ENGINEERING MECHANICS

STATICS

J.L. MERIAM L.G. KRAIGE SEVENTH EDITION




This page intentionally left blank



WILEY ® |
P L U S accessible, affordable,
active learning

www.wileyplus.com

WileyPLUS is an innovative, research-based, online environment for
effective teaching and learning.

) O)
——
WileyPLUS...

..motivates students with ...supports instructors with
confidence-boosting reliable resources that
feedback and proof of reinforce course goals
progress, 24/7. inside and outside of

the classroom.

.
|

FINANCIAL ACCOUNTING

Includes
~ Interactive
. Textbook &
- Resources

WileyPLUS... Learn More.

www.wileyplus.com




PLUS C

www.wileyplus.com

ALL THE HELP, RESOURCES, AND PERSONAL SUPPORT
YOU AND YOUR STUDENTS NEED!

1‘1 www.wileyplus.com/resources J

151'. DAY OF "WILEY ©

cmostona| | PLUS

Student Partner Program

2-Minute Tutorials and all Student support from an Collaborate with your colleagues,
of the resources you & your experienced student user. find a mentor, attend virtual and live
students need to get started. events, and view resources.
www.WhereFacultyConnect.com

Zyier o
PLUS

QuickStart

Pre-loaded, ready-to-use Technical Support 24 /7 Your WileyPLUS Account Manager.
assignments and presentations. FAQs, online chat, Personal training and
Created by subject matter experts. and phone support. implementation support.
www.wileyplus.com/support




Engineering Mechanics

Volume 1

Staftics

Seventh Edition



This page intentionally left blank



Engineering Mechanics

Volume

tatics

Seventh Edition

J. L. Meriam

L. G. Kraige

Virginia Polytechnic Institute and State University

WILEY
John Wiley & Sons, Inc.



On the Cover: The cable-stayed Millau Viaduct spans the Tarn River Valley in southern France.
Designed by structural engineer Michel Virlogeux and architect Norman Foster, the viaduct opened in
2004. Both the pylons and the separate masts which rest on the pylons set world records for height.

Associate Publisher Don Fowley

Acquisitions Editor Linda Ratts

Editorial Assistant Christopher Teja

Senior Production Editor Sujin Hong; Production Management Services provided by
Camelot Editorial Services, LLC

Marketing Manager Christopher Ruel

Senior Designer Maureen Eide

Cover Design Maureen Eide

Cover Photo Image Copyright Shutterstock/Richard Semik 2011

Electronic Illustrations Precision Graphics

Senior Photo Editor Lisa Gee

New Media Editor Andre Legaspi

This book was set in 10.5/12 ITC Century Schoolbook by PreMediaGlobal, and printed and bound by
RR Donnelley. The cover was printed by RR Donnelley.

This book is printed on acid-free paper. «

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding
for more than 200 years, helping people around the world meet their needs and fulfill their
aspirations. Our company is built on a foundation of principles that include responsibility to the
communities we serve and where we live and work. In 2008, we launched a Corporate Citizenship
Initiative, a global effort to address the environmental, social, economic, and ethical challenges we
face in our business. Among the issues we are addressing are carbon impact, paper specifications
and procurement, ethical conduct within our business and among our vendors, and community and
charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107
or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com.
Requests to the Publisher for permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008,
website http:/www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for
use in their courses during the next academic year. These copies are licensed and may not be sold or
transferred to a third party. Upon completion of the review period, please return the evaluation
copy to Wiley. Return instructions and a free of charge return mailing label are available at
www.wiley.com/go/returnlabel. If you have chosen to adopt this textbook for use in your course,
please accept this book as your complimentary desk copy. Outside of the United States, please
contact your local sales representative.

Library of Congress Cataloging-in-Publication Data

Meriam, J. L. (James L.)
Engineering mechanics / J.L. Meriam, L.G. Kraige.—7th ed.
p. cm.
Includes index.
ISBN: 978-0-470-61473-0
ISBN: 978-0-470-91787-9 (BRV)
1. Mechanics, Applied. 1. Kraige, L.G. (L. Glenn) II. Title.
TA350.M458 2006
620.1—dc 2006003346

Printed in the United States of America
10987654321


http://www.copyright.com
http://www.wiley.com/go/permissions

Foreword

This series of textbooks was begun in 1951 by the late Dr. James L. Meriam. At that
time, the books represented a revolutionary transformation in undergraduate mechanics
education. They became the definitive textbooks for the decades that followed as well as
models for other engineering mechanics texts that have subsequently appeared. Published
under slightly different titles prior to the 1978 First Editions, this textbook series has al-
ways been characterized by logical organization, clear and rigorous presentation of the the-
ory, instructive sample problems, and a rich collection of real-life problems, all with a high
standard of illustration. In addition to the U.S. versions, the books have appeared in SI ver-
sions and have been translated into many foreign languages. These texts collectively repre-
sent an international standard for undergraduate texts in mechanics.

The innovations and contributions of Dr. Meriam (1917-2000) to the field of engineer-
ing mechanics cannot be overstated. He was one of the premier engineering educators of
the second half of the twentieth century. Dr. Meriam earned his B.E., M. Eng., and Ph.D.
degrees from Yale University. He had early industrial experience with Pratt and Whitney
Aircraft and the General Electric Company. During the Second World War he served in the
U.S. Coast Guard. He was a member of the faculty of the University of California-Berkeley,
Dean of Engineering at Duke University, a faculty member at the California Polytechnic
State University—San Luis Obispo, and visiting professor at the University of California—
Santa Barbara, finally retiring in 1990. Professor Meriam always placed great emphasis on
teaching, and this trait was recognized by his students wherever he taught. At Berkeley in
1963, he was the first recipient of the Outstanding Faculty Award of Tau Beta Pi, given pri-
marily for excellence in teaching. In 1978, he received the Distinguished Educator Award
for Outstanding Service to Engineering Mechanics Education from the American Society
for Engineering Education, and in 1992 was the Society’s recipient of the Benjamin Garver
Lamme Award, which is ASEE’s highest annual national award.

Dr. L. Glenn Kraige, coauthor of the Engineering Mechanics series since the early
1980s, has also made significant contributions to mechanics education. Dr. Kraige earned
his B.S., M.S., and Ph.D. degrees at the University of Virginia, principally in aerospace engi-
neering, and he currently serves as Professor of Engineering Science and Mechanics at
Virginia Polytechnic Institute and State University. During the mid-1970s, I had the singular
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Foreword

pleasure of chairing Professor Kraige’s graduate committee and take particular pride in the
fact that he was the first of my forty-five Ph.D. graduates. Professor Kraige was invited by
Professor Meriam to team with him and thereby ensure that the Meriam legacy of textbook
authorship excellence was carried forward to future generations. For the past three
decades, this highly successful team of authors has made an enormous and global impact on
the education of several generations of engineers.

In addition to his widely recognized research and publications in the field of spacecraft
dynamics, Professor Kraige has devoted his attention to the teaching of mechanics at both
introductory and advanced levels. His outstanding teaching has been widely recognized and
has earned him teaching awards at the departmental, college, university, state, regional, and
national levels. These include the Francis J. Maher Award for excellence in education in the
Department of Engineering Science and Mechanics, the Wine Award for excellence in uni-
versity teaching, and the Outstanding Educator Award from the State Council of Higher
Education for the Commonwealth of Virginia. In 1996, the Mechanics Division of ASEE
bestowed upon him the Archie Higdon Distinguished Educator Award. The Carnegie Foun-
dation for the Advancement of Teaching and the Council for Advancement and Support of
Education awarded him the distinction of Virginia Professor of the Year for 1997. During
2004-2006, he held the W. S. “Pete” White Chair for Innovation in Engineering Education,
and in 2006 he teamed with Professors Scott L. Hendricks and Don H. Morris as recipients of
the XCaliber Award for Teaching with Technology. In his teaching, Professor Kraige stresses
the development of analytical capabilities along with the strengthening of physical insight and
engineering judgment. Since the early 1980s, he has worked on personal-computer software
designed to enhance the teaching/learning process in statics, dynamics, strength of materials,
and higher-level areas of dynamics and vibrations.

The Seventh Edition of Engineering Mechanics continues the same high standards set
by previous editions and adds new features of help and interest to students. It contains a
vast collection of interesting and instructive problems. The faculty and students privileged
to teach or study from Professors Meriam and Kraige’s Engineering Mechanics will benefit
from the several decades of investment by two highly accomplished educators. Following
the pattern of the previous editions, this textbook stresses the application of theory to
actual engineering situations, and at this important task it remains the best.

John L. Junkins

Distinguished Professor of Aerospace Engineering

Holder of the George J. Eppright Chair Professorship in Engineering
Texas A&M University

College Station, Texas
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Engineering mechanics is both a foundation and a framework for most of the branches
of engineering. Many of the topics in such areas as civil, mechanical, aerospace, and agricul-
tural engineering, and of course engineering mechanics itself, are based upon the subjects
of statics and dynamics. Even in a discipline such as electrical engineering, practitioners, in
the course of considering the electrical components of a robotic device or a manufacturing
process, may find themselves first having to deal with the mechanics involved.

Thus, the engineering mechanics sequence is critical to the engineering curriculum.
Not only is this sequence needed in itself, but courses in engineering mechanics also serve
to solidify the student’s understanding of other important subjects, including applied math-
ematics, physics, and graphics. In addition, these courses serve as excellent settings in
which to strengthen problem-solving abilities.

Philosophy

The primary purpose of the study of engineering mechanics is to develop the capacity
to predict the effects of force and motion while carrying out the creative design functions
of engineering. This capacity requires more than a mere knowledge of the physical and
mathematical principles of mechanics; also required is the ability to visualize physical con-
figurations in terms of real materials, actual constraints, and the practical limitations
which govern the behavior of machines and structures. One of the primary objectives in a
mechanics course is to help the student develop this ability to visualize, which is so vital to
problem formulation. Indeed, the construction of a meaningful mathematical model is
often a more important experience than its solution. Maximum progress is made when the
principles and their limitations are learned together within the context of engineering
application.

There is a frequent tendency in the presentation of mechanics to use problems mainly
as a vehicle to illustrate theory rather than to develop theory for the purpose of solving
problems. When the first view is allowed to predominate, problems tend to become overly
idealized and unrelated to engineering with the result that the exercise becomes dull, acad-
emic, and uninteresting. This approach deprives the student of valuable experience in for-
mulating problems and thus of discovering the need for and meaning of theory. The second

vii
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view provides by far the stronger motive for learning theory and leads to a better balance
between theory and application. The crucial role played by interest and purpose in provid-
ing the strongest possible motive for learning cannot be overemphasized.

Furthermore, as mechanics educators, we should stress the understanding that, at best,
theory can only approximate the real world of mechanics rather than the view that the real
world approximates the theory. This difference in philosophy is indeed basic and distinguishes
the engineering of mechanics from the science of mechanics.

Over the past several decades, several unfortunate tendencies have occurred in engineer-
ing education. First, emphasis on the geometric and physical meanings of prerequisite mathe-
matics appears to have diminished. Second, there has been a significant reduction and even
elimination of instruction in graphics, which in the past enhanced the visualization and repre-
sentation of mechanics problems. Third, in advancing the mathematical level of our treat-
ment of mechanics, there has been a tendency to allow the notational manipulation of vector
operations to mask or replace geometric visualization. Mechanics is inherently a subject
which depends on geometric and physical perception, and we should increase our efforts to
develop this ability.

A special note on the use of computers is in order. The experience of formulating prob-
lems, where reason and judgment are developed, is vastly more important for the student
than is the manipulative exercise in carrying out the solution. For this reason, computer
usage must be carefully controlled. At present, constructing free-body diagrams and formu-
lating governing equations are best done with pencil and paper. On the other hand, there
are instances in which the solution to the governing equations can best be carried out and
displayed using the computer. Computer-oriented problems should be genuine in the sense
that there is a condition of design or criticality to be found, rather than “makework” prob-
lems in which some parameter is varied for no apparent reason other than to force artificial
use of the computer. These thoughts have been kept in mind during the design of the
computer-oriented problems in the Seventh Edition. To conserve adequate time for problem
formulation, it is suggested that the student be assigned only a limited number of the
computer-oriented problems.

As with previous editions, this Seventh Edition of Engineering Mechanics is written with
the foregoing philosophy in mind. It is intended primarily for the first engineering course in
mechanics, generally taught in the second year of study. Engineering Mechanics is written in
a style which is both concise and friendly. The major emphasis is on basic principles and
methods rather than on a multitude of special cases. Strong effort has been made to show both
the cohesiveness of the relatively few fundamental ideas and the great variety of problems
which these few ideas will solve.

Pedagogical Features

The basic structure of this textbook consists of an article which rigorously treats the par-
ticular subject matter at hand, followed by one or more Sample Problems, followed by a group
of Problems. There is a Chapter Review at the end of each chapter which summarizes the main
points in that chapter, followed by a Review Problem set.

Problems

The 89 Sample Problems appear on specially colored pages by themselves. The solu-
tions to typical statics problems are presented in detail. In addition, explanatory and
cautionary notes (Helpful Hints) in blue type are number-keyed to the main presentation.

There are 1058 homework exercises, of which approximately 50 percent are new to the
Seventh Edition. The problem sets are divided into Introductory Problems and Representative
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Problems. The first section consists of simple, uncomplicated problems designed to help stu-
dents gain confidence with the new topic, while most of the problems in the second section are
of average difficulty and length. The problems are generally arranged in order of increasing
difficulty. More difficult exercises appear near the end of the Representative Problems and are
marked with the symbol ». Computer-Oriented Problems, marked with an asterisk, appear in
a special section at the conclusion of the Review Problems at the end of each chapter. The an-
swers to all problems have been provided in a special section near the end of the textbook.

In recognition of the need for emphasis on SI units, there are approximately two prob-
lems in SI units for every one in U.S. customary units. This apportionment between the two
sets of units permits anywhere from a 50-50 emphasis to a 100-percent SI treatment.

A notable feature of the Seventh Edition, as with all previous editions, is the wealth of
interesting and important problems which apply to engineering design. Whether directly
identified as such or not, virtually all of the problems deal with principles and procedures
inherent in the design and analysis of engineering structures and mechanical systems.

Illustrations

In order to bring the greatest possible degree of realism and clarity to the illustrations,
this textbook series continues to be produced in full color. It is important to note that color
is used consistently for the identification of certain quantities:

e red for forces and moments
e green for velocity and acceleration arrows

* orange dashes for selected trajectories of moving points

Subdued colors are used for those parts of an illustration which are not central to the
problem at hand. Whenever possible, mechanisms or objects which commonly have a cer-
tain color will be portrayed in that color. All of the fundamental elements of technical illus-
tration which have been an essential part of this Engineering Mechanics series of textbooks
have been retained. The author wishes to restate the conviction that a high standard of
illustration is critical to any written work in the field of mechanics.

Features New to This Edition

While retaining the hallmark features of all previous editions, we have incorporated
these improvements:

e All theory portions have been reexamined in order to maximize rigor, clarity,
readability, and level of friendliness.

* Key Concepts areas within the theory presentation have been specially marked and
highlighted.

* The Chapter Reviews are highlighted and feature itemized summaries.

¢ Approximately 50 percent of the homework problems are new to this Seventh Edition.
All new problems have been independently solved in order to ensure a high degree of
accuracy.

* New Sample Problems have been added, including ones with computer-oriented
solutions.

¢ All Sample Problems are printed on specially colored pages for quick identification.

* Within-the-chapter photographs have been added in order to provide additional
connection to actual situations in which statics has played a major role.
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Organization

In Chapter 1, the fundamental concepts necessary for the study of mechanics are
established.

In Chapter 2, the properties of forces, moments, couples, and resultants are developed
so that the student may proceed directly to the equilibrium of nonconcurrent force systems
in Chapter 3 without unnecessarily belaboring the relatively trivial problem of the equilib-
rium of concurrent forces acting on a particle.

In both Chapters 2 and 3, analysis of two-dimensional problems is presented in
Section A before three-dimensional problems are treated in Section B. With this arrange-
ment, the instructor may cover all of Chapter 2 before beginning Chapter 3 on equilib-
rium, or the instructor may cover the two chapters in the order 2A, 3A, 2B, 3B. The latter
order treats force systems and equilibrium in two dimensions and then treats these topics
in three dimensions.

Application of equilibrium principles to simple trusses and to frames and machines is
presented in Chapter 4 with primary attention given to two-dimensional systems. A suffi-
cient number of three-dimensional examples are included, however, to enable students to
exercise more general vector tools of analysis.

The concepts and categories of distributed forces are introduced at the beginning of
Chapter 5, with the balance of the chapter divided into two main sections. Section A treats
centroids and mass centers; detailed examples are presented to help students master early
applications of calculus to physical and geometrical problems. Section B includes the special
topics of beams, flexible cables, and fluid forces, which may be omitted without loss of conti-
nuity of basic concepts.

Chapter 6 on friction is divided into Section A on the phenomenon of dry friction and
Section B on selected machine applications. Although Section B may be omitted if time is
limited, this material does provide a valuable experience for the student in dealing with
both concentrated and distributed friction forces.

Chapter 7 presents a consolidated introduction to virtual work with applications lim-
ited to single-degree-of-freedom systems. Special emphasis is placed on the advantage of the
virtual-work and energy method for interconnected systems and stability determination.
Virtual work provides an excellent opportunity to convince the student of the power of
mathematical analysis in mechanics.

Moments and products of inertia of areas are presented in Appendix A. This topic helps
to bridge the subjects of statics and solid mechanics. Appendix C contains a summary re-
view of selected topics of elementary mathematics as well as several numerical techniques
which the student should be prepared to use in computer-solved problems. Useful tables of
physical constants, centroids, and moments of inertia are contained in Appendix D.

