Colding-
Jorgensen 1979, Chamieh and Acosta 1981) considered only quasistatic perturbations
from the mean flow, so that only the stiffness can be evaluated. Ohashi and Shoji
(1984a) (see also Shoji and Ohashi 1980) considered two-dimensional, inviscid and
unseparated flow in the impeller, and solved the unsteady flow problem by singularity
methods. Near the design flow rate, their results compare well with their experimental
data, but at lower flows the results diverge. More recently, Tsujimoto et al. (1988)
have included the effects of a volute; their two-dimensional analysis yielded good
agreement with the measurements by Jery et al. (1985) on a two-dimensional impeller.

Finally, in view of the significant effect of cavitation on the radial forces (section
10.10), it is rather surprising to find that the effect of cavitation on the rotordynamic
forces in centrifugal pumps seems to be quite insignificant (Franz et al. 1990).

10.13 Moments and Lines of Action

Some data on the steady bending moments, M, and M,,, and on the rotordynamic
moments

M, = Byy = Byy; M, =By, =—By, (10.78)

have been presented by Franz et al. (1990) and Miskovish and Brennen (1992). This
data allows evaluation of the axial location of the lines of action of the corresponding
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radial and rotordynamic forces. Apart from its intrinsic value, knowledge of the line
of action of these forces provides clues as to the origin of the forces.

Typical sets of data taken from Miskovish and Brennen (1992) are presented in
figures 10.22 and 10.23. These were obtained for the Impeller X/Volute A combination
operating at a speed of 1000 rpm. For convenience, the axial location of the origin of
the reference coordinate system has been placed at the center of the impeller discharge.
Since the lines of action of the forces are not too far from this location, the moments
presented here are small, and, for this reason, the data for the moments is somewhat
scattered.

Steady forces and moments are presented for many whirl frequency ratios in figure
10.22. These forces and moments should, of course, be independent of the whirl
frequency ratio, and so the deviation of the data points from the mean for a given
flow coefficient represents a measure of the scatter in the data. Despite this scatter, the
moment data in figure 10.22 does suggest that a nonzero steady moment is present,
and that it changes with flow coefficient. The typical location for the line of action
of F,, which this data implies, may be best illustrated by an example. At ¢ = 0.06,
the steady vector force F,, has a magnitude of 0.067 (F,x ~ 0.03, F,, ~ 0.06) and an
angle 6 = 63° from the x-axis. The corresponding moment vector has a magnitude
0f 0.02 and an angle 6, ~ 180° from the x-axis. Consequently, the line of action of F,
is an axial distance upstream of the origin equal to 0.02sin(180 — 63)/0.067 = 0.27.
In other words, the line of action is about a quarter of a discharge radius upstream of
the center of the discharge. This is consistent with the previous observation (section
10.10) that the pressures acting on the exterior of the shroud also contribute to the
steady radial forces; this contribution displaces the line of action upstream of the
center of the discharge.

The data of figure 10.23 could be similarly used to evaluate the lines of action of
the rotordynamic forces whose components are F}, and F;. However, the moments M,
and M, are small over most of the range of whirl ratios, and lead to lines of action that
are less than 0.1 of a radius upstream of the center of the discharge in most cases. This
is consistent with other experiments on this same impeller/volute/casing combination
that suggest that the shroud force contribution to the rotordynamic matrices is smaller
than the impeller discharge contribution in this particular case.

10.14 Axial Flow Inducers

The rotordynamic forces in an unshrouded axial flow pump, or those caused by adding
an axial inducer to a centrifugal pump, are less well understood. One of the reasons for
this is that the phenomena will depend on the dynamic response of the tip clearance
flows, an unsteady flow that has not been studied in any detail. The experimental
data that does exist (Franz and Arndt 1986, Arndt and Franz 1986, Karyeaclis et al.
1989) clearly show that important and qualitatively different effects are manifest by
unshrouded axial flow pumps. These effects were not encountered with shrouded
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Figure 10.24. Rotordynamic forces for the helical inducer, Impeller VII, for four different flow
coefticients (from Arndt and Franz 1986).

centrifugal impellers. They are exemplified by figure 10.24, which presents data on
F, and F; for the 9° helical inducer, Impeller VII, tested alone at a series of flow
coefficients (Arndt and Franz 1986). At the higher flow coefficients, the variation
of F, and F; with whirl frequency ratio, w/ €2, is similar to the centrifugal pump
data. However, as the flow coefficient is decreased, somewhat pathological behavior
begins to appear in the values of F; (and to a lesser degree F},) at small and positive
whirl frequency ratios. This culminates in extremely complicated behavior at shut-
off (zero flow) in which F; changes sign several times for positive whirl frequency
ratios, implying several separate regions of destabilizing fluid-induced rotordynamic
effect. Note that the maximum values of F; that were recorded, are large, and could
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well be responsible for significant vibration in an axial flow pump or inducer. Similar
pathological rotordynamic effects were encountered with all the axial inducers tested,
including the inducer/impeller combination represented by the high pressure LOX
pump in the Space Shuttle Main Engine (Franz and Arndt 1986). However, the details
in the variations of F; with w/Q differed from one inducer to another.