Supplements

The following items have been prepared to complement this textbook:

Instructor’s Manual

Prepared by the authors and independently checked, fully worked solutions to all odd
problems in the text are available to faculty by contacting their local Wiley representative.

Instructor Lecture Resources

The following resources are available online at www.wiley.com/college/meriam. There
may be additional resources not listed.
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WileyPlus: A complete online learning system to help prepare and present lectures, assign
and manage homework, keep track of student progress, and customize your course content
and delivery. See the description at the back of the book for more information, and the web-
site for a demonstration. Talk to your Wiley representative for details on setting up your
WileyPlus course.

Lecture software specifically designed to aid the lecturer, especially in larger classrooms. Writ-
ten by the author and incorporating figures from the textbooks, this software is based on the
Macromedia Flash platform. Major use of animation, concise review of the theory, and numer-
ous sample problems make this tool extremely useful for student self-review of the material.

All figures in the text are available in electronic format for use in creating lecture presen-
tations.

All Sample Problems are available as electronic files for display and discussion in the
classroom.
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Conversion Factors

U.S. Customary Units to SI Units

To convert from To Multiply by
(Acceleration)

foot/second? (ft/sec?) meter/second? (m/s?) 3.048 x 10~ 1*

inch/second? (in./sec?) meter/second? (m/s%) 2.54 X 1072
(Area)

foot? (ft?) meter? (m?) 9.2903 x 102

inch? (in.?) meter? (m?) 6.4516 X 10~ **
(Density)

pound mass/inch® (Ibm/in.?) kilogram/meter® (kg/m?) 2.7680 x 10*

pound mass/foot® (Ibm/ft?) kilogram/meter?® (kg/m?) 1.6018 X 10
(Force)

kip (1000 Ib) newton (N) 4.4482 % 10°

pound force (Ib) newton (N) 4.4482
(Length)

foot (ft) meter (m) 3.048 x 10 1*

inch (in.) meter (m) 2.54 X 1072

mile (mi), (U.S. statute) meter (m) 1.6093 x 103

mile (mi), (international nautical) meter (m) 1.852 X 10%*
(Mass)

pound mass (Ibm) kilogram (kg) 4.5359 X 1071

slug (Ib-sec?/ft) kilogram (kg) 1.4594 X 10

ton (2000 Ibm) kilogram (kg) 9.0718 X 102
(Moment of force)

pound-foot (Ib-ft) newton-meter (N - m) 1.3558

pound-inch (Ib-in.) newton-meter (N - m) 0.1129 8
(Moment of inertia, area)

inch* meter* (m*) 41.623 X 1078
(Moment of inertia, mass)

pound-foot-second? (Ib-ft-sec?) kilogram-meter? (kg - m?) 1.3558
(Momentum, linear)

pound-second (Ib-sec) kilogram-meter/second (kg - m/s) 4.4482
(Momentum, angular)

pound-foot-second (1b-ft-sec) newton-meter-second (kg - m?/s) 1.3558
(Power)

foot-pound/minute (ft-lb/min) watt (W) 2.2597 X 102

horsepower (550 ft-1b/sec) watt (W) 7.4570 X 102
(Pressure, stress)

atmosphere (std)(14.7 Ib/in.2) newton/meter? (N/m? or Pa) 1.0133 x 10°

pound/foot? (Ib/ft?) newton/meter? (N/m? or Pa) 4.7880 X 10

pound/inch? (Ib/in.? or psi) newton/meter? (N/m? or Pa) 6.8948 x 10°
(Spring constant)

pound/inch (Ib/in.) newton/meter (N/m) 1.7513 x 102
(Velocity)

foot/second (ft/sec) meter/second (m/s) 3.048 X 107 1*

knot (nautical mi/hr) meter/second (m/s) 5.1444 x 107!

mile/hour (mi/hr)
mile/hour (mi/hr)

(Volume)
foot? (ft3)
inch? (in.?)

(Work, Energy)
British thermal unit (BTU)
foot-pound force (ft-1b)
kilowatt-hour (kw-h)

*Exact value

meter/second (m/s)
kilometer/hour (km/h)

meter® (m?)
meter® (m?)

joule (J)
joule (J)
joule (J)

4.4704 x 1071
1.6093

2.8317 X 1072
1.6387 X 1075

1.0551 x 103
1.3558
3.60 X 108+




S1 Units Used in Mechanics

Quantity Unit SI Symbol
(Base Units)
Length meter* m
Mass kilogram kg
Time second S
(Derived Units)
Acceleration, linear meter/second? m/s?
Acceleration, angular radian/second? rad/s?
Area meter? m?
Density kilogram/meter? kg/m?
Force newton N (= kg - m/s?)
Frequency hertz Hz (= 1/s)
Impulse, linear newton-second N-s
Impulse, angular newton-meter-second N-m-s
Moment of force newton-meter N-m
Moment of inertia, area meter? m*
Moment of inertia, mass kilogram-meter? kg - m?

Momentum, linear
Momentum, angular
Power

kilogram-meter/second kg-m/s (=N-s)

kilogram-meter?/second
watt

kg-m%s (=N-m-s)
W (=J/s = N-m/s)

Pressure, stress pascal Pa (= N/m?)

Product of inertia, area meter? m*

Product of inertia, mass kilogram-meter? kg - m?

Spring constant newton/meter N/m

Velocity, linear meter/second m/s

Velocity, angular radian/second rad/s

Volume meter? m?

Work, energy joule J(=N-m)
(Supplementary and Other Acceptable Units)

Distance (navigation) nautical mile (= 1,852 km)

Mass
Plane angle

ton (metric)
degrees (decimal)

t (= 1000 kg)

Plane angle radian —

Speed knot (1.852 km/h)
Time day d

Time hour h

Time minute min

*Also spelled metre.

Selected Rules for Writing Metric Quantities
. . 1. (a) Use prefixes to keep numerical values generally between 0.1 and 1000.
Sl Unit Prefixes (b) Use of the prefixes hecto, deka, deci, and centi should generally be avoided
Multiplication Factor Prefix Symbol except for certain areas or volumes where the numbers would be awkward
1000 000 000 000 = 10'2  tera T otherwise.
1 00(1) 888 888 i igz giga I\G/I (c) Use prefixes only in the numerator of unit combinations. The one exception
1000 ; 103 Eileé; & k is the base unit kilogram. (Example: write kN/m not N/mm; J/kg not md/g)
100 = 102 hecto h (d) Avoid double prefixes. (Example: write GN not kMN)
10 = 10 deka da 2. Unit designations
0.1= 10: ; deCi. d (a) Use a dot for multiplication of units. (Example: write N - m not Nm)
00081 z 18, 3 ;?Hfll fn (b) Avoid ambiguous double solidus. (Example: write N/m? not N/m/m)
0.000001 = 10°® micro (¢c) Exponents refer to entire unit. (Example: mm? means (mm)?)
0.000 000 001 = 10"  nano n 3. Number grouping
0.000 000 000 001 = 10~ ' pico P Use a space rather than a comma to separate numbers in groups of three,
counting from the decimal point in both directions. Example: 4 607 321.048 72)
Space may be omitted for numbers of four digits. (Example: 4296 or 0.0476)
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Structures which support large forces must be designed with the principles of mechanics foremost in mind.
In this view of New York, one can see a variety of such structures.

© fotoVoyager/iStockphoto



INnfroduction

to Statics

CHAPTER OUTLINE

1/1T Mechanics 1/6 Law of Gravitation

1/2 Basic Concepts 1/7 Accuracy, Limits, and Approximations
1/3 Scalars and Vectors 1/8 Problem Solving in Statics

1/4 Newton’s Laws 1/9 Chapter Review

1/5 Units

1/1 Mechanics

Mechanics is the physical science which deals with the effects of
forces on objects. No other subject plays a greater role in engineering
analysis than mechanics. Although the principles of mechanics are few,
they have wide application in engineering. The principles of mechanics
are central to research and development in the fields of vibrations, sta-
bility and strength of structures and machines, robotics, rocket and
spacecraft design, automatic control, engine performance, fluid flow,
electrical machines and apparatus, and molecular, atomic, and sub-
atomic behavior. A thorough understanding of this subject is an essen-
tial prerequisite for work in these and many other fields.

Mechanics is the oldest of the physical sciences. The early history of
this subject is synonymous with the very beginnings of engineering. The
earliest recorded writings in mechanics are those of Archimedes
(287-212 B.C.) on the principle of the lever and the principle of buoy-
ancy. Substantial progress came later with the formulation of the laws
of vector combination of forces by Stevinus (1548-1620), who also for-
mulated most of the principles of statics. The first investigation of a dy-
namics problem is credited to Galileo (1564-1642) for his experiments
with falling stones. The accurate formulation of the laws of motion, as
well as the law of gravitation, was made by Newton (1642-1727), who
also conceived the idea of the infinitesimal in mathematical analysis.
Substantial contributions to the development of mechanics were also
made by da Vinci, Varignon, Euler, D’Alembert, Lagrange, Laplace, and
others.

In this book we will be concerned with both the development of the
principles of mechanics and their application. The principles of mechan-
ics as a science are rigorously expressed by mathematics, and thus

Sir Isaac Newton

©S. Terry/Photo Researchers, Inc.
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mathematics plays an important role in the application of these princi-
ples to the solution of practical problems.

The subject of mechanics is logically divided into two parts: statics,
which concerns the equilibrium of bodies under action of forces, and
dynamics, which concerns the motion of bodies. Engineering Mechan-
ics is divided into these two parts, Vol. 1 Statics and Vol. 2 Dynamics.

1/2 Basic Concepts

The following concepts and definitions are basic to the study of me-
chanics, and they should be understood at the outset.

Space is the geometric region occupied by bodies whose positions
are described by linear and angular measurements relative to a coordi-
nate system. For three-dimensional problems, three independent coordi-
nates are needed. For two-dimensional problems, only two coordinates
are required.

Time is the measure of the succession of events and is a basic quan-
tity in dynamics. Time is not directly involved in the analysis of statics
problems.

Mass is a measure of the inertia of a body, which is its resistance to
a change of velocity. Mass can also be thought of as the quantity of mat-
ter in a body. The mass of a body affects the gravitational attraction
force between it and other bodies. This force appears in many applica-
tions in statics.

Force is the action of one body on another. A force tends to move a
body in the direction of its action. The action of a force is characterized
by its magnitude, by the direction of its action, and by its point of appli-
cation. Thus force is a vector quantity, and its properties are discussed
in detail in Chapter 2.

A particle is a body of negligible dimensions. In the mathematical
sense, a particle is a body whose dimensions are considered to be near
zero so that we may analyze it as a mass concentrated at a point. We
often choose a particle as a differential element of a body. We may treat
a body as a particle when its dimensions are irrelevant to the descrip-
tion of its position or the action of forces applied to it.

Rigid body. A body is considered rigid when the change in distance
between any two of its points is negligible for the purpose at hand. For
instance, the calculation of the tension in the cable which supports the
boom of a mobile crane under load is essentially unaffected by the small
internal deformations in the structural members of the boom. For the
purpose, then, of determining the external forces which act on the boom,
we may treat it as a rigid body. Statics deals primarily with the calcula-
tion of external forces which act on rigid bodies in equilibrium. Determi-
nation of the internal deformations belongs to the study of the mechanics
of deformable bodies, which normally follows statics in the curriculum.

1/3 Scalars and Vectors

We use two kinds of quantities in mechanics—scalars and vectors.
Scalar quantities are those with which only a magnitude is associated.
Examples of scalar quantities are time, volume, density, speed, energy,
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and mass. Vector quantities, on the other hand, possess direction as well
as magnitude, and must obey the parallelogram law of addition as de-
scribed later in this article. Examples of vector quantities are displace-
ment, velocity, acceleration, force, moment, and momentum. Speed is a
scalar. It is the magnitude of velocity, which is a vector. Thus velocity is
specified by a direction as well as a speed.

Vectors representing physical quantities can be classified as free,
sliding, or fixed.

A free vector is one whose action is not confined to or associated
with a unique line in space. For example, if a body moves without rota-
tion, then the movement or displacement of any point in the body may
be taken as a vector. This vector describes equally well the direction and
magnitude of the displacement of every point in the body. Thus, we may
represent the displacement of such a body by a free vector.

A sliding vector has a unique line of action in space but not a
unique point of application. For example, when an external force acts on
a rigid body, the force can be applied at any point along its line of action
without changing its effect on the body as a whole,* and thus it is a slid-
ing vector.

A fixed vector is one for which a unique point of application is
specified. The action of a force on a deformable or nonrigid body must be
specified by a fixed vector at the point of application of the force. In this
instance the forces and deformations within the body depend on the
point of application of the force, as well as on its magnitude and line of
action.

Conventions for Equations and Diagrams

A vector quantity V is represented by a line segment, Fig. 1/1, hav-
ing the direction of the vector and having an arrowhead to indicate the
sense. The length of the directed line segment represents to some conve-
nient scale the magnitude [V] of the vector, which is printed with light-
face italic type V. For example, we may choose a scale such that an
arrow one inch long represents a force of twenty pounds.

In scalar equations, and frequently on diagrams where only the
magnitude of a vector is labeled, the symbol will appear in lightface
italic type. Boldface type is used for vector quantities whenever the di-
rectional aspect of the vector is a part of its mathematical representa-
tion. When writing vector equations, always be certain to preserve the
mathematical distinction between vectors and scalars. In handwritten
work, use a distinguishing mark for each vector quantity, such as an un-
derline, V, or an arrow over the symbol, V, to take the place of boldface
type in print.

Working with Vectors

The direction of the vector V may be measured by an angle 6 from
some known reference direction as shown in Fig. 1/1. The negative of V
is a vector —V having the same magnitude as V but directed in the
sense opposite to V, as shown in Fig. 1/1.

*This is the principle of transmissibility, which is discussed in Art. 2/2.

Figure 1/1
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Figure 1/3
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Figure 1/2

Vectors must obey the parallelogram law of combination. This law
states that two vectors V; and Vy, treated as free vectors, Fig. 1/2a, may
be replaced by their equivalent vector V, which is the diagonal of the
parallelogram formed by V; and V; as its two sides, as shown in Fig.
1/2b. This combination is called the vector sum, and is represented by
the vector equation

V=V, +V,

where the plus sign, when used with the vector quantities (in boldface
type), means vector and not scalar addition. The scalar sum of the mag-
nitudes of the two vectors is written in the usual way as V; + V,. The
geometry of the parallelogram shows that V # V; + V.

The two vectors V; and V,, again treated as free vectors, may also be
added head-to-tail by the triangle law, as shown in Fig. 1/2¢c, to obtain the
identical vector sum V. We see from the diagram that the order of addi-
tion of the vectors does not affect their sum, so that V; + Vo = V5, + V.

The difference V; — Vy between the two vectors is easily obtained
by adding —Vj, to V; as shown in Fig. 1/3, where either the triangle or
parallelogram procedure may be used. The difference V' between the
two vectors is expressed by the vector equation

V/:VI_VZ

where the minus sign denotes vector subtraction.

Any two or more vectors whose sum equals a certain vector V are
said to be the components of that vector. Thus, the vectors V; and Vs in
Fig. 1/4a are the components of V in the directions 1 and 2, respectively.
It is usually most convenient to deal with vector components which are
mutually perpendicular; these are called rectangular components. The

1 Vx

(@) (®)

Figure 1/4
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vectors V, and V, in Fig. 1/4b are the x- and y-components, respectively,
of V. Likewise, in Fig. 1/4c, V,,» and V,, are the x'- and y’-components of
V. When expressed in rectangular components, the direction of the vec-
tor with respect to, say, the x-axis is clearly specified by the angle 6,
where

1 Y
6=t —1_Z
an v

X

A vector V may be expressed mathematically by multiplying its
magnitude V by a vector n whose magnitude is one and whose direction
coincides with that of V. The vector n is called a unit vector. Thus,

V=Vn

In this way both the magnitude and direction of the vector are conve-
niently contained in one mathematical expression. In many problems,
particularly three-dimensional ones, it is convenient to express the rec-
tangular components of V, Fig. 1/5, in terms of unit vectors i, j, and k,
which are vectors in the x-, y-, and z-directions, respectively, with unit
magnitudes. Because the vector V is the vector sum of the components
in the x-, y-, and z-directions, we can express V as follows:

V=Vi+Vj+Vk

We now make use of the direction cosines I, m, and n of V, which are de-
fined by

l=cos b, m = cos 0, n = cos 6,
Thus, we may write the magnitudes of the components of V as
V. =1V V,=mV V,=nV
where, from the Pythagorean theorem,
VE=V2+V2+V2
Note that this relation implies that /2 + m? + n? = 1.

1/4 Newton’s Laws

Sir Isaac Newton was the first to state correctly the basic laws gov-
erning the motion of a particle and to demonstrate their validity.*
Slightly reworded with modern terminology, these laws are:

Law I. A particle remains at rest or continues to move with uniform
velocity (in a straight line with a constant speed) if there is no unbal-
anced force acting on it.

*Newton’s original formulations may be found in the translation of his Principia (1687) re-
vised by F. Cajori, University of California Press, 1934.

Figure 1/5
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Law II. The acceleration of a particle is proportional to the vector
sum of forces acting on it, and is in the direction of this vector sum.

Law Ill. The forces of action and reaction between interacting bod-
ies are equal in magnitude, opposite in direction, and collinear (they lie
on the same line).

The correctness of these laws has been verified by innumerable ac-
curate physical measurements. Newton’s second law forms the basis for
most of the analysis in dynamics. As applied to a particle of mass m, it
may be stated as

F = ma (1/1)

where F is the vector sum of forces acting on the particle and a is the re-
sulting acceleration. This equation is a vector equation because the di-
rection of F must agree with the direction of a, and the magnitudes of F
and ma must be equal.

Newton’s first law contains the principle of the equilibrium of
forces, which is the main topic of concern in statics. This law is actually
a consequence of the second law, since there is no acceleration when the
force is zero, and the particle either is at rest or is moving with a uni-
form velocity. The first law adds nothing new to the description of mo-
tion but is included here because it was part of Newton’s classical
statements.

The third law is basic to our understanding of force. It states that
forces always occur in pairs of equal and opposite forces. Thus, the
downward force exerted on the desk by the pencil is accompanied by an
upward force of equal magnitude exerted on the pencil by the desk. This
principle holds for all forces, variable or constant, regardless of their
source, and holds at every instant of time during which the forces are
applied. Lack of careful attention to this basic law is the cause of fre-
quent error by the beginner.

In the analysis of bodies under the action of forces, it is absolutely
necessary to be clear about which force of each action-reaction pair is
being considered. It is necessary first of all to isolate the body under con-
sideration and then to consider only the one force of the pair which acts
on the body in question.

1/5 Units

In mechanics we use four fundamental quantities called dimensions.
These are length, mass, force, and time. The units used to measure these
quantities cannot all be chosen independently because they must be con-
sistent with Newton’s second law, Eq. 1/1. Although there are a number
of different systems of units, only the two systems most commonly used
in science and technology will be used in this text. The four fundamental
dimensions and their units and symbols in the two systems are summa-
rized in the following table.
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DIMENSIONAL SI UNITS U.S. CUSTOMARY UNITS
QUANTITY SYMBOL UNIT SYMBOL UNIT SYMBOL
Mass M B kilogram kg slug —
Length L a.sf meter m foot ft
Time T YIS second S Base second sec
Force F newton N units pound Ib
SI Units

The International System of Units, abbreviated SI (from the
French, Systéme International d’Unités), is accepted in the United
States and throughout the world, and is a modern version of the metric
system. By international agreement, SI units will in time replace other
systems. As shown in the table, in SI, the units kilogram (kg) for mass,
meter (m) for length, and second (s) for time are selected as the base
units, and the newton (N) for force is derived from the preceding three
by Eq. 1/1. Thus, force (N) = mass (kg) X acceleration (m/s?) or

N = kg'm/s?

Thus, 1 newton is the force required to give a mass of 1 kg an accelera-
tion of 1 m/s2.

Consider a body of mass m which is allowed to fall freely near the
surface of the earth. With only the force of gravitation acting on the
body, it falls with an acceleration g toward the center of the earth. This
gravitational force is the weight W of the body, and is found from Eq. 1/1:

W(N) = m (kg) X g (m/s?)

U.S. Customary Units

The U.S. customary, or British system of units, also called the foot-
pound-second (FPS) system, has been the common system in business
and industry in English-speaking countries. Although this system will
in time be replaced by SI units, for many more years engineers must be
able to work with both SI units and FPS units, and both systems are
used freely in Engineering Mechanics.

As shown in the table, in the U.S. or FPS system, the units of feet
(ft) for length, seconds (sec) for time, and pounds (Ib) for force are se-
lected as base units, and the slug for mass is derived from Eq. 1/1. Thus,
force (Ib) = mass (slugs) X acceleration (ft/sec?), or

1b-sec?

slug = f

Therefore, 1 slug is the mass which is given an acceleration of 1 ft/sec?
when acted on by a force of 1 1b. If W is the gravitational force or weight
and g is the acceleration due to gravity, Eq. 1/1 gives

W (Ib)

1 -
m (slugs) g (ft/sec?)
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The standard kilogram

Note that seconds is abbreviated as s in SI units, and as sec in FPS
units.

In U.S. units the pound is also used on occasion as a unit of mass,
especially to specify thermal properties of liquids and gases. When dis-
tinction between the two units is necessary, the force unit is frequently
written as 1bf and the mass unit as Ibm. In this book we use almost ex-
clusively the force unit, which is written simply as Ib. Other common
units of force in the U.S. system are the kilopound (kip), which equals
1000 1b, and the ton, which equals 2000 Ib.

The International System of Units (SI) is termed an absolute system
because the measurement of the base quantity mass is independent of
its environment. On the other hand, the U.S. system (FPS) is termed a
gravitational system because its base quantity force is defined as the
gravitational attraction (weight) acting on a standard mass under speci-
fied conditions (sea level and 45° latitude). A standard pound is also the
force required to give a one-pound mass an acceleration of 32.1740
ft/sec?.

In SI units the kilogram is used exclusively as a unit of mass—never
force. In the MKS (meter, kilogram, second) gravitational system, which
has been used for many years in non-English-speaking countries, the
kilogram, like the pound, has been used both as a unit of force and as a
unit of mass.

Primary Standards

Primary standards for the measurements of mass, length, and time
have been established by international agreement and are as follows:

Mass. The kilogram is defined as the mass of a specific platinum—
iridium cylinder which is kept at the International Bureau of Weights
and Measures near Paris, France. An accurate copy of this cylinder is
kept in the United States at the National Institute of Standards and
Technology (NIST), formerly the National Bureau of Standards, and
serves as the standard of mass for the United States.

Length. The meter, originally defined as one ten-millionth of the
distance from the pole to the equator along the meridian through Paris,
was later defined as the length of a specific platinum-iridium bar kept at
the International Bureau of Weights and Measures. The difficulty of ac-
cessing the bar and reproducing accurate measurements prompted the
adoption of a more accurate and reproducible standard of length for the
meter, which is now defined as 1 650 763.73 wavelengths of a specific ra-
diation of the krypton-86 atom.

Time. The second was originally defined as the fraction 1/(86 400)
of the mean solar day. However, irregularities in the earth’s rotation led
to difficulties with this definition, and a more accurate and reproducible
standard has been adopted. The second is now defined as the duration of
9 192 631 770 periods of the radiation of a specific state of the cesium-
133 atom.

For most engineering work, and for our purpose in studying me-
chanics, the accuracy of these standards is considerably beyond our
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needs. The standard value for gravitational acceleration g is its value at
sea level and at a 45° latitude. In the two systems these values are

SI units g = 9.806 65 m/s?
U.S. units g = 32.1740 ft/sec?

The approximate values of 9.81 m/s? and 32.2 ft/sec?, respectively, are
sufficiently accurate for the vast majority of engineering calculations.

Unit Conversions

The characteristics of SI units are shown inside the front cover of
this book, along with the numerical conversions between U.S. custom-
ary and SI units. In addition, charts giving the approximate conversions
between selected quantities in the two systems appear inside the back
cover for convenient reference. Although these charts are useful for ob-
taining a feel for the relative size of SI and U.S. units, in time engineers
will find it essential to think directly in terms of SI units without con-
verting from U.S. units. In statics we are primarily concerned with the
units of length and force, with mass needed only when we compute gravi-
tational force, as explained previously.

Figure 1/6 depicts examples of force, mass, and length in the two
systems of units, to aid in visualizing their relative magnitudes.

32.2 Ibf
(143.1N)

11bm
T (0.454 kg)
g
MASS  (2.20 1bm)
11t 1 slug or 32.2 Ibm

[T (14.59 kg)

LENGTH (0.305 m)
1
|HHU\H‘HH‘HH‘HHUH\‘\\H‘HH‘HH‘HH‘I\IHI\‘HH‘\\HUH\‘\H\UH\‘HH‘HH‘HH‘HH|
(3.28 ft)

Figure 1/6
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NASA Marshall Space Flight Center (NASA-MSFC)

The gravitational force which the earth
exerts on the moon (foreground) is a
key factor in the motion of the moon.

1/6 Law of Gravitation

In statics as well as dynamics we often need to compute the weight
of a body, which is the gravitational force acting on it. This computation
depends on the law of gravitation, which was also formulated by New-
ton. The law of gravitation is expressed by the equation

mymgy
2

F=G (1/2)

where F' = the mutual force of attraction between two particles
G = a universal constant known as the constant of gravitation
mq, my = the masses of the two particles

r = the distance between the centers of the particles

The mutual forces F obey the law of action and reaction, since they are
equal and opposite and are directed along the line joining the centers of
the particles, as shown in Fig. 1/7. By experiment the gravitational con-
stant is found to be G = 6.673(10™ 1) m3/(kg-s?).

Gravitational Attraction of the Earth

Gravitational forces exist between every pair of bodies. On the sur-
face of the earth the only gravitational force of appreciable magnitude is
the force due to the attraction of the earth. For example, each of two
iron spheres 100 mm in diameter is attracted to the earth with a gravi-
tational force of 37.1 N, which is its weight. On the other hand, the force
of mutual attraction between the spheres if they are just touching is
0.000 000 095 1 N. This force is clearly negligible compared with the
earth’s attraction of 37.1 N. Consequently the gravitational attraction
of the earth is the only gravitational force we need to consider for most
engineering applications on the earth’s surface.

The gravitational attraction of the earth on a body (its weight)
exists whether the body is at rest or in motion. Because this attrac-
tion is a force, the weight of a body should be expressed in newtons
(N) in SI units and in pounds (Ib) in U.S. customary units. Unfortu-
nately in common practice the mass unit kilogram (kg) has been fre-
quently used as a measure of weight. This usage should disappear in
time as SI units become more widely used, because in SI units the
kilogram is used exclusively for mass and the newton is used for
force, including weight.

For a body of mass m near the surface of the earth, the gravitational
attraction F on the body is specified by Eq. 1/2. We usually denote the

Figure 1/7
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magnitude of this gravitational force or weight with the symbol W. Be-
cause the body falls with an acceleration g, Eq. 1/1 gives

W = mg (1/3)

The weight W will be in newtons (N) when the mass m is in kilograms
(kg) and the acceleration of gravity g is in meters per second squared
(m/s?). In U.S. customary units, the weight W will be in pounds (Ib)
when m is in slugs and g is in feet per second squared. The standard val-
ues for g of 9.81 m/s? and 32.2 ft/sec? will be sufficiently accurate for our
calculations in statics.

The true weight (gravitational attraction) and the apparent weight
(as measured by a spring scale) are slightly different. The difference,
which is due to the rotation of the earth, is quite small and will be ne-
glected. This effect will be discussed in Vol. 2 Dynamics.

1/7 Accuracy, Limits, and Approximations

The number of significant figures in an answer should be no greater
than the number of figures justified by the accuracy of the given data.
For example, suppose the 24-mm side of a square bar was measured to
the nearest millimeter, so we know the side length to two significant fig-
ures. Squaring the side length gives an area of 576 mm? However, ac-
cording to our rule, we should write the area as 580 mm?, using only two
significant figures.

When calculations involve small differences in large quantities,
greater accuracy in the data is required to achieve a given accuracy in
the results. Thus, for example, it is necessary to know the numbers
4.2503 and 4.2391 to an accuracy of five significant figures to express
their difference 0.0112 to three-figure accuracy. It is often difficult in
lengthy computations to know at the outset how many significant fig-
ures are needed in the original data to ensure a certain accuracy in the
answer. Accuracy to three significant figures is considered satisfactory
for most engineering calculations.

In this text, answers will generally be shown to three significant fig-
ures unless the answer begins with the digit 1, in which case the answer
will be shown to four significant figures. For purposes of calculation,
consider all data given in this book to be exact.

Differentials

The order of differential quantities frequently causes misunder-
standing in the derivation of equations. Higher-order differentials may
always be neglected compared with lower-order differentials when the
mathematical limit is approached. For example, the element of volume
AV of a right circular cone of altitude 4 and base radius » may be taken
to be a circular slice a distance x from the vertex and of thickness Ax.
The expression for the volume of the element is

2
AV = T a? Ax + 2(A0)? + (A7)
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1
sin 6
9 al
cos 6 ;
Figure 1/8

Arc length =
1x60=60

Note that, when passing to the limit in going from AV to dV and from
Ax to dx, the terms containing (Ax)? and (Ax)? drop out, leaving merely

’ITI“2

dV ="—"—2x%dx
h2

which gives an exact expression when integrated.

Small-Angle Approximations

When dealing with small angles, we can usually make use of simpli-
fying approximations. Consider the right triangle of Fig. 1/8 where the
angle 0, expressed in radians, is relatively small. If the hypotenuse is
unity, we see from the geometry of the figure that the arc length 1 X 6
and sin 6 are very nearly the same. Also cos 6 is close to unity. Further-
more, sin 0 and tan 6 have almost the same values. Thus, for small an-
gles we may write

sinf=tanf =0 cosf=1

provided that the angles are expressed in radians. These approximations
may be obtained by retaining only the first terms in the series expan-
sions for these three functions. As an example of these approximations,
for an angle of 1°

1° = 0.017 453 rad tan 1° = 0.017 455
sin 1° = 0.017 452 cos 1° = 0.999 848

If a more accurate approximation is desired, the first two terms may
be retained, and they are

sin § = 6 — 6%/6 tan § = 6 + 63/3 cos=1-—6%2

where the angles must be expressed in radians. (To convert degrees to
radians, multiply the angle in degrees by 77/180°.) The error in replacing
the sine by the angle for 1° (0.0175 rad) is only 0.005 percent. For 5°
(0.0873 rad) the error is 0.13 percent, and for 10° (0.1745 rad), the error
is still only 0.51 percent. As the angle 6 approaches zero, the following
relations are true in the mathematical limit:

sin df = tan d6 = d0 cosdf =1

where the differential angle d6 must be expressed in radians.

1/8 Problem Solving in Statics

We study statics to obtain a quantitative description of forces which
act on engineering structures in equilibrium. Mathematics establishes
the relations between the various quantities involved and enables us to
predict effects from these relations. We use a dual thought process in
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solving statics problems: We think about both the physical situation and
the corresponding mathematical description. In the analysis of every
problem, we make a transition between the physical and the mathemati-
cal. One of the most important goals for the student is to develop the
ability to make this transition freely.

Making Appropriate Assumptions

We should recognize that the mathematical formulation of a
physical problem represents an ideal description, or model, which ap-
proximates but never quite matches the actual physical situation.
When we construct an idealized mathematical model for a given engi-
neering problem, certain approximations will always be involved.
Some of these approximations may be mathematical, whereas others
will be physical.

For instance, it is often necessary to neglect small distances, angles,
or forces compared with large distances, angles, or forces. Suppose a
force is distributed over a small area of the body on which it acts. We
may consider it to be a concentrated force if the dimensions of the area
involved are small compared with other pertinent dimensions.

We may neglect the weight of a steel cable if the tension in the cable
is many times greater than its total weight. However, if we must calcu-
late the deflection or sag of a suspended cable under the action of its
weight, we may not ignore the cable weight.

Thus, what we may assume depends on what information is desired
and on the accuracy required. We must be constantly alert to the various
assumptions called for in the formulation of real problems. The ability to
understand and make use of the appropriate assumptions in the formula-
tion and solution of engineering problems is certainly one of the most im-
portant characteristics of a successful engineer. One of the major aims of
this book is to provide many opportunities to develop this ability through
the formulation and analysis of many practical problems involving the
principles of statics.

Using Graphics

Graphics is an important analytical tool for three reasons:

1. We use graphics to represent a physical system on paper with a
sketch or diagram. Representing a problem geometrically helps us
with its physical interpretation, especially when we must visualize
three-dimensional problems.

2. We can often obtain a graphical solution to problems more easily
than with a direct mathematical solution. Graphical solutions are
both a practical way to obtain results, and an aid in our thought
processes. Because graphics represents the physical situation and
its mathematical expression simultaneously, graphics helps us make
the transition between the two.

3. Charts or graphs are valuable aids for representing results in a form
which is easy to understand.
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[P) KEY CONCEPTS

 —

Formulating Problems and Obtaining Solutions

In statics, as in all engineering problems, we need to use a precise and
logical method for formulating problems and obtaining their solutions.
We formulate each problem and develop its solution through the follow-
ing sequence of steps.

1. Formulate the problem:
(a) State the given data.
(b) State the desired result.
(c) State your assumptions and approximations.

2. Develop the solution:
(a) Draw any diagrams you need to understand the relationships.
(b) State the governing principles to be applied to your solution.
(¢) Make your calculations.

(d) Ensure that your calculations are consistent with the accuracy
justified by the data.

(e) Be sure that you have used consistent units throughout your
calculations.

(f) Ensure that your answers are reasonable in terms of magni-
tudes, directions, common sense, etc.

(g) Draw conclusions.

Keeping your work neat and orderly will help your thought process and
enable others to understand your work. The discipline of doing orderly
work will help you develop skill in formulation and analysis. Problems
which seem complicated at first often become clear when you approach
them with logic and discipline.

The Free-Body Diagram

The subject of statics is based on surprisingly few fundamental con-
cepts and involves mainly the application of these basic relations to a
variety of situations. In this application the method of analysis is all
important. In solving a problem, it is essential that the laws which apply
be carefully fixed in mind and that we apply these principles literally
and exactly. In applying the principles of mechanics to analyze forces
acting on a body, it is essential that we isolate the body in question from
all other bodies so that a complete and accurate account of all forces act-
ing on this body can be taken. This isolation should exist mentally and
should be represented on paper. The diagram of such an isolated body
with the representation of all external forces acting on it is called a firee-
body diagram.

The free-body-diagram method is the key to the understanding of
mechanics. This is so because the isolation of a body is the tool by which



Article 1/8 Problem Solving in Statics

17

cause and effect are clearly separated, and by which our attention is
clearly focused on the literal application of a principle of mechanics. The
technique of drawing free-body diagrams is covered in Chapter 3, where
they are first used.

Numerical Values versus Symbols

In applying the laws of statics, we may use numerical values to
represent quantities, or we may use algebraic symbols, and leave the
answer as a formula. When numerical values are used, the magnitude
of each quantity expressed in its particular units is evident at each
stage of the calculation. This is useful when we need to know the mag-
nitude of each term.