Finally, we should note that the current codes for rotordynamic investigations
are not well adapted to deal with deviations from the quadratic forms for F,’ and F*
given in equations 10.13 and 10.14. Consequently, more remains to be done in terms of
rotordynamic analysis before the implications of such complex frequency-dependent
behavior of F); and F;* become clear.
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accumulator, 189
acoustic impedance, 174
acoustic impulse, 90
acoustic modes, 140
acoustic pressure, 90
acoustic pulse, 90
acoustic resonance, 166—167
actuator disc, 39, 147
added mass
cross-coupled, 213
direct, 213
affinity laws, 3
air content, 71
Alford effects, 230
angle of attack, 7
attached cavitation, 68
auto-oscillation, 138, 150, 153—-158
frequency, 154
hysteresis, 157
onset, 155
axial resonance, 138

backflow, 48, 105
cavitation, 69
deflector, 49
balance piston, 138
barotropic fluid, 173
bearings, 139, 209
m-film, 218
hydrodynamic, 214-221
long, 214, 216, 218,219
short, 214,217, 219
Bernoulli effect, 214
Bernoulli equation, 18
blade
cavitation, 68
drag, 23
flutter, 110, 137, 139, 167-169
leading edge, 128
lift, 23

momentum thickness, 29
passing frequency, 91, 138, 140, 166, 210
stresses, 2
thickness, 127
vibration, 139
wake, 28
boiler feed pumps, 137
boiling, 1, 81, 117
boundary layer, 28
separation, 75
breakdown, 123
cavitation number, 128
bubble
break up, 113
cavitation, 68, 111
cloud, 82, 112, 167
collapse, 80, 82, 112
concentration, 112
dynamics, 78—83
growth rate, 80, 117
migration, 113
natural frequency, 88
rebound, 82
relative motion, 113
resonant frequency, 89
shape, 112
size, 113
bulk flow model, 222

camber angle, 8
cascade
data, 126
drag coefficients, 126
lift coefficients, 126
partially cavitating, 127-134
supercavitating, 125-127
cavitating jet, 94
cavitation, 1, 55
blockage, 134
breakdown, 2, 64, 114
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cavitation (cont.)
damage, 1, 69, 83-89
desinent number, 70
effect on radial forces, 241

effect on rotordynamics, 241

effects, 246

erosion rates, 88

event rate, 92

head loss, 63, 132, 134
hysteresis, 70

in bearings, 218
inception, 58-62, 70-77
inception number, 56, 63
instabilities, 2

noise, 71, 83, 88-95, 138
noise scaling, 93
number, 56

parameters, 55-58

performance, 2, 63, 96, 105
performance correlations, 134-136

scaling, 62
thermal effect, 79
types of, 65-70

characteristic impedance, 188
choked cavitation number, 128, 131
Clausius-Clapeyron equation, 79

cloud
cavitation, 112

natural frequency, 113, 167
completely active system, 193
completely passive system, 192

compliance, 189
condensation shock, 113
conservative system, 192
Constant’s rule, 28

critical cavitation number, 119

critical speed, 139, 168, 209
critical temperature, 119
critical tension, 81

critical time, 117

damping

cross-coupled, 213

direct, 213
deaerator, 61
deflection angle, 8
depth charge, 86
deviation angle, 7, 27-28
diffuser, 44

axial, 45

radial, 45
diffusion factor, 29
discharge impedance, 195
discharge resistance, 195
disk friction loss, 30
displacement flow, 32
dissipationless systems, 189
distributed systems, 183

drag coefficient, 23
dynamic activity, 193
dynamic stall, 144

eccentricity, 212
efficiency

hydraulic, 17

shaft, 17
encounter diagram, 158
energy flux, 152, 191-195
erosion, 83

flat plate cascade, 9
flexible coatings, 86
flow coefficient, 11, 63

fluid/structure interaction, 137

forced vortex design, 39
Fourier analysis, 180
Francis turbine, 83

free stream turbulence, 75

free streamline methods, 122—-134, 144

free vortex design, 39
frequency
blade passing, 140

domain methods, 179-208

oscillation, 140-143
structural, 141
subsynchronous, 139

head coefficient, 11, 63
heave oscillations, 144
holography, 59

homogeneous flow model, 181

Hoover dam, 84
hydrofoil, 122
Joukowski, 75
NACA 4412, 73
partially cavitating, 122