The symbolic solution, however, has several advantages over the
numerical solution. First, the use of symbols helps to focus our atten-
tion on the connection between the physical situation and its related
mathematical description. Second, we can use a symbolic solution re-
peatedly for obtaining answers to the same type of problem, but hav-
ing different units or numerical values. Third, a symbolic solution
enables us to make a dimensional check at every step, which is more
difficult to do when numerical values are used. In any equation repre-
senting a physical situation, the dimensions of every term on both
sides of the equation must be the same. This property is called dimen-
stonal homogeneity.

Thus, facility with both numerical and symbolic forms of solution is
essential.

Solution Methods

Solutions to the problems of statics may be obtained in one or more
of the following ways.

1. Obtain mathematical solutions by hand, using either algebraic
symbols or numerical values. We can solve most problems this
way.

2. Obtain graphical solutions for certain problems.

3. Solve problems by computer. This is useful when a large number of
equations must be solved, when a parameter variation must be
studied, or when an intractable equation must be solved.

Many problems can be solved with two or more of these methods. The
method utilized depends partly on the engineer’s preference and partly
on the type of problem to be solved. The choice of the most expedient
method of solution is an important aspect of the experience to be gained
from the problem work. There are a number of problems in Vol. 1 Stat-
ics which are designated as Computer-Oriented Problems. These prob-
lems appear at the end of the Review Problem sets and are selected to
illustrate the type of problem for which solution by computer offers a
distinct advantage.
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1/9 Chapter Review

This chapter has introduced the concepts, definitions, and units

used in statics, and has given an overview of the procedure used to for-
mulate and solve problems in statics. Now that you have finished this
chapter, you should be able to do the following:

1.

Express vectors in terms of unit vectors and perpendicular com-
ponents, and perform vector addition and subtraction.

State Newton’s laws of motion.

Perform calculations using SI and U.S. customary units, using
appropriate accuracy.

. Express the law of gravitation and calculate the weight of an object.

. Apply simplifications based on differential and small-angle approx-

imations.

. Describe the methodology used to formulate and solve statics

problems.
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SAMPLE PROBLEM 1/1

Determine the weight in newtons of a car whose mass is 1400 kg. Convert
the mass of the car to slugs and then determine its weight in pounds.

Solution. From relationship 1/3, we have
W = mg = 1400(9.81) = 13 730 N Ans.

From the table of conversion factors inside the front cover of the textbook, we
see that 1 slug is equal to 14.594 kg. Thus, the mass of the car in slugs is

1 slug
m = 1400 kg| ———— [ = 95.9 slugs Ans.
14.594 kg
Finally, its weight in pounds is
W =mg = (95.9)(32.2) = 3090 1b Ans.

As another route to the last result, we can convert from kg to lom. Again using
the table inside the front cover, we have

&] — 3090 Ibm
0.45359 kg

m = 1400 kg[
The weight in pounds associated with the mass of 3090 lbm is 3090 lb, as calcu-
lated above. We recall that 1 lbm is the amount of mass which under standard
conditions has a weight of 1 Ib of force. We rarely refer to the U.S. mass unit lbm
in this textbook series, but rather use the slug for mass. The sole use of slug,
rather than the unnecessary use of two units for mass, will prove to be powerful
and simple—especially in dynamics.

m = 1400 kg

—E

Helpful Hints

@ Our calculator indicates a result of

13 734 N. Using the rules of signifi-
cant-figure display used in this text-
book, we round the written result to
four significant figures, or 13 730 N.
Had the number begun with any
digit other than 1, we would have
rounded to three significant figures.

@ A good practice with unit conversion

is to multiply by a factor such as

1 slug )
————— |, which has a value of 1,
14.594 kg

because the numerator and the de-
nominator are equivalent. Make sure
that cancellation of the units leaves
the units desired; here the units of
kg cancel, leaving the desired units
of slug.

© Note that we are using a previously calculated result (95.9 slugs). We must be sure that when a calculated number is
needed in subsequent calculations, it is retained in the calculator to its full accuracy, (95.929834 . . .) until it is needed.
This may require storing it in a register upon its initial calculation and recalling it later. We must not merely punch 95.9
into our calculator and proceed to multiply by 32.2—this practice will result in loss of numerical accuracy. Some
individuals like to place a small indication of the storage register used in the right margin of the work paper, directly

beside the number stored.

SAMPLE PROBLEM 1/2

Use Newton’s law of universal gravitation to calculate the weight of a 70-kg
person standing on the surface of the earth. Then repeat the calculation by using
W = mg and compare your two results. Use Table D/2 as needed.

Solution. The two results are

_ Gm,m _ (6.673-10711)(5.976 - 10%4)(70)

w
R? [6371-103]

=688 N Ans.

W = mg = 70(9.81) = 687N Ans.

The discrepancy is due to the fact that Newton’s universal gravitational law does
not take into account the rotation of the earth. On the other hand, the value g =
9.81 m/s? used in the second equation does account for the earth’s rotation. Note
that had we used the more accurate value g = 9.80665 m/s? (which likewise ac-
counts for the earth’s rotation) in the second equation, the discrepancy would
have been larger (686 N would have been the result).

m=70kg

Helpful Hint
@ The effective distance between the

mass centers of the two bodies in-
volved is the radius of the earth.
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SAMPLE PROBLEM 1/3

For the vectors V; and V, shown in the figure,
(a) determine the magnitude S of their vector sum S = V; + V,
(b) determine the angle a between S and the positive x-axis

(c) write S as a vector in terms of the unit vectors i and j and then write a unit
vector n along the vector sum S

(d) determine the vector difference D = V; — V,

Solution (a) We construct to scale the parallelogram shown in Fig. a for adding
V; and V,. Using the law of cosines, we have

S2 =32 + 42 — 2(3)(4) cos 105°
S = 5.59 units Ans.
@ () Using the law of sines for the lower triangle, we have

sin 105° _ sin(a + 30°)

5.59 4

sin(a + 30°) = 0.692
(a + 30°) = 43.8° a = 13.76° Ans.

(¢) With knowledge of both S and «, we can write the vector S as

S = S[icosa + jsin «f
= 5.59[i cos 13.76° + j sin 13.76°] = 5.43i + 1.328j units Ans.

S 5.43i + 1.328j
S 5.59
(d) The vector difference D is

@ Then n= = 0.971i + 0.238j Ans.

D =V, -V, = 4(i cos 45° + j sin 45°) — 3(i cos 30° — j sin 30°)
= 0.230i + 4.33j units Ans.

The vector D is shown in Fig. b as D = V; + (=V)).

7
\ .
‘ V, =4 units
\
N
J 45°
i N
30°
V, = 3 units

V5 = 3 units

(@)

(b)

Helpful Hints

@ You will frequently use the laws of
cosines and sines in mechanics. See
Art. C/6 of Appendix C for a review of
these important geometric principles.

® A unit vector may always be formed
by dividing a vector by its magnitude.
Note that a unit vector is dimen-
sionless.
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PROBLEMS

1/1

1/2

1/3

1/4

1/5

1/6

1/7

Determine the angles made by the vector V = 40i —
30j with the positive x- and y-axes. Write the unit
vector n in the direction of V.

Determine the magnitude of the vector sum V =
V; + V5 and the angle 6, which V makes with the
positive x-axis. Complete both graphical and alge-
braic solutions.

Vg = 12 units

Problem 1/2

For the given vectors V; and V, of Prob. 1/2, deter-
mine the magnitude of the vector difference V' =
V, — V; and the angle 6, which V' makes with the
positive x-axis. Complete both graphical and alge-
braic solutions.

A force is specified by the vector F = 120i — 160j +
80k lb. Calculate the angles made by F with the posi-
tive x-, y-, and z-axes.

What is the mass in both slugs and kilograms of a
3000-1b car?

From the gravitational law calculate the weight W
(gravitational force with respect to the earth) of a
90-kg man in a spacecraft traveling in a circular orbit
250 km above the earth’s surface. Express W in both
newtons and pounds.

Determine the weight in newtons of a woman whose
weight in pounds is 130. Also, find her mass in slugs
and in kilograms. Determine your own weight in
newtons.

1/8

1/9

Suppose that two nondimensional quantities are ex-
actly A = 6.67 and B = 1.726. Using the rules for sig-
nificant figures as stated in this chapter, express the
four quantities (A + B), (A — B), (AB), and (A/B).

Compute the magnitude F' of the force which the
earth exerts on the moon. Perform the calculation
first in newtons and then convert your result to
pounds. Refer to Table D/2 for necessary physical
quantities.

1/10

1/11

Problem 1/9

The uniform steel and titanium spheres are posi-
tioned as shown. Determine the magnitude of the
small gravitational force of mutual attraction if r =
50 mm.

[\

Titanium

4r

Problem 1/10

Determine the percent error n in replacing the sine
and the tangent of an angle by the value of the
angle in radians for angle values of 5°, 10°, and 20°.
Explain the qualitative difference between the sine
and tangent results.
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The properties of force systems must be thoroughly understood by the engineers who design
structures such as these overhead cranes.

© Media Bakery
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CHAPTER OUTLINE

2/1 Introduction Section B Three-Dimensional Force Systems
2/2 Force 2/7 Rectangular Components

Section A Two-Dimensional Force Systems 2/8 Moment and Couple

2/3 Rectangular Components 2/9 Resultants

2/4 Moment 2/10 Chapter Review

2/5 Couple

2/6 Resultants

2/1 Introduction

In this and the following chapters, we study the effects of forces
which act on engineering structures and mechanisms. The experience
gained here will help you in the study of mechanics and in other sub-
jects such as stress analysis, design of structures and machines, and
fluid flow. This chapter lays the foundation for a basic understanding
not only of statics but also of the entire subject of mechanics, and you
should master this material thoroughly.

2/2 Force

Before dealing with a group or system of forces, it is necessary to
examine the properties of a single force in some detail. A force has been
defined in Chapter 1 as an action of one body on another. In dynamics
we will see that a force is defined as an action which tends to cause ac-
celeration of a body. A force is a vector quantity, because its effect de-
pends on the direction as well as on the magnitude of the action. Thus,
forces may be combined according to the parallelogram law of vector
addition.

The action of the cable tension on the bracket in Fig. 2/1a is repre-
sented in the side view, Fig. 2/1b, by the force vector P of magnitude P.
The effect of this action on the bracket depends on P, the angle 0, and
the location of the point of application A. Changing any one of these
three specifications will alter the effect on the bracket, such as the force
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Figure 2/1
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The forces associated with this lift-

ing rig must be carefully identified,
classified, and analyzed in order to
provide a safe and effective work-
ing environment.

in one of the bolts which secure the bracket to the base, or the internal
force and deformation in the material of the bracket at any point. Thus,
the complete specification of the action of a force must include its mag-
nitude, direction, and point of application, and therefore we must treat
it as a fixed vector.

External and Internal Effects

We can separate the action of a force on a body into two effects, ex-
ternal and internal. For the bracket of Fig. 2/1 the effects of P external
to the bracket are the reactive forces (not shown) exerted on the bracket
by the foundation and bolts because of the action of P. Forces external
to a body can be either applied forces or reactive forces. The effects of P
internal to the bracket are the resulting internal forces and deforma-
tions distributed throughout the material of the bracket. The relation
between internal forces and internal deformations depends on the mate-
rial properties of the body and is studied in strength of materials, elas-
ticity, and plasticity.

Principle of Transmissibility

When dealing with the mechanics of a rigid body, we ignore defor-
mations in the body and concern ourselves with only the net external ef-
fects of external forces. In such cases, experience shows us that it is not
necessary to restrict the action of an applied force to a given point. For
example, the force P acting on the rigid plate in Fig. 2/2 may be applied
at A or at B or at any other point on its line of action, and the net exter-
nal effects of P on the bracket will not change. The external effects are
the force exerted on the plate by the bearing support at O and the force
exerted on the plate by the roller support at C.

This conclusion is summarized by the principle of transmissibility,
which states that a force may be applied at any point on its given line of
action without altering the resultant effects of the force external to the
rigid body on which it acts. Thus, whenever we are interested in only
the resultant external effects of a force, the force may be treated as a
sliding vector, and we need specify only the magnitude, direction, and
line of action of the force, and not its point of application. Because this
book deals essentially with the mechanics of rigid bodies, we will treat
almost all forces as sliding vectors for the rigid body on which they act.

Force Classification

Forces are classified as either contact or body forces. A contact force
is produced by direct physical contact; an example is the force exerted
on a body by a supporting surface. On the other hand, a body force is
generated by virtue of the position of a body within a force field such as
a gravitational, electric, or magnetic field. An example of a body force is
your weight.

Forces may be further classified as either concentrated or distrib-
uted. Every contact force is actually applied over a finite area and is
therefore really a distributed force. However, when the dimensions of
the area are very small compared with the other dimensions of the
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body, we may consider the force to be concentrated at a point with neg-
ligible loss of accuracy. Force can be distributed over an area, as in the
case of mechanical contact, over a volume when a body force such as
weight is acting, or over a line, as in the case of the weight of a sus-
pended cable.

The weight of a body is the force of gravitational attraction distrib-
uted over its volume and may be taken as a concentrated force acting
through the center of gravity. The position of the center of gravity is fre-
quently obvious if the body is symmetric. If the position is not obvious,
then a separate calculation, explained in Chapter 5, will be necessary to
locate the center of gravity.

We can measure a force either by comparison with other known
forces, using a mechanical balance, or by the calibrated movement of an
elastic element. All such comparisons or calibrations have as their basis
a primary standard. The standard unit of force in SI units is the newton
(N) and in the U.S. customary system is the pound (Ib), as defined in
Art. 1/5.

Action and Reaction

According to Newton’s third law, the action of a force is always ac-
companied by an equal and opposite reaction. It is essential to distin-
guish between the action and the reaction in a pair of forces. To do so,
we first isolate the body in question and then identify the force exerted
on that body (not the force exerted by the body). It is very easy to mis-
takenly use the wrong force of the pair unless we distinguish carefully
between action and reaction.

Concurrent Forces

Two or more forces are said to be concurrent at a point if their lines
of action intersect at that point. The forces F; and F, shown in Fig. 2/3a
have a common point of application and are concurrent at the point A.
Thus, they can be added using the parallelogram law in their common
plane to obtain their sum or resultant R, as shown in Fig. 2/3a. The re-
sultant lies in the same plane as F; and Fs.

Suppose the two concurrent forces lie in the same plane but are ap-
plied at two different points as in Fig. 2/3b. By the principle of transmis-
sibility, we may move them along their lines of action and complete
their vector sum R at the point of concurrency A, as shown in Fig. 2/3b.
We can replace F; and F, with the resultant R without altering the ex-
ternal effects on the body upon which they act.

We can also use the triangle law to obtain R, but we need to move
the line of action of one of the forces, as shown in Fig. 2/3c. If we add the
same two forces as shown in Fig. 2/3d, we correctly preserve the magni-
tude and direction of R, but we lose the correct line of action, because R
obtained in this way does not pass through A. Therefore this type of
combination should be avoided.

We can express the sum of the two forces mathematically by the
vector equation

R=F, +F,

(e)

Figure 2/3
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Figure 2/4

Figure 2/5

Vector Components

In addition to combining forces to obtain their resultant, we often
need to replace a force by its vector components in directions which are
convenient for a given application. The vector sum of the components
must equal the original vector. Thus, the force R in Fig. 2/3a may be re-
placed by, or resolved into, two vector components F; and F, with the
specified directions by completing the parallelogram as shown to obtain
the magnitudes of F; and Fs.

The relationship between a force and its vector components along
given axes must not be confused with the relationship between a force
and its perpendicular® projections onto the same axes. Figure 2/3e
shows the perpendicular projections F, and F; of the given force R onto
axes a and b, which are parallel to the vector components F; and Fy of
Fig. 2/3a. Figure 2/3e shows that the components of a vector are not nec-
essarily equal to the projections of the vector onto the same axes. Fur-
thermore, the vector sum of the projections F, and F; is not the vector
R, because the parallelogram law of vector addition must be used to
form the sum. The components and projections of R are equal only
when the axes a and b are perpendicular.

A Special Case of Vector Addition

To obtain the resultant when the two forces F; and F, are parallel
as in Fig. 2/4, we use a special case of addition. The two vectors are com-
bined by first adding two equal, opposite, and collinear forces F and —F
of convenient magnitude, which taken together produce no external ef-
fect on the body. Adding F; and F to produce R;, and combining with
the sum Ry of Fy and —F yield the resultant R, which is correct in mag-
nitude, direction, and line of action. This procedure is also useful for
graphically combining two forces which have a remote and inconvenient
point of concurrency because they are almost parallel.

It is usually helpful to master the analysis of force systems in two
dimensions before undertaking three-dimensional analysis. Thus the re-
mainder of Chapter 2 is subdivided into these two categories.

SECTION A TWO-DIMENSIONAL FORCE SYSTEMS

2/3 Rectangular Components

The most common two-dimensional resolution of a force vector is
into rectangular components. It follows from the parallelogram rule
that the vector F of Fig. 2/5 may be written as

F=F,+F, 2/1)

where F, and F, are vector components of F in the x- and y-directions.
Each of the two vector components may be written as a scalar times the

*Perpendicular projections are also called orthogonal projections.
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appropriate unit vector. In terms of the unit vectors i and j of Fig. 2/5,
F, = F,i and F, = F,j, and thus we may write

F=Fi+F,j (2/2)

where the scalars I, and F), are the x and iy scalar components of the vec-
tor F.

The scalar components can be positive or negative, depending on
the quadrant into which F points. For the force vector of Fig. 2/5, the x
and y scalar components are both positive and are related to the magni-
tude and direction of F by

F.,=Fcos¢ F=JF2+F}?

) o F, (2/3)
Fystme 0 = tan Fx

Conventions for Describing Vector Components

We express the magnitude of a vector with lightface italic type in
print; that is, [F| is indicated by F, a quantity which is always nonnega-
tive. However, the scalar components, also denoted by lightface italic
type, will include sign information. See Sample Problems 2/1 and 2/3 for
numerical examples which involve both positive and negative scalar
components.

When both a force and its vector components appear in a diagram, it
is desirable to show the vector components of the force with dashed
lines, as in Fig. 2/5, and show the force with a solid line, or vice versa.
With either of these conventions it will always be clear that a force and
its components are being represented, and not three separate forces, as
would be implied by three solid-line vectors.

Actual problems do not come with reference axes, so their assign-
ment is a matter of arbitrary convenience, and the choice is frequently
up to the student. The logical choice is usually indicated by the way in
which the geometry of the problem is specified. When the principal di-
mensions of a body are given in the horizontal and vertical directions, for
example, you would typically assign reference axes in these directions.

Determining the Components of a Force

Dimensions are not always given in horizontal and vertical direc-
tions, angles need not be measured counterclockwise from the x-axis,
and the origin of coordinates need not be on the line of action of a force.
Therefore, it is essential that we be able to determine the correct com-
ponents of a force no matter how the axes are oriented or how the an-
gles are measured. Figure 2/6 suggests a few typical examples of vector
resolution in two dimensions.

Memorization of Egs. 2/3 is not a substitute for understanding the
parallelogram law and for correctly projecting a vector onto a reference
axis. A neatly drawn sketch always helps to clarify the geometry and
avoid error.

~
Sx

Fx=Fsin(7r—ﬂ)
Fy:—Fcos(ﬂ'—ﬂ)

F.=Fcos(f—-a)
Fy:Fsin(ﬁ— o)

Figure 2/6
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© Vince Streano/Photographer’s Choice/Getty Images

The structural elements in the fore-
ground transmit concentrated forces
to the brackets at both ends.

Rectangular components are convenient for finding the sum or re-
sultant R of two forces which are concurrent. Consider two forces F;
and Fy which are originally concurrent at a point O. Figure 2/7 shows
the line of action of F, shifted from O to the tip of F; according to the
triangle rule of Fig. 2/3. In adding the force vectors F; and Fy, we may
write

R=F, +F,=F i+ Flyj) + (Fyi+ Fzyj)
or
Ri+Rj=F +Fyi+ (Fy + Fzy)j
from which we conclude that

R,=F, +F, =3F,
R, =F, +F, = 3F,

(2/4)

The term XF, means “the algebraic sum of the x scalar components”.
For the example shown in Fig. 2/7, note that the scalar component F 2,
would be negative.

T
F, F, Fy
vy
Fly T\ ”¢’ R
R, e
7—‘— ——————————— —_———x
i
—_— F2 —
R,

Figure 2/7
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SAMPLE PROBLEM 2/1

The forces F;, Fy, and Fj3, all of which act on point A of the bracket, are
specified in three different ways. Determine the x and y scalar components of
each of the three forces.

Solution. The scalar components of Fy, from Fig. a, are

F; =600 cos 35° =491 N Ans. \
" \
F; =600 sin 35° = 344 N Ans. \
7 \
The scalar components of Fy, from Fig. b, are 1 04m |
\
F, = —500(3) = —400 N Ans.
Fy = 500(3) = 300 N Ans.

Note that the angle which orients F, to the x-axis is never calculated. The cosine
and sine of the angle are available by inspection of the 3-4-5 triangle. Also note
that the x scalar component of Fy is negative by inspection.

The scalar components of F3 can be obtained by first computing the angle «
of Fig. c.

ot [ﬂ} — 26.6°

0.4 -
Fy=500N R,
I
Then, Fy = Fysina = 800 sin 26.6° = 358 N Ans. L3< % I
F3 = —F;cos a = —800 cos 26.6° = ~716 N Ans. s,

Alternatively, the scalar components of F3 can be obtained by writing F3 as
?[\ 1inagnitude times a unit vector nyp in the direction of the line segment AB. 4 elpful Hints
us,
@ You should carefully examine the
21 — 0.4 geometry of each component deter-
AB 0.2i — 0.4j try of each t det
AB = 800 0.2)2 + (—0.4)2 mination problem and not rely on

X . the blind use of such formulas as
= 800 [0.4471 — 0.894j] F, = F cos 0 and F, = F sin 6.

— 3581 — 716§ N

F;=Fsn,p=Fg =

©® A unit vector can be formed by di-
The required scalar components are then viding any vector, such as the geo-
metric position vector AB , by its

F; =358N Ans. length or magnitude. Here we use

the overarrow to denote the vector

Fy = -T16N Ans. which runs from A to B and the

which agree with our previous results. overbar to determine the distance
between A and B.
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SAMPLE PROBLEM 2/2

Combine the two forces P and T, which act on the fixed structure at B, into
a single equivalent force R.

Graphical solution. The parallelogram for the vector addition of forces T and
P is constructed as shown in Fig. a. The scale used here is 1 in. = 800 lb; a scale
of 1 in. = 200 Ib would be more suitable for regular-size paper and would give
greater accuracy. Note that the angle @ must be determined prior to construction
of the parallelogram. From the given figure

_ BD _ 6sin60°
tan o = —

= = (0.866 a = 40.9°
AD 3 + 6 cos 60°

Measurement of the length R and direction 6 of the resultant force R yields the
approximate results

R =5251b 0 = 49° Ans.

Geometric solution. The triangle for the vector addition of T and P is
shown in Fig. b. The angle « is calculated as above. The law of cosines gives

R2? = (600)% + (800)% — 2(600)(800) cos 40.9° = 274,300
R =5241b Ans.

From the law of sines, we may determine the angle 6 which orients R. Thus,

600 _ 524
sin §  sin 40.9°

sin 6 = 0.750 0 = 48.6° Ans.

Algebraic solufion. By using the x-y coordinate system on the given figure,
we may write

R, = XF, = 800 — 600 cos 40.9° = 346 Ib
R, = SF, = —600 sin 40.9° = —393 Ib

The magnitude and direction of the resultant force R as shown in Fig. ¢ are then

R=JR2+ Ry2 = /(346)% + (—393)2 = 524 1b Ans.
IR, | 393
—tan-l 2 — tap- 1993 _ o
0 = tan R tan 346 48.6 Ans.

The resultant R may also be written in vector notation as

R=R,i+R,j= 346i — 393j 1b Ans.

P=8001b —— f
S
Q
@;; P
7 N
\
\
6’ } L x
\
AG c/60° DI

Helpful Hints

@ Note the repositioning of P to per-
mit parallelogram addition at B.

@ Note the repositioning of F so as to
preserve the correct line of action of
the resultant R.

R, =3461b
9— —_—— =X
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SAMPLE PROBLEM 2/3

The 500-N force F is applied to the vertical pole as shown. (1) Write F in j
terms of the unit vectors i and j and identify both its vector and scalar compo- T
nents. (2) Determine the scalar components of the force vector F along the

x'- and y’-axes. (3) Determine the scalar components of F along the x- and y’-axes. A if 3:03;
T >«
i
Solution. Part (1). From Fig. a we may write F as 300 F=500N
F = (F cos 0)i — (F sin 0)j A\
= (500 cos 60°)i — (500 sin 60°)j \x,
= (2501 — 433j)) N Ans.
LY
The scalar components are F, = 250 N and F, = —433 N. The vector compo- -
nents are F, = 250i N and F, = —433j N. A ¥
Part (2). From Fig. b we may write F as F = 500i’ N, so that the required
scalar components are F
\
F, =500 N F,=0 Ans. \{i'
\

Part (3). The components of F in the x- and y’-directions are nonrectan-
gular and are obtained by completing the parallelogram as shown in Fig. c. The
magnitudes of the components may be calculated by the law of sines. Thus,

(@) b))

F

B _ 500 IF,| = 1000 N

sin 90°  sin 30°
7y |

—>___500 IF,| = 866 N

sin 60°  sin 30°

The required scalar components are then Helpful Hint

F,=1000 N F, = —866N Ans. @ Obtain F, and F, graphically and

compare your results with the calcu-
lated values.

SAMPLE PROBLEM 2/4

Forces F; and Fy act on the bracket as shown. Determine the projection F%
of their resultant R onto the b-axis.

Solufion. The parallelogram addition of F; and Fy is shown in the figure.
Using the law of cosines gives us

R? = (80)2 + (100)% — 2(80)(100) cos 130° R =1634N

The figure also shows the orthogonal projection F;, of R onto the b-axis. Its
length is

F, =80 + 100 cos 50° = 144.3 N Ans.

Note that the components of a vector are in general not equal to the projec-
tions of the vector onto the same axes. If the a-axis had been perpendicular to
the b-axis, then the projections and components of R would have been equal.
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PROBLEMS

Introductory Problems

2/1 The force F has a magnitude of 600 N. Express F as a
vector in terms of the unit vectors i and j. Identify
the x and y scalar components of F.

F = 600N

Problem 2/1
2/2 The magnitude of the force F is 400 1b. Express F as

a vector in terms of the unit vectors i and j. Identify
both the scalar and vector components of F.

F = 4001b

Problem 2/2

2/3 The slope of the 6.5-kN force F is specified as shown
in the figure. Express F as a vector in terms of the
unit vectors i and j.

Problem 2/3

2/4 The line of action of the 3000-1b force runs through
the points A and B as shown in the figure. Determine
the x and y scalar components of F.

y, ft

\
\ B (8,6)
\

—
-~

\
///F = 3000 1b
—— e — — — x, ft

Problem 2/4

2/5 The 1800-N force F is applied to the end of the
I-beam. Express F as a vector using the unit vectors i
and j.

Problem 2/5

2/6 The control rod AP exerts a force F on the sector as
shown. Determine both the x-y and the n-t compo-
nents of the force.

Problem 2/6
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2/7 The two structural members, one of which is in ten-
sion and the other in compression, exert the indi-
cated forces on joint O. Determine the magnitude of
the resultant R of the two forces and the angle 6
which R makes with the positive x-axis.

3 kN

2 kN

Problem 2/7

2/8 The t-component of the force F is known to be 75 N.
Determine the n-component and the magnitude of F.

Problem 2/8

2/9 Two forces are applied to the construction bracket as
shown. Determine the angle 6 which makes the resul-
tant of the two forces vertical. Determine the magni-
tude R of the resultant.

F;=8001b y

Problem 2/9

Representative Problems

2/10 Determine the n- and #-components of the force F
which is exerted by the rod AB on the crank OA.
Evaluate your general expression for F = 100 N and
(@) 6 = 30° B =10°and (b) 6 = 15°, B = 25°.

F

Problem 2/10

2/11 The two forces shown act at point A of the bent bar.
Determine the resultant R of the two forces.

F, =3 kips

Fy =17 kips

Problem 2/11
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2/12 A small probe P is gently forced against the circular

surface with a vertical force F as shown. Determine
the n- and #-components of this force as functions of
the horizontal position s.

Problem 2/12

2/13 The guy cables AB and AC are attached to the top of
the transmission tower. The tension in cable AB is
8 kN. Determine the required tension 7 in cable AC
such that the net effect of the two cable tensions is a
downward force at point A. Determine the magni-
tude R of this downward force.

Problem 2/13

2/14 If the equal tensions 7T in the pulley cable are 400 N,

express in vector notation the force R exerted on
the pulley by the two tensions. Determine the mag-
nitude of R.

Problem 2/14

2/15 To satisfy design limitations it is necessary to deter-

mine the effect of the 2-kN tension in the cable on
the shear, tension, and bending of the fixed I-beam.
For this purpose replace this force by its equivalent
of two forces at A, F, parallel and F, perpendicular
to the beam. Determine F, and F,,.

2 kN

Problem 2/15

2/16 Determine the x- and y-components of the tension T'

which is applied to point A of the bar OA. Neglect
the effects of the small pulley at B. Assume that r
and 6 are known.

Problem 2/16
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2/17 Refer to the mechanism of the previous problem.
Develop general expressions for the n- and ¢-compo-
nents of the tension 7" applied to point A. Then eval-
uate your expressions for 7' = 100 N and # = 35°.

2/18 The ratio of the lift force L to the drag force D for
the simple airfoil is L/D = 10. If the lift force on a
short section of the airfoil is 50 lb, compute the
magnitude of the resultant force R and the angle 6
which it makes with the horizontal.

ﬁ_/—%)\\
%_N

Problem 2/18

2/19 Determine the resultant R of the two forces applied
to the bracket. Write R in terms of unit vectors
along the x- and y-axes shown.

150 N

Problem 2/19

2/20 Determine the scalar components R, and R, of the
force R along the nonrectangular axes a and b. Also
determine the orthogonal projection P, of R onto
axis a.

Problem 2/20

2/21 Determine the components of the 800-lb force F
along the oblique axes a and b. Also, determine the
projections of F onto the a- and b-axes.

F = 8001b

b
~
~
~

~

60° e
a — Z ///\
T . pe 45°

Problem 2/21
2/22 Determine the components F, and F; of the 4-kN

force along the oblique axes a and b. Determine the
projections P, and P, of F onto the a- and b-axes.

F=4kN

Problem 2/22
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2/23 Determine the resultant R of the two forces shown
by (a) applying the parallelogram rule for vector
addition and (b) summing scalar components.

600 N

400 N

Problem 2/23

2/24 1t is desired to remove the spike from the timber by
applying force along its horizontal axis. An obstruc-
tion A prevents direct access, so that two forces, one
400 1b and the other P, are applied by cables as
shown. Compute the magnitude of P necessary to
ensure a resultant T directed along the spike. Also
find T.

400 Ib

Problem 2/24
2/25 At what angle 6 must the 800-1b force be applied in
order that the resultant R of the two forces have a
magnitude of 2000 1b? For this condition, determine
the angle 8 between R and the vertical.

1400 1b

800 Ib

Problem 2/25

2/26 The cable AB prevents bar OA from rotating clock-
wise about the pivot O. If the cable tension is 750 N,
determine the n- and ¢-components of this force act-
ing on point A of the bar.

O
P —
Problem 2/26
2/27 At what angle 6§ must the 400-1b force be applied in
order that the resultant R of the two forces have a

magnitude of 1000 1b? For this condition what will
be the angle B between R and the horizontal?

400 1b

700 1b

Problem 2/27
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2/28 In the design of the robot to insert the small cylin- »2/29 The unstretched length of the spring is 7. When pin

drical part into a close-fitting circular hole, the
robot arm must exert a 90-N force P on the part
parallel to the axis of the hole as shown. Determine
the components of the force which the part exerts
on the robot along axes (a) parallel and perpendicu-
lar to the arm AB, and (b) parallel and perpendicu-
lar to the arm BC.

Problem 2/28

P is in an arbitrary position 6, determine the x- and
y-components of the force which the spring exerts
on the pin. Evaluate your general expressions for
r =400 mm, k£ = 1.4 kN/m, and 6 = 40°. (Note: The
force in a spring is given by F = k5, where § is the
extension from the unstretched length.)

Problem 2/29

»2/30 Refer to the figure and statement of Prob. 2/29.

When pin P is in the position 6 = 20°, determine the
n- and ¢-components of the force F which the spring
of modulus £ = 1.4 kN/m exerts on the pin. The dis-
tance r = 400 mm.
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(@)

(d)

Figure 2/8

2/4 Moment

In addition to the tendency to move a body in the direction of its ap-
plication, a force can also tend to rotate a body about an axis. The axis
may be any line which neither intersects nor is parallel to the line of ac-
tion of the force. This rotational tendency is known as the moment M of
the force. Moment is also referred to as forque.

As a familiar example of the concept of moment, consider the pipe
wrench of Fig. 2/8a. One effect of the force applied perpendicular to
the handle of the wrench is the tendency to rotate the pipe about its
vertical axis. The magnitude of this tendency depends on both the
magnitude F of the force and the effective length d of the wrench
handle. Common experience shows that a pull which is not perpendic-
ular to the wrench handle is less effective than the right-angle pull
shown.

Moment about a Point

Figure 2/8b shows a two-dimensional body acted on by a force F in
its plane. The magnitude of the moment or tendency of the force to ro-
tate the body about the axis O-O perpendicular to the plane of the
body is proportional both to the magnitude of the force and to the mo-
ment arm d, which is the perpendicular distance from the axis to the
line of action of the force. Therefore, the magnitude of the moment is
defined as

M =Fd (2/5)

The moment is a vector M perpendicular to the plane of the body. The
sense of M depends on the direction in which F tends to rotate the
body. The right-hand rule, Fig. 2/8¢, is used to identify this sense. We
represent the moment of F about O-O as a vector pointing in the direc-
tion of the thumb, with the fingers curled in the direction of the rota-
tional tendency.

The moment M obeys all the rules of vector combination and may
be considered a sliding vector with a line of action coinciding with the
moment axis. The basic units of moment in SI units are newton-meters
(N-m), and in the U.S. customary system are pound-feet (1b-ft).

When dealing with forces which all act in a given plane, we custom-
arily speak of the moment about a point. By this we mean the moment
with respect to an axis normal to the plane and passing through the
point. Thus, the moment of force F about point A in Fig. 2/8d has the
magnitude M = Fd and is counterclockwise.

Moment directions may be accounted for by using a stated sign con-
vention, such as a plus sign (+) for counterclockwise moments and a
minus sign (—) for clockwise moments, or vice versa. Sign consistency
within a given problem is essential. For the sign convention of Fig. 2/8d,
the moment of F about point A (or about the z-axis passing through
point A) is positive. The curved arrow of the figure is a convenient way
to represent moments in two-dimensional analysis.
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The Cross Product

In some two-dimensional and many of the three-dimensional prob-
lems to follow, it is convenient to use a vector approach for moment cal-
culations. The moment of F about point A of Fig. 2/80 may be
represented by the cross-product expression

M=rxF (2/6)

where r is a position vector which runs from the moment reference
point A to any point on the line of action of F. The magnitude of this ex-
pression is given by*

M = Frsina = Fd 2/7)

which agrees with the moment magnitude as given by Eq. 2/5. Note that
the moment arm d = r sin « does not depend on the particular point on
the line of action of F to which the vector r is directed. We establish the
direction and sense of M by applying the right-hand rule to the se-
quence r X F. If the fingers of the right hand are curled in the direction
of rotation from the positive sense of r to the positive sense of F, then
the thumb points in the positive sense of M.