supercavitating, 2, 122, 144

impedance, 188
impellers, 19-21, 209

axial, 5

centrifugal, 5

mixed flow, 5
incidence angle, 7
incubation time, 88
inducer, 2

blade angle, 131

blade cant, 103

designs, 102-104

helical, 21, 129

incidence, 104

leading edge, 103, 131

performance, 104111

rotordynamics, 249-251

SSME, 21, 66, 129, 251
inertance, 188
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inertia effect, 214
input impedance, 194
input resistance, 194
interblade spacing, 160
ITTC

headform, 90

tests, 59, 70

jet-wake structure, 34

leading edge, 109
flutter, 169
leakage flow, 30, 52, 139, 222
lift coefficient, 23, 144
fluctuating, 161
line of action, 142, 246249
line resonance, 138
linear cascade, 8, 22-30
liquid quality, 58
liquid temperature, 114
Lomakin effect, 215
loss coefficient, 24
LRC systems, 189
lumped parameter models, 189

magnetostrictive device, 84
meridional
Reynolds number, 224
surface, 5
velocity, 5

method of characteristics, 177-179

microbubbles, 58
microjet, 86
mixed flow pump, 5, 10, 97

nomenclature, Xi—xv
normal force, 212
NPSH, 57, 63, 134
NPSP, 56
nucleation, 58
homogeneous, 58
sites, 58
nuclei, 58, 68
critical size, 82
number distribution, 59
ocean, 59
population, 70
residence time, 61
number of blades, 32

oil whip, 217
organ-pipe modes, 190

partial cavitation, 69, 138
oscillation, 164, 169

Pogo instability, 139, 169-171, 207

potentially active system, 193

power density, 137
prerotation, 47, 105
pressure coefficient, 55
fluctuating, 161
mimimum, 56
pressure surface, 28
propagation operator, 188
propellers, 125
pseudo-cavitation, 61
pump
characteristic, 63, 151
supercavitating, 69
vibration, 137-171

radial bending moments, 142
radial cascade, 9, 30-34
radial equilibrium, 38
radial forces, 139, 142, 209-212, 232-241
Rayleigh-Plesset equation, 78, 91, 111
reentrant jet, 85
relative eddies, 32
remnant cloud, 86
residence time, 62
resistance, 188
resorber, 61
Reynolds number, 14, 55, 62, 75, 214
rotating cavitation, 138, 149-151
propagation speed, 150
rotating stall, 138, 140, 146—149
cavitation, 138
cell, 138
in vaned diffuser, 149
in volute, 149
propagation speed, 146, 149
rotor-stator interaction, 139
flow patterns, 158—159
forces, 159-164
rotordynamic forces, 139, 142, 209-251
rotordynamic instability, 137
rotordynamic moments, 142, 246249

Schiebe headform, 90

screening effects, 112

seals, 139, 209, 214-215
annular, 222-228
damper, 228
labyrinth, 229-230
long, 214
short, 214

secondary flows, 30, 47, 51-54

shock wave, 86

simple cascade, 9

slip factor, 8, 32

slip velocity, 8, 33

solidity, 7, 10, 108

sonic speed, 173

sound pressure level, 92

specific speed, 12—-14
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speed of sound, 173
spiral collector, 45
squeeze film dampers, 214, 221-222
stall flutter, 168
stator vanes, 44
stiffness
cross-coupled, 213
direct, 213
Strouhal number, 168
structural damping, 158
subscripts, Xiv
suction specific speed, 57, 64, 134
suction surface, 28
supercavitation, 69, 138
superscripts, xv
surface roughness, 62, 75
surge, 138, 150-153
surge tank, 189
susceptibility meter, 59
system instability, 151, 193
system order, 180

tangential force, 212
tension, 58

critical, 58
thermal effects, 114121
thermal suppression, 80
thermodynamic equilibrium, 112
Thoma cavitation factor, 57, 64
thrust, 142, 210
time domain methods, 172—-179
tip clearance, 76
tip clearance effect, 109
tip clearance flow, 51, 69
tip leakage flow, 51
tip vortex cavitation, 66
torque, 19, 142, 210

total head, 11

total pressure, 11

transfer matrices, 181-208
combinations, 184
determinant, 186
properties, 184—188
pumps, 195-206
quasi-reciprocal, 186
reciprocal, 186
symmetric, 187

transmission matrix, 183

uniform system, 183
unsteady flows, 2-3, 143-146, 172-208

ventilated cavity, 166
pulsation, 166

volute, 45
circular, 96, 233
matching, 20, 46
spiral, 20, 233
throat, 47

vortex
cavitation, 66
pressures, 61
shedding, 84, 139

water column separation, 178
water-hammer methods, 172
wear, 137
whirl
frequency, 211
frequency ratio, 212
motion, 212
orbit, 212
ratio, 213