We must maintain the sequence r X F, because the sequence F X r
would produce a vector with a sense opposite to that of the correct
moment. As was the case with the scalar approach, the moment M
may be thought of as the moment about point A or as the moment
about the line O-O which passes through point A and is perpendicular
to the plane containing the vectors r and F. When we evaluate the
moment of a force about a given point, the choice between using the
vector cross product or the scalar expression depends on how the
geometry of the problem is specified. If we know or can easily deter-
mine the perpendicular distance between the line of action of the
force and the moment center, then the scalar approach is generally
simpler. If, however, F and r are not perpendicular and are easily ex-
pressible in vector notation, then the cross-product expression is
often preferable.

In Section B of this chapter, we will see how the vector formulation
of the moment of a force is especially useful for determining the mo-
ment of a force about a point in three-dimensional situations.

Varignon’s Theorem

One of the most useful principles of mechanics is Varignon’s theo-
rem, which states that the moment of a force about any point is equal to
the sum of the moments of the components of the force about the same
point.

*See item 7 in Art. C/7 of Appendix C for additional information concerning the cross
product.
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To prove this theorem, consider the force R acting in the plane of
the body shown in Fig. 2/9a. The forces P and Q represent any two non-
rectangular components of R. The moment of R about point O is

My,=rxR
Because R = P + Q, we may write
rxR=rxP+Q)
Using the distributive law for cross products, we have
My=rXxR=rxP+rxQ (2/8)

which says that the moment of R about O equals the sum of the mo-
ments about O of its components P and Q. This proves the theorem.

Varignon’s theorem need not be restricted to the case of two compo-
nents, but it applies equally well to three or more. Thus we could have
used any number of concurrent components of R in the foregoing
proof.*

Figure 2/9b illustrates the usefulness of Varignon’s theorem. The
moment of R about point O is Rd. However, if d is more difficult to de-
termine than p and q, we can resolve R into the components P and Q,
and compute the moment as

My =Rd = —pP +qQ
where we take the clockwise moment sense to be positive.

Sample Problem 2/5 shows how Varignon’s theorem can help us to
calculate moments.

(a) ()
Figure 2/9

*As originally stated, Varignon’s theorem was limited to the case of two concurrent com-
ponents of a given force. See The Science of Mechanics, by Ernst Mach, originally pub-
lished in 1883.
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SAMPLE PROBLEM 2/5

Calculate the magnitude of the moment about the base point O of the 600-N
force in five different ways.

Solution. (I) The moment arm to the 600-N force is
d =4 cos 40° + 2 sin 40° = 4.35m
By M = Fd the moment is clockwise and has the magnitude
M, = 600(4.35) = 2610 N-m Ans.
(II) Replace the force by its rectangular components at A,
F; =600 cos 40° = 460 N, F, =600 sin 40° = 386 N
By Varignon’s theorem, the moment becomes
M, = 460(4) + 386(2) = 2610 N-m Ans.
(III) By the principle of transmissibility, move the 600-N force along its
line of action to point B, which eliminates the moment of the component F,. The
moment arm of F'; becomes
d, =4+ 2tan 40° = 5.68 m
and the moment is

Mo = 460(5.68) = 2610 N-m Ans.

(IV) Moving the force to point C eliminates the moment of the component
F,. The moment arm of F; becomes

dy =2+ 4 cot40°=6.77m
and the moment is
M, = 386(6.77) = 2610 N-m Ans.

(V) By the vector expression for a moment, and by using the coordinate
system indicated on the figure together with the procedures for evaluating cross
products, we have

My =r X F = (2i + 4j) x 600(i cos 40° — j sin 40°)
= —2610k N'm

The minus sign indicates that the vector is in the negative z-direction. The mag-
nitude of the vector expression is

My = 2610 N-m Ans.

<

600 N

2m F, =600 cos 40°

Helpful Hints

@ The required geometry here and in
similar problems should not cause dif-
ficulty if the sketch is carefully drawn.

@ This procedure is frequently the
shortest approach.

© The fact that points B and C are not
on the body proper should not cause
concern, as the mathematical calcula-
tion of the moment of a force does not
require that the force be on the body.

O Alternative choices for the position
vector r are r = d;j = 5.68j m and
r =doi = 6.77i m.
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SAMPLE PROBLEM 2/6

The trap door OA is raised by the cable AB, which passes over the small fric-
tionless guide pulleys at B. The tension everywhere in the cable is 7', and this ten-
sion applied at A causes a moment M, about the hinge at O. Plot the quantity My/T
as a function of the door elevation angle 6 over the range 0 = # = 90° and note min-
imum and maximum values. What is the physical significance of this ratio?

Solution. We begin by constructing a figure which shows the tension force T
acting directly on the door, which is shown in an arbitrary angular position 6. It
should be clear that the direction of T will vary as 6 varies. In order to deal with
this variation, we write a unit vector nyp which “aims” T:

_Tap  Yop ~ Yoa
DB =TT Tap
Using the x-y coordinates of our figure, we can write
rop = 0.4j m and rp, = 0.5(cos 0i + sin 6j) m
So
r g =Top — Yoy = 0.4j — (0.5)(cos 0i + sin 6j)
= —0.5cos 6i + (0.4 — 0.5 sin 6)j m

and

rag = V(0.5 cos 0)% + (0.4 — 0.5 sin 6)2

=,/0.41 — 0.4sin f m

The desired unit vector is
_rap —0.5cos i+ (0.4 — 0.5 sin 0)j

 Tap JO41 —04sing

Our tension vector can now be written as
—0.5cos 0i + (0.4 — 0.5 sin O)j}

J0.41 — 0.4 sin 0

The moment of T about point O, as a vector, is My = rog X T, where rpg = 0.4j m, or

nyp

T:TnAB:T[

. —0.5 cos i + (0.4 — 0.5 sin 6)j
M, =04j x T
J0.41 — 0.4 sin 6
_ 0.2T cos 6 Kk
J0.41 — 0.4 sin 6
The magnitude of M, is
M, = 0.2T cos 6

J0.41 — 0.4 sin 0

and the requested ratio is

% _ 0.2 cos 6

T /041 —04siné

which is plotted in the accompanying graph. The expression M/T' is the moment
arm d (in meters) which runs from O to the line of action of T. It has a maximum
value of 0.4 m at # = 53.1° (at which point T is horizontal) and a minimum value of
0 at 6 = 90° (at which point T is vertical). The expression is valid even if T varies.

This sample problem treats moments in two-dimensional force systems, and
it also points out the advantages of carrying out a solution for an arbitrary posi-
tion, so that behavior over a range of positions can be examined.

Ans.

Helpful Hints

@ Recall that any unit vector can be
written as a vector divided by its
magnitude. In this case the vector in
the numerator is a position vector.

0.5
0.4
LT [N
0.3 \
Mo \
T 0.2 \
0.1

0
0 10 20 30 40 50 60 70 80 90
0, deg

@ Recall that any vector may be writ-
ten as a magnitude times an “aim-
ing” unit vector.

© In the expression M = r x F, the po-
sition vector r runs from the mo-
ment center fo any point on the line
of action of F. Here, rpp is more con-
venient than rp,.
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PROBLEMS

Introductory Problems

2/31 The 4-kN force F is applied at point A. Compute the
moment of F about point O, expressing it both as
a scalar and as a vector quantity. Determine the
coordinates of the points on the x- and y-axes
about which the moment of F is zero.

A(12,15)

Problem 2/31

2/32 The rectangular plate is made up of 1-ft squares as
shown. A 30-1b force is applied at point A in the di-
rection shown. Calculate the moment My of the force
about point B by at least two different methods.

30 1b
11ft A
1ft -

—— -

JR— B
Problem 2/32

2/33 The throttle-control sector pivots freely at O. If an
internal torsional spring exerts a return moment
M =18N-m on the sector when in the position
shown, for design purposes determine the necessary
throttle-cable tension 7' so that the net moment
about O is zero. Note that when T is zero, the sector
rests against the idle-control adjustment screw at R.

Problem 2/33

2/34 The force of magnitude F acts along the edge of the
triangular plate. Determine the moment of F about
point O.

Problem 2/34

2/35 Calculate the moment of the 250-N force on the
handle of the monkey wrench about the center of
the bolt.

250 N
152

<200 mm |

O

Problem 2/35
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2/36 The tension in cable AB is 100 N. Determine the
moment about O of this tension as applied to point
A of the T-shaped bar. The dimension b is 600 mm.

Problem 2/36

2/37 A prybar is used to remove a nail as shown. Deter-
mine the moment of the 60-lb force about the point
O of contact between the prybar and the small sup-
port block.

14”

+1.2"

Problem 2/37

2/38 A force F of magnitude 60 N is applied to the gear.
Determine the moment of F about point O.

Problem 2/38

Representative Problems

2/39 The slender quarter-circular member of mass m is
built-in at its support O. Determine the moment of
its weight about point O. Use Table D/3 as neces-

sary to determine the location of the mass center of
the body.

Problem 2/39

2/40 The 30-N force P is applied perpendicular to the
portion BC of the bent bar. Determine the moment
of P about point B and about point A.

Problem 2/40
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2/41 Compute the moment of the 0.4-1b force about the
pivot O of the wall-switch toggle.

Problem 2/41

2/42 The cable AB carries a tension of 400 N. Determine
the moment about O of this tension as applied to
point A of the slender bar.

— B

650 mm

>
S

30°

Fo
Problem 2/42

2/43 As a trailer is towed in the forward direction, the
force F' = 120 1b is applied as shown to the ball of
the trailer hitch. Determine the moment of this
force about point O.

F=1201b

11”7

Problem 2/43

2/44 Determine the moments of the tension T about
point P and about point O.

P

Problem 2/44

2/45 The lower lumbar region A of the spine is the part
of the spinal column most susceptible to abuse while
resisting excessive bending caused by the moment
about A of a force F. For given values of F, b, and A,
determine the angle 6 which causes the most severe
bending strain.

Problem 2/45
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2/46 Determine the combined moment about O due to
the weight of the mailbox and the cross member AB.
The mailbox weighs 4 1b and the uniform cross
member weighs 10 Ib. Both weights act at the geo-
metric centers of the respective items.

1 §
19” 3,,i 7
e
9//
- pennies dimes
A Problem 2/47

2/48 The crank of Prob. 2/10 is repeated here. If

OA = 50 mm, 0 = 25°, and B = 55°, determine the

moment of the force F of magnitude F' = 20 N about

38" point O.

0]

Problem 2/46

2/47 A portion of a mechanical coin sorter works as fol-
lows: Pennies and dimes roll down the 20° incline,
the last triangular portion of which pivots freely
about a horizontal axis through O. Dimes are light
enough (2.28 grams each) so that the triangular
portion remains stationary, and the dimes roll into
the right collection column. Pennies, on the other
hand, are heavy enough (3.06 grams each) so that
the triangular portion pivots clockwise, and the pen- Problem 2/48
nies roll into the left collection column. Determine
the moment about O of the weight of the penny in
terms of the slant distance s in millimeters.
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2/49 Elements of the lower arm are shown in the figure.

The weight of the forearm is 5 1b with mass center
at G. Determine the combined moment about the
elbow pivot O of the weights of the forearm and the
sphere. What must the biceps tension force be so
that the overall moment about O is zero?

13" |

Problem 2/49

2/50 The mechanism of Prob. 2/16 is repeated here. For

the conditions 6 = 40°, T'= 150 N, and r = 200 mm,
determine the moment about O of the tension T
applied by cable AB to point A.

Problem 2/50

2/51 In order to raise the flagpole OC, a light frame OAB
is attached to the pole and a tension of 780 Ib is de-
veloped in the hoisting cable by the power winch D.
Calculate the moment M, of this tension about the
hinge point O.

Problem 2/51

2/52 Determine the angle 0 which will maximize the

moment M, of the 50-1b force about the shaft axis
at 0. Also compute M.

50 1b

Problem 2/52
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2/53 The spring-loaded follower A bears against the circu-
lar portion of the cam until the lobe of the cam lifts 24"
the plunger. The force required to lift the plunger is
proportional to its vertical movement A from its low-
est position. For design purposes determine the
angle 6 for which the moment of the contact force on
the cam about the bearing O is a maximum. In the
enlarged view of the contact, neglect the small dis- 30”
tance between the actual contact point B and the
end C of the lobe.

TRy,
/////O?\
STTT

40”

Problem 2/54

2/55 An exerciser begins with his arm in the relaxed ver-
tical position OA, at which the elastic band is un-
stretched. He then rotates his arm to the horizontal
position OB. The elastic modulus of the band is
k = 60 N/m—that is, 60 N of force is required to
stretch the band each additional meter of elonga-
tion. Determine the moment about O of the force

Problem 2/53 which the band exerts on the hand B.

2/54 As the result of a wind blowing normal to the plane
of the rectangular sign, a uniform pressure of 3.5
1b/ft? is exerted in the direction shown in the figure.
Determine the moment of the resulting force about
point O. Express your result as a vector using the
coordinates shown.

Problem 2/55
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2/56 The rocker arm BD of an automobile engine is sup-
ported by a nonrotating shaft at C. If the design
value of the force exerted by the pushrod AB on the
rocker arm is 80 lb, determine the force which the
valve stem DE must exert at D in order for the com-
bined moment about point C to be zero. Compute
the resultant of these two forces exerted on the
rocker arm. Note that the points B, C, and D lie on a
horizontal line and that both the pushrod and valve
stem exert forces along their axes.

175" | 17

Problem 2/57

2/58 The 120-N force is applied as shown to one end of
the curved wrench. If « = 30°, calculate the moment
of F' about the center O of the bolt. Determine the
value of @ which would maximize the moment about
O; state the value of this maximum moment.

F=120N

Problem 2/56

2/57 The small crane is mounted along the side of a
pickup bed and facilitates the handling of heavy
loads. When the boom elevation angle is 6 = 40°, the
force in the hydraulic cylinder BC is 4.5 kN, and
this force applied at point C is in the direction from
B to C (the cylinder is in compression). Determine
the moment of this 4.5-kN force about the boom
pivot point O.

Problem 2/58
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(@)

-

=

(c)

Noljre)
Q&

Counterclockwise Clockwise
couple couple
(d)
Figure 2/10

2/5 Couple

The moment produced by two equal, opposite, and noncollinear
forces is called a couple. Couples have certain unique properties and
have important applications in mechanics.

Consider the action of two equal and opposite forces F and —F a dis-
tance d apart, as shown in Fig. 2/10a. These two forces cannot be combined
into a single force because their sum in every direction is zero. Their only
effect is to produce a tendency of rotation. The combined moment of the
two forces about an axis normal to their plane and passing through any
point such as O in their plane is the couple M. This couple has a magnitude

M =F(a +d) — Fa
or
M = Fd

Its direction is counterclockwise when viewed from above for the case il-
lustrated. Note especially that the magnitude of the couple is indepen-
dent of the distance a which locates the forces with respect to the
moment center O. It follows that the moment of a couple has the same
value for all moment centers.

Vector Algebra Method

We may also express the moment of a couple by using vector alge-
bra. With the cross-product notation of Eq. 2/6, the combined moment
about point O of the forces forming the couple of Fig. 2/106 is

M=r,xF+rgx(-F)=(y —rp) XF

where r, and rp are position vectors which run from point O to arbi-
trary points A and B on the lines of action of F and —F, respectively. Be-
cause ry — rg = r, we can express M as

M=rxF

Here again, the moment expression contains no reference to the mo-
ment center O and, therefore, is the same for all moment centers. Thus,
we may represent M by a free vector, as shown in Fig. 2/10c¢, where the
direction of M is normal to the plane of the couple and the sense of M is
established by the right-hand rule.

Because the couple vector M is always perpendicular to the plane of
the forces which constitute the couple, in two-dimensional analysis we
can represent the sense of a couple vector as clockwise or counterclock-
wise by one of the conventions shown in Fig. 2/10d. Later, when we deal
with couple vectors in three-dimensional problems, we will make full
use of vector notation to represent them, and the mathematics will au-
tomatically account for their sense.

Equivalent Couples

Changing the values of F' and d does not change a given couple as
long as the product Fd remains the same. Likewise, a couple is not af-
fected if the forces act in a different but parallel plane. Figure 2/11
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M M M
A A A
| | Bz
=T =
d d
F “F
Figure 2/11

shows four different configurations of the same couple M. In each of
the four cases, the couples are equivalent and are described by the
same free vector which represents the identical tendencies to rotate the
bodies.

Force-Couple Systems

The effect of a force acting on a body is the tendency to push or pull
the body in the direction of the force, and to rotate the body about any
fixed axis which does not intersect the line of the force. We can repre-
sent this dual effect more easily by replacing the given force by an equal
parallel force and a couple to compensate for the change in the moment
of the force.

The replacement of a force by a force and a couple is illustrated in
Fig. 2/12, where the given force F acting at point A is replaced by an
equal force F at some point B and the counterclockwise couple M = Fd.
The transfer is seen in the middle figure, where the equal and opposite
forces F and —F are added at point B without introducing any net exter-
nal effects on the body. We now see that the original force at A and the
equal and opposite one at B constitute the couple M = Fd, which is
counterclockwise for the sample chosen, as shown in the right-hand part
of the figure. Thus, we have replaced the original force at A by the same
force acting at a different point B and a couple, without altering the ex-
ternal effects of the original force on the body. The combination of the
force and couple in the right-hand part of Fig. 2/12 is referred to as a
force—couple system.