Index



	Cover
	Frontmatter
	Contents
	Preface
	Nomenclature
	1 - Introduction
	1.1 Subject
	1.2 Cavitation
	1.3 Unsteady Flows
	1.4 Trends in Hydraulic Turbomachinery
	1.5 Book Structure

	2 - Basic Principles
	2.1 Geometric Notation
	2.2 Cascades
	2.3 Flow Notation
	2.4 Specific Speed
	2.5 Pump Geometries
	2.6 Energy Balance
	2.7 Noncavitating Pump Performance
	2.8 Several Specific Impellers and Pumps

	3 - Two-Dimensional Performance Analysis
	3.1 Introduction
	3.2 Linear Cascade Analyses
	3.3 Deviation Angle
	3.4 Viscous Effects in Linear Cascades
	3.5 Radial Cascade Analyses
	3.6 Viscous Effects in Radial Flows

	4 - Other Flow Features
	4.1 Introduction
	4.2 Three-Dimensional Flow Effects
	4.3 Radial Equilibrium Solution: An Example
	4.4 Discharge Flow Management
	4.5 Prerotation
	4.6 Other Secondary Flows

	5 - Cavitation Parameters and Inception
	5.1 Introduction
	5.2 Cavitation Parameters
	5.3 Cavitation Inception
	5.4 Scaling of Cavitation Inception
	5.5 Pump Performance
	5.6 Types of Impeller Cavitation
	5.7 Cavitation Inception Data

	6 - Bubble Dynamics, Damage and Noise
	6.1 Introduction
	6.2 Cavitation Bubble Dynamics
	6.3 Cavitation Damage
	6.4 Mechanism of Cavitation Damage
	6.5 Cavitation Noise

	7 - Cavitation and Pump Performance
	7.1 Introduction
	7.2 Typical Pump Performance Data
	7.3 Inducer Designs
	7.4 Inducer Performance
	7.5 Effects of Inducer Geometry
	7.6 Analyses of Cavitation in Pumps
	7.7 Thermal Effect on Pump Performance
	7.8 Free Streamline Methods
	7.9 Supercavitating Cascades
	7.10 Partially Cavitating Cascades
	7.11 Cavitation Performance Correlations

	8 - Pump Vibration
	8.1 Introduction
	8.2 Frequencies of Oscillation
	8.3 Unsteady Flows
	8.4 Rotating Stall
	8.5 Rotating Cavitation
	8.6 Surge
	8.7 Auto-Oscillation
	8.8 Rotor-Stator Interaction: Flow Patterns
	8.9 Rotor-Stator Interaction: Forces
	8.10 Developed Cavity Oscillation
	8.11 Acoustic Resonances
	8.12 Blade Flutter
	8.13 Pogo Instabilities

	9 - Unsteady Flow in Hydraulic Systems
	9.1 Introduction
	9.2 Time Domain Methods
	9.3 Wave Propagation in Ducts
	9.4 Method of Characteristics
	9.5 Frequency Domain Methods
	9.6 Order of the System
	9.7 Transfer Matrices
	9.8 Distributed Systems
	9.9 Combinations of Transfer Matrices
	9.10 Properties of Transfer Matrices
	9.11 Some Simple Transfer Matrices
	9.12 Fluctuation Energy Flux
	9.13 Non-Cavitating Pumps
	9.14 Cavitating Inducers
	9.15 System with Rigid Body Vibration

	10 - Radial and Rotordynamic Forces
	10.1 Introduction
	10.2 Notation
	10.3 Hydrodynamic Bearings and Seals
	10.4 Bearings at Low Reynolds Numbers
	10.5 Annulus at High Reynolds Numbers
	10.6 Squeeze Film Dampers
	10.7 Turbulent Annular Seals
	10.8 Labyrinth Seals
	10.9 Blade Tip Rotordynamic Effects
	10.10 Steady Radial Forces
	10.11 Effect of Cavitation
	10.12 Centrifugal Pumps
	10.13 Moments and Lines of Action
	10.14 Axial Flow Inducers

	Bibliography
	Index