By reversing this process, we can combine a given couple and a force
which lies in the plane of the couple (normal to the couple vector) to
produce a single, equivalent force. Replacement of a force by an equiva-
lent force—couple system, and the reverse procedure, have many applica-
tions in mechanics and should be mastered.

Figure 2/12

-2F
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SAMPLE PROBLEM 2/7

The rigid structural member is subjected to a couple consisting of the two
100-N forces. Replace this couple by an equivalent couple consisting of the two
forces P and —P, each of which has a magnitude of 400 N. Determine the proper
angle 6.

Solution. The original couple is counterclockwise when the plane of the forces
is viewed from above, and its magnitude is

[M = Fd] M =100(0.1) = 10 N-m
The forces P and —P produce a counterclockwise couple

M = 400(0.040) cos 0
Equating the two expressions gives

10 = (400)(0.040) cos 6

6 = cos! %g =51.3° Ans.

Helpful Hint

@ Since the two equal couples are parallel free vectors, the only dimensions
which are relevant are those which give the perpendicular distances between
the forces of the couples.

100 N

Dimensions in millimeters

P=400 N

P =400 N

40 mm

SAMPLE PROBLEM 2/8

Replace the horizontal 80-1b force acting on the lever by an equivalent sys-
tem consisting of a force at O and a couple.

Solution. We apply two equal and opposite 80-1b forces at O and identify the
counterclockwise couple

[M = Fd] M = 80(9 sin 60°) = 624 lb-in. Ans.

Thus, the original force is equivalent to the 80-1b force at O and the 624-1b-in.
couple as shown in the third of the three equivalent figures.

Helpful Hint

@ The reverse of this problem is often encountered, namely, the replacement
of a force and a couple by a single force. Proceeding in reverse is the same as
replacing the couple by two forces, one of which is equal and opposite to the
80-1b force at O. The moment arm to the second force would be M/F =
624/80 = 7.79 in., which is 9 sin 60°, thus determining the line of action of
the single resultant force of 80 lb.

80 1b

9”

80 Ib

80 Ib

(@)

o)

801b 80 1b

80 Ib

624 lb-in.
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PROBLEMS

Introductory Problems

2/59 Compute the combined moment of the two 90-lb
forces about (a) point O and (b) point A.

90 Ib

Problem 2/59

2/60 Replace the 12-kN force acting at point A by a
force—couple system at (a) point O and (b) point B.

y
\
12 kN }
/ |
30° 4m \
AT T T T To T~ *
\
\
\
\
‘5m
\
\
\
tB
\

Problem 2/60

2/61 Replace the force—couple system at point O by a
single force. Specify the coordinate y, of the point
on the y-axis through which the line of action of this
resultant force passes.

200 N O

\ 80 N'm
\

\

Problem 2/61

2/62 The top view of a revolving entrance door is shown.
Two persons simultaneously approach the door and
exert force of equal magnitudes as shown. If the
resulting moment about the door pivot axis at O is
25 N-m, determine the force magnitude F.

Problem 2/62
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2/63 Determine the moment associated with the couple

applied to the rectangular plate. Reconcile the
results with those for the individual special cases of
0 =0,b=0,and h = 0.

~

Problem 2/63

2/64 As part of a test, the two aircraft engines are revved

up and the propeller pitches are adjusted so as to re-
sult in the fore and aft thrusts shown. What force F'
must be exerted by the ground on each of the main
braked wheels at A and B to counteract the turning
effect of the two propeller thrusts? Neglect any ef-
fects of the nose wheel C, which is turned 90° and
unbraked.

500 1b

A
i & H S o a7
( - i
% B <
500 1b L

Problem 2/64

l|0|

|0|l

2/65 The 7-lb force is applied by the control rod on the
sector as shown. Determine the equivalent force—
couple system at O.

/T=71b

Problem 2/65

2/66 Replace the 10-kN force acting on the steel column

by an equivalent force-couple system at point O.
This replacement is frequently done in the design of
structures.

10kN|

i

—

Problem 2/66
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2/67 Each propeller of the twin-screw ship develops a
full-speed thrust of 300 kN. In maneuvering the
ship, one propeller is turning full speed ahead and
the other full speed in reverse. What thrust P must
each tug exert on the ship to counteract the effect of
the ship’s propellers?

«50m{

i
o

120 m }

- -
oo

= ¢ |

Problem 2/67

Representative Problems

2/68 The force-couple system at A is to be replaced by
a single equivalent force acting at a point B on
the vertical edge (or its extension) of the triangular
plate. Determine the distance d between A and B.

My

p

R

\ b |

Problem 2/68

2/69 A lug wrench is used to tighten a square-head bolt.
If 50-1b forces are applied to the wrench as shown,
determine the magnitude F of the equal forces
exerted on the four contact points on the 1-in. bolt
head so that their external effect on the bolt is
equivalent to that of the two 50-1b forces. Assume
that the forces are perpendicular to the flats of the
bolt head.

1”

View C Detail
(clearances exaggerated)

Problem 2/69

2/70 A force-couple system acts at O on the 60° circular
sector. Determine the magnitude of the force F if
the given system can be replaced by a stand-alone
force at corner A of the sector.

60° /

80Nm g / 04m A

Problem 2/70
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2/Nn

2/72

During a steady right turn, a person exerts the forces
shown on the steering wheel. Note that each force
consists of a tangential component and a radially-
inward component. Determine the moment exerted
about the steering column at O.

Problem 2/71

A force F of magnitude 50 N is exerted on the
automobile parking-brake lever at the position
x = 250 mm. Replace the force by an equivalent
force—couple system at the pivot point O.

Problem 2/72

2/73 The tie-rod AB exerts the 250-N force on the steer-

ing knuckle AO as shown. Replace this force by an
equivalent force—couple system at O.

10°\ F=250N
<—235 mm

or]

i
\
L«

50 mm

S|

Problem 2/73

2/74 The 250-N tension is applied to a cord which is se-

curely wrapped around the periphery of the disk.
Determine the equivalent force-couple system at
point C. Begin by finding the equivalent force—
couple system at A.

120 mm

250 N

Problem 2/74
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2/75 The system consisting of the bar OA, two identical

pulleys, and a section of thin tape is subjected to the
two 180-N tensile forces shown in the figure. Deter-
mine the equivalent force-couple system at point O.

180N

Problem 2/75

2/76 Points A and B are the midpoints of the sides of the

rectangle. Replace the given force F' acting at A by a
force—couple system at B.

i‘V F
\
\

>
N
N
oo

———x

S

\ b |

Problem 2/76

2/77 The device shown is a part of an automobile seat-

back-release mechanism. The part is subjected to
the 4-N force exerted at A and a 300-N-mm restor-
ing moment exerted by a hidden torsional spring.
Determine the y-intercept of the line of action of the
single equivalent force.

40 mm

300 N-mm

Problem 2/77

2/78 The force F acts along line MA, where M is the mid-

point of the radius along the x-axis. Determine the
equivalent force—couple system at O if § = 40°.

R T R
2 2

Problem 2/78
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(@)

)

Figure 2/13

2/6 Resultants

The properties of force, moment, and couple were developed in the
previous four articles. Now we are ready to describe the resultant action of
a group or system of forces. Most problems in mechanics deal with a system
of forces, and it is usually necessary to reduce the system to its simplest
form to describe its action. The resultant of a system of forces is the sim-
plest force combination which can replace the original forces without alter-
ing the external effect on the rigid body to which the forces are applied.

Equilibrium of a body is the condition in which the resultant of all
forces acting on the body is zero. This condition is studied in statics. When
the resultant of all forces on a body is not zero, the acceleration of the body
is obtained by equating the force resultant to the product of the mass and
acceleration of the body. This condition is studied in dynamics. Thus, the
determination of resultants is basic to both statics and dynamics.

The most common type of force system occurs when the forces all
act in a single plane, say, the x-y plane, as illustrated by the system of
three forces F;, Fy, and F3 in Fig. 2/13a. We obtain the magnitude and
direction of the resultant force R by forming the force polygon shown
in part b of the figure, where the forces are added head-to-tail in any
sequence. Thus, for any system of coplanar forces we may write

R=F,+F,+F,+ - = 5F

- 3F —sF — JGF)? + (3F,?
R, ' R, ) R (XF)? + (ZF,) 2/9)
R, IF,
6 =tan"! == =tan ! —
R, SF,

Graphically, the correct line of action of R may be obtained by pre-
serving the correct lines of action of the forces and adding them by the
parallelogram law. We see this in part a of the figure for the case of
three forces where the sum R; of Fy, and F5 is added to F; to obtain R.
The principle of transmissibility has been used in this process.

Algebraic Method

We can use algebra to obtain the resultant force and its line of ac-
tion as follows:

1. Choose a convenient reference point and move all forces to that
point. This process is depicted for a three-force system in Figs.
2/14a and b, where M, My, and M3 are the couples resulting from
the transfer of forces F;, Fy, and F5 from their respective original
lines of action to lines of action through point O.

2. Add all forces at O to form the resultant force R, and add all couples
to form the resultant couple M. We now have the single force-
couple system, as shown in Fig. 2/14c.

3. In Fig. 2/14d, find the line of action of R by requiring R to have a
moment of My about point O. Note that the force systems of Figs.
2/14a and 2/14d are equivalent, and that X(Fd) in Fig. 2/14a is equal
to Rd in Fig. 2/14d.
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(@) (b)

(c) (d)

Figure 2/14

Principle of Moments

This process is summarized in equation form by

R =ZXF
M, = M = S(Fd) (2/10)
Rd = MO

The first two of Egs. 2/10 reduce a given system of forces to a force—
couple system at an arbitrarily chosen but convenient point O. The last
equation specifies the distance d from point O to the line of action of R,
and states that the moment of the resultant force about any point O
equals the sum of the moments of the original forces of the system about
the same point. This extends Varignon’s theorem to the case of noncon-
current force systems; we call this extension the principle of moments.

For a concurrent system of forces where the lines of action of all
forces pass through a common point O, the moment sum XM about
that point is zero. Thus, the line of action of the resultant R = XF, de-
termined by the first of Egs. 2/10, passes through point O. For a paral-
lel force system, select a coordinate axis in the direction of the forces.
If the resultant force R for a given force system is zero, the resultant
of the system need not be zero because the resultant may be a couple.
The three forces in Fig. 2/15, for instance, have a zero resultant force
but have a resultant clockwise couple M = Fsd.

Figure 2/15
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SAMPLE PROBLEM 2/9

Determine the resultant of the four forces and one couple which act on the
plate shown.

Solution. Point O is selected as a convenient reference point for the force—couple
system which is to represent the given system.

[R, =Z2F,] R, = 40 + 80 cos 30° — 60 cos 45° = 66.9 N
[R, = ZF] R, =50 + 80 sin 30° + 60 cos 45° = 1324 N
[R = JR,2+R/2] R = /(66.9)% + (132.4)2 = 148.3N Ans.
R
= fmml =2 — tqp-1 1324 _ 0
[0 tan Rx] 0 = tan 66.9 63.2 Ans.
M, = 2(Fd)] My = 140 — 50(5) + 60 cos 45°(4) — 60 sin 45°(7)

= —237TN-m

The force—couple system consisting of R and M, is shown in Fig. a.
We now determine the final line of action of R such that R alone represents
the original system.

[Rd = [M,|] 148.3d = 237  d = 1.600m Ans.

Hence, the resultant R may be applied at any point on the line which makes a
63.2° angle with the x-axis and is tangent at point A to a circle of 1.600-m radius
with center O, as shown in part b of the figure. We apply the equation Rd = My in
an absolute-value sense (ignoring any sign of M) and let the physics of the situa-
tion, as depicted in Fig. a, dictate the final placement of R. Had M been counter-
clockwise, the correct line of action of R would have been the tangent at point B.

The resultant R may also be located by determining its intercept distance b
to point C on the x-axis, Fig. c. With R, and R, acting through point C, only R,
exerts a moment about O so that

Rpb=|My and b= % = 1.792m

Alternatively, the y-intercept could have been obtained by noting that the mo-
ment about O would be due to R, only.

A more formal approach in determining the final line of action of R is to use
the vector expression

er:MO

where r = xi + yj is a position vector running from point O to any point on the
line of action of R. Substituting the vector expressions for r, R, and M, and car-
rying out the cross product result in

(xi + yj) x (66.9i + 132.4j) = —237k
(132.4x — 66.9y)k = —237k
Thus, the desired line of action, Fig. ¢, is given by
132.4x — 66.9y = —237

By setting y = 0, we obtain x = —1.792 m, which agrees with our earlier calcula-
tion of the distance b.

60 N <—5m

45° —
| 140 N'm
2m | ‘

Im
y
!
]
|| R=148.3N
\
(@) \
| My = \ 0 =63.2°
237Nem (A — L —x
N—
R=1483N
) 1.600 m - 632
(L ),\L .
\ O
132.4x — 66.9y =
(c)

Helpful Hints
@ We note that the choice of point O as

a moment center eliminates any mo-
ments due to the two forces which
pass through O. Had the clockwise
sign convention been adopted, M,
would have been +237 N-m, with
the plus sign indicating a sense
which agrees with the sign conven-
tion. Either sign convention, of
course, leads to the conclusion of a
clockwise moment M.

Note that the vector approach
yields sign information automati-
cally, whereas the scalar approach
is more physically oriented. You
should master both methods.

| ‘ 80N

2 m
40N ‘,f,f,f,Q‘,ﬁf
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PROBLEMS

Introductory Problems

2/79 Two rods and one cable are attached to the support
at O. If two of the forces are as shown, determine
the magnitude F' and direction 6 of the third force so
that the resultant of the three forces is vertically
downward with a magnitude of 1200 1b.

1000 Ib

Problem 2/79

2/80 Determine the resultant R of the three tension
forces acting on the eye bolt. Find the magnitude of
R and the angle 6, which R makes with the positive
x-axis.

l 8kN

4 kN

Problem 2/80

2/81 Determine the equivalent force-couple system at
the center O for each of the three cases of forces
being applied along the edges of a square plate of

side d.
y y y
\ F_| F_|
T T T 7 T
a |l =] - - ..
(0] (0] (0]
F F

(@) (b) (c)

Problem 2/81

2/82 Determine the equivalent force-couple system at
the origin O for each of the three cases of forces
being applied along the edges of a regular hexagon
of width d. If the resultant can be so expressed, re-
place this force—couple system with a single force.

y y y
. F - F F F
F F
r &W w}
(b) (c)

(@)

Problem 2/82

2/83 Where does the resultant of the two forces act?

680 N
-
300 500
+ mm mm
! A
©)
©)
©
660 N

Problem 2/83
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2/84 Determine and locate the resultant R of the two
forces and one couple acting on the I-beam.

8 kN
e 25 kN-m
*
X7 |
~—2m 2m ‘ 2m ——
5kN

Problem 2/84
2/85 Replace the two forces acting on the bent pipe by a

single equivalent force R. Specify the distance y from
point A to the line of action of R.

120 N

80 mm

200 N

160 mm

— ——x

~-100 mm»l

Problem 2/85

2/86 Under nonuniform and slippery road conditions, the
two forces shown are exerted on the two rear-drive
wheels of the pickup truck, which has a limited-slip
rear differential. Determine the y-intercept of the
resultant of this force system.

50 1b

100 1b
67" 45"

Problem 2/86

2/87 The flanged steel cantilever beam with riveted
bracket is subjected to the couple and two forces
shown, and their effect on the design of the attach-
ment at A must be determined. Replace the two
forces and couple by an equivalent couple M and
resultant force R at A.

2 kN

} 15m

<

- 1.2 kN

Problem 2/87

2/88 If the resultant of the two forces and couple M passes
through point O, determine M.

320N

400 N

160
mm

Problem 2/88

2/89 Replace the three forces which act on the bent bar
by a force-couple system at the support point A.
Then determine the x-intercept of the line of action
of the stand-alone resultant force R.

2500 1b

1200 Ib

Problem 2/89
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2/90 A commercial airliner with four jet engines, each 2/92 Determine the x- and y-axis intercepts of the line of
producing 90 kN of forward thrust, is in a steady, action of the resultant of the three loads applied to
level cruise when engine number 3 suddenly fails. the gearset.

Determine and locate the resultant of the three re-
maining engine thrust vectors. Treat this as a two- y

dimensional problem. ‘

Problem 2/92

2/93 Determine the resultant R of the three forces acting
on the simple truss. Specify the points on the x- and
y-axes through which R must pass.

\30O
Problem 2/90
25 kN 20 kN \

Representative Problems

imental aircraft can be independently changed from
the conventional forward direction within limits. 3m
For the thrust configuration shown, determine the O{ S 2
equivalent force-couple system at point O. Then re-
place this force-couple system by a single force and 30 kN
specify the point on the x-axis through which the
line of action of this resultant passes. These results Problem 2/93
are vital to assessing design performance.

2/91 The directions of the two thrust vectors of an exper- 3" 5m
\
[

Problem 2/91




64 Chapter2 Force Systems

2/94 The asymmetric roof truss is of the type used when
a near normal angle of incidence of sunlight onto
the south-facing surface ABC is desirable for solar
energy purposes. The five vertical loads represent
the effect of the weights of the truss and supported
roofing materials. The 400-N load represents the
effect of wind pressure. Determine the equivalent
force—couple system at A. Also, compute the x-inter-
cept of the line of action of the system resultant
treated as a single force R.

500 N

500 N

Problem 2/94

2/95 As part of a design test, the camshaft-drive sprocket
is fixed and then the two forces shown are applied to
a length of belt wrapped around the sprocket. Find
the resultant of this system of two forces and deter-
mine where its line of action intersects both the
x- and y-axes.

Ty =500 N

T, =400 N

Problem 2/95

2/96 While sliding a desk toward the doorway, three stu-
dents exert the forces shown in the overhead view.
Determine the equivalent force—couple system at
point A. Then determine the equation of the line of
action of the resultant force.

Problem 2/96

2/97 Under nonuniform and slippery road conditions, the
four forces shown are exerted on the four drive
wheels of the all-wheel-drive vehicle. Determine the
resultant of this system and the x- and y-intercepts
of its line of action. Note that the front and rear
tracks are equal (i.e., AB = CD).

1520 mm ' 1120 mm |

Problem 2/97
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2/98 A rear-wheel-drive car is stuck in the snow between

other parked cars as shown. In an attempt to free
the car, three students exert forces on the car at
points A, B, and C while the driver’s actions result
in a forward thrust of 40 lb acting parallel to the
plane of rotation of each rear wheel. Treating the
problem as two-dimensional, determine the equiva-
lent force—couple system at the car center of mass G
and locate the position x of the point on the car cen-
terline through which the resultant passes. Neglect
all forces not shown.

401b
33”

72//

Problem 2/98

2/99 An exhaust system for a pickup truck is shown in

the figure. The weights W;,, W,,,, and W, of the head-
pipe, muffler, and tailpipe are 10, 100, and 50 N,
respectively, and act at the indicated points. If the
exhaust-pipe hanger at point A is adjusted so that
its tension F', is 50 N, determine the required forces
in the hangers at points B, C, and D so that the
force—couple system at point O is zero. Why is a zero
force—couple system at O desirable?

W,;L W,

m
0.5-{02<0.65—|<0.65—< 0.5>}<0.4>|

Dimensions in meters

Problem 2/99

2/100 The pedal-chainwheel unit of a bicycle is shown in

the figure. The left foot of the rider exerts the 40-1b
force, while the use of toe clips allows the right foot
to exert the nearly upward 20-1b force. Determine
the equivalent force-couple system at point O.
Also, determine the equation of the line of action of
the system resultant treated as a single force R.
Treat the problem as two-dimensional.

Problem 2/100
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Figure 2/16

P

~
A (%9, 51, 21)

o —y1)

Figure 2/17

e

(29 —27)

e

//(x2 —x7)

SECTION B THREE-DIMENSIONAL FORCE SYSTEMS

2/7 Rectangular Components

Many problems in mechanics require analysis in three dimensions,
and for such problems it is often necessary to resolve a force into its
three mutually perpendicular components. The force F acting at point O
in Fig. 2/16 has the rectangular components F,, F,, F,, where

F,=Fcos 0, F=JF?2+F2+Fp?
F,=Fcoso, F=Fi+Fj+Fk (2/11)
F,=Fcos0, F =F(icos 6, +jcoso, + kcosb,

The unit vectors i, j, and k are in the x-, y-, and z-directions, respec-
tively. Using the direction cosines of F, which are / = cos 0,, m = cos 6,,
and n = cos 0,, where {2 + m? + n? = 1, we may write the force as

F = F(li + mj + nk) (2/12)

We may regard the right-side expression of Eq. 2/12 as the force
magnitude F' times a unit vector ny which characterizes the direction of
F, or

F = Fn, (2/12a)

It is clear from Eqgs. 2/12 and 2/12a that ny = li + mj + nk, which
shows that the scalar components of the unit vector ny are the direction
cosines of the line of action of F.

In solving three-dimensional problems, one must usually find the x,
y, and z scalar components of a force. In most cases, the direction of a
force is described (a) by two points on the line of action of the force or

y f; (s, y9, 25) (0) Dy two angles which orient the line of action.

(a) Specification by two points on the line of action of the force.
If the coordinates of points A and B of Fig. 2/17 are known, the force F
may be written as

F =F11F=FAE=F (g —xi + (g —y)j + (22 — 29k
AB Jag = 2% + (g — y)? + (25 — 212

Thus the x, v, and z scalar components of F are the scalar coefficients of
the unit vectors i, j, and Kk, respectively.
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(b) Specification by two angles which orient the line of action 2
of the force. Consider the geometry of Fig. 2/18. We assume that the
angles 6 and ¢ are known. First resolve F into horizontal and vertical
components.

F., =Fcos¢
F,=Fsin¢

Then resolve the horizontal component F,, into x- and y-components.

F.=F,, cos = F cos ¢ cos 0
F,=F, sin6 = F cos¢sind

The quantities F,, F,, and F, are the desired scalar components of F. Figure 2/18
The choice of orientation of the coordinate system is arbitrary, with

convenience being the primary consideration. However, we must use a

right-handed set of axes in our three-dimensional work to be consistent

with the right-hand-rule definition of the cross product. When we rotate

from the x- to the y-axis through the 90° angle, the positive direction for

the z-axis in a right-handed system is that of the advancement of a

right-handed screw rotated in the same sense. This is equivalent to the

right-hand rule.

Dot Product

We can express the rectangular components of a force F (or any
other vector) with the aid of the vector operation known as the dot or
scalar product (see item 6 in Art. C/7 of Appendix C). The dot product of
two vectors P and Q, Fig. 2/19q, is defined as the product of their mag-
nitudes times the cosine of the angle a between them. It is written as

P-Q=PQcosa

We can view this product either as the orthogonal projection P cos « of
P in the direction of Q multiplied by @, or as the orthogonal projection
@ cos « of Q in the direction of P multiplied by P. In either case the dot
product of the two vectors is a scalar quantity. Thus, for instance, we
can express the scalar component F, = F cos 6, of the force F in Fig.
2/16 as F, = F -1, where i is the unit vector in the x-direction.

\
y P \
\

“a qan T
< \ ¥.= F’n— /J\’ n (unit vector)
-

Q //—PFKF'“

(@) (b)

Figure 2/19
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Figure 2/20

In more general terms, if n is a unit vector in a specified direction,
the projection of F in the n-direction, Fig. 2/19b6, has the magnitude
F, = F-n. If we want to express the projection in the n-direction as a
vector quantity, then we multiply its scalar component, expressed by
F-n, by the unit vector n to give F,, = (F-n)n. We may write this as
F, = F-nn without ambiguity because the term nn is not defined, and
so the complete expression cannot be misinterpreted as F - (nn).

If the direction cosines of n are «, 3, and v, then we may write n in
vector component form like any other vector as

n=qai+gj+yk

where in this case its magnitude is unity. If the direction cosines of F
with respect to reference axes x-y-z are [, m, and n, then the projection
of F in the n-direction becomes

F,=F-n=F(li+mj+nk)(ai+ Bj + yk)
=F(la +mB + ny)

because
ii=jj=kk=1
and
i-j=ji=ik=ki=jk=kj=0

The latter two sets of equations are true because i, j, and k have unit
length and are mutually perpendicular.

Angle between Two Vectors

If the angle between the force F and the direction specified by the
unit vector n is 6, then from the dot-product definition we have F-n =
Fn cos 6 = F cos 6, where [n| = n = 1. Thus, the angle between F and n
is given by

— _1F'Il
0 = cos T (2/13)

In general, the angle between any two vectors P and Q is

0 = cos™ (2/13a)

1=

PQ
If a force F is perpendicular to a line whose direction is specified by the
unit vector n, then cos 6 = 0, and F-n = 0. Note that this relationship
does not mean that either F or n is zero, as would be the case with
scalar multiplication where (A)(B) = 0 requires that either A or B (or
both) be zero.

The dot-product relationship applies to nonintersecting vectors as
well as to intersecting vectors. Thus, the dot product of the noninter-
secting vectors P and Q in Fig. 2/20 is @ times the projection of P’ on Q,
or P'Q cos a = P cos a because P’ and P are the same when treated as
free vectors.
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SAMPLE PROBLEM 2/10

A force F with a magnitude of 100 N is applied at the origin O of the axes
x-y-z as shown. The line of action of F passes through a point A whose coordi-
nates are 3 m, 4 m, and 5 m. Determine (a) the x, y, and z scalar components of
F, (b) the projection F,, of F on the x-y plane, and (c) the projection Fpp of F
along the line OB.

F=100N

Solution. Part (a). We begin by writing the force vector F as its magnitude
F times a unit vector ngy,.

X 3i + 4j + 5k
F="Fn,, =F 24 - 100 [é]
0A N SZECRA 252

= 100[0.424i + 0.566j + 0.707k]
=424i + 56.6j + 70.7k N

The desired scalar components are thus

(1) F.=424N F,=56.6N F,=1707N Ans. Yy

-

Part (b). The cosine of the angle 6,, between F and the x-y plane is

/Q2 o 42
cos 0, = e 0.707 F. =70.7N
/32 + 42 + 52 w
so that F,, = F cos 6,, = 100(0.707) = 70.7 N Ans.

Part (c). The unit vector npp along OB is

~x

OB 6i+6j+2k
npp =28 - LTV TR _ ) 688i + 0.688] + 0.229Kk

OB /62 + 62 + 22

The scalar projection of F on OB is

(2] Fop =F-npp = (42.4i + 56.6j + 70.7k)-(0.688i + 0.688j + 0.229k)
= (42.4)(0.688) + (56.6)(0.688) + (70.7)(0.229)
=844N Ans.

If we wish to express the projection as a vector, we write

Fop = F-npgnpp

= 84.4(0.688i + 0.688j + 0.229k)
= 58.1i + 58.1j + 19.35k N Helpful Hints

@ In this example all scalar components
are positive. Be prepared for the case
where a direction cosine, and hence
the scalar component, are negative.

©® The dot product automatically finds
the projection or scalar component
of F along line OB as shown.
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PROBLEMS

Introductory Problems

2/101 Express the 900-1b force F as a vector in terms of
the unit vectors i, j, and k. Determine the projec-
tion of F onto the y-axis.

y, in.
\
\
| B (60, 30, 40)

—
- L B
| \\\O\ - -7

-~ -

g
A (—48,-25, 20) | <ol _ }
‘ ~ S~

\ L |F=9001b ~~L _

- \ x, in.

- \

2z, in.

Problem 2/101

2/102 Express the 5-kN force F as a vector in terms of
the unit vectors i, j, and k. Determine the projec-
tions of F onto the x-axis and onto the line OA.

Problem 2/102

2/103 The cable exerts a tension of 2 kN on the fixed
bracket at A. Write the vector expression for the
tension T.

Problem 2/103

2/104 In checking a recently installed fencepost for ade-
quacy of the ground support, a person exerts a force
P = —160i + 40j + 60k N on the top of the post as
shown. Determine the angles which P makes with
the positive x-axis and with the x-z plane.

Problem 2/104

2/105 The turnbuckle is tightened until the tension in
the cable AB equals 2.4 kN. Determine the vector
expression for the tension T as a force acting on
member AD. Also find the magnitude of the projec-
tion of T along the line AC.

Problem 2/105

2/106 The unstretched length of the spring is b. Determine
the force which the spring exerts on point B of
the space frame if & = 0.3 m. The magnitude of the
spring force is the spring constant 2 multiplied by the
deflection (Iengthening or shortening) of the spring.



Article 2/7 Problems 71

Problem 2/106

2/107 The rigid pole and cross-arm assembly is supported
by the three cables shown. A turnbuckle at D is
tightened until it induces a tension 7" in CD of 1.2
kN. Express T as a vector. Does it make any differ-
ence in the result which coordinate system is used?

Problem 2/107

2/108 Use the result cited for Prob. 2/107 and determine the
magnitude T4 of the projection of T onto line GF.

Representative Problems

2/109 The force F has a magnitude of 500 lb and acts
along the line AM, where M is the midpoint of the

vertical side OB of the parallelepiped. Express F as
its magnitude times the appropriate unit vector
and determine its x-, y-, and z-scalar components.

16”

Problem 2/109

2/110 The force F has a magnitude of 2 kN and is di-
rected from A to B. Calculate the projection Fp of
F onto line CD and determine the angle 6 between
F and CD.

F
0.2m

0.2m 0.4m

Problem 2/110

2/111 The cable BC carries a tension of 750 N. Write this
tension as a force T acting on point B in terms of
the unit vectors i, j, and k. The elbow at A forms a
right angle.

Problem 2/111



72 Chapter2 Force Systems

2/112 The tension in the supporting cable BC is 800 Ib.
Write the force which this cable exerts on the boom
OAB as a vector T. Determine the angles 0,, 6,, and
60, which the line of action of T forms with the posi-
tive x-, y-, and z-axes.

6

Sl
x//// 7 / = 25’\\3’

-

ok

Problem 2/112

2/113 Determine the angle 6 between the 200-l1b force
and line OC.

Problem 2/113

2/114 The rectangular plate is supported by hinges along
its side BC and by the cable AE. If the cable ten-
sion is 300 N, determine the projection onto line
BC of the force exerted on the plate by the cable.
Note that E is the midpoint of the horizontal upper
edge of the structural support.

Problem 2/114

2/115 An overhead crane is used to reposition the boxcar
within a railroad car-repair shop. If the boxcar be-
gins to move along the rails when the x-component of
the cable tension reaches 600 Ib, calculate the neces-
sary tension 7' in the cable. Determine the angle 0,
between the cable and the vertical x-y plane.

Problem 2/115

2/116 The access door is held in the 30° open position by
the chain AB. If the tension in the chain is 100 N,
determine the projection of the tension force onto
the diagonal axis CD of the door.

Problem 2/116
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2/117 The shafts and attached brackets are twisted in op-
posite directions to maintain a tension 7' of 500 N
in the wire joining A and B. Express the tension,
considered as a force acting on A, as a vector in the
form of Eq. 2/12 and determine the projection of T
onto the line DC.

Problem 2/117

»2/118 A force F is applied to the surface of the sphere
as shown. The angles 6 and ¢ locate point P, and
point M is the midpoint of ON. Express F in vector
form, using the given x-, y-, and z-coordinates.

Problem 2/118

»2/119 The power line is strung from the power-pole arm
at A to point B on the same horizontal plane. Be-
cause of the sag of the cable in the vertical plane,
the cable makes an angle of 15° with the horizontal
where it attaches to A. If the cable tension at A is
200 1b, write T as a vector and determine the mag-
nitude of its projection onto the x-z plane.

\
45

Problem 2/119

»2/120 Determine the x-, y-, and z-components of force F
which acts on the tetrahedron as shown. The quan-
tities a, b, ¢, and F are known, and M is the mid-
point of edge AB.

Problem 2/120
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®)

Figure 2/21

2/8 Moment and Couple

In two-dimensional analyses it is often convenient to determine a
moment magnitude by scalar multiplication using the moment-arm
rule. In three dimensions, however, the determination of the perpendic-
ular distance between a point or line and the line of action of the force
can be a tedious computation. A vector approach with cross-product
multiplication then becomes advantageous.

Moments in Three Dimensions

Consider a force F with a given line of action acting on a body, Fig.
2/21a, and any point O not on this line. Point O and the line of F estab-
lish a plane A. The moment My, of F about an axis through O normal to
the plane has the magnitude M, = Fd, where d is the perpendicular dis-
tance from O to the line of F. This moment is also referred to as the mo-
ment of F about the point O.

The vector My is normal to the plane and is directed along the axis
through O. We can describe both the magnitude and the direction of M,
by the vector cross-product relation introduced in Art. 2/4. (Refer to
item 7 in Art. C/7 of Appendix C.) The vector r runs from O to any point
on the line of action of F. As described in Art. 2/4, the cross product of r
and F is written r X F and has the magnitude (r sin o)F, which is the
same as Fd, the magnitude of M.

The correct direction and sense of the moment are established by
the right-hand rule, described previously in Arts. 2/4 and 2/5. Thus,
with r and F treated as free vectors emanating from O, Fig. 2/21b, the
thumb points in the direction of My, if the fingers of the right hand curl
in the direction of rotation from r to F through the angle «. Therefore,
we may write the moment of F about the axis through O as

M,=rxF (2/14)

The order r X F of the vectors must be maintained because F X r
would produce a vector with a sense opposite to that of My; that is,
Fxr= _Mo.

Evaluating the Cross Product

The cross-product expression for My may be written in the determi-
nant form

i
M, = |"= (2/15)

Fx

;’d %ﬁ Qoo
SIS

(Refer to item 7 in Art. C/7 of Appendix C if you are not already familiar
with the determinant representation of the cross product.) Note the
symmetry and order of the terms, and note that a right-handed coordi-
nate system must be used. Expansion of the determinant gives

My=0F,—r,F)i+ @, F,—r.F)j+ @ F,—r F)k
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To gain more confidence in the cross-product relationship, exam- _ /‘“ ~
ine the three components of the moment of a force about a point as 7 : | 7 F
obtained from Fig. 2/22. This figure shows the three components of a z B \"\; z7

force F acting at a point A located relative to O by the vector r. The
scalar magnitudes of the moments of these forces about the positive
x-, y-, and z-axes through O can be obtained from the moment-arm
rule, and are

M,=r,F,-r,F, M,=r,F,—r.F, M,=r.F, —r,F,

which agree with the respective terms in the determinant expansion for
the cross product r x F.

Moment about an Arbitrary Axis

We can now obtain an expression for the moment M, of F about any
axis A through O, as shown in Fig. 2/23. If n is a unit vector in the
A-direction, then we can use the dot-product expression for the compo-
nent of a vector as described in Art. 2/7 to obtain My - n, the component
of My in the direction of A. This scalar is the magnitude of the moment
M, of F about A.

To obtain the vector expression for the moment M, of F about A,
multiply the magnitude by the directional unit vector n to obtain

M, =@ XxF-nn (2/16)

where r X F replaces M. The expression r X F-n is known as a triple
scalar product (see item 8 in Art. C/7, Appendix C). It need not be writ-
ten (r X F)-n because a cross product cannot be formed by a vector and Figure 2/23
a scalar. Thus, the association r X (F-n) would have no meaning.

The triple scalar product may be represented by the determinant

T, T, T
IM,| =M, =|F, F, F, (2/17)
a B vy

where «, B, vy are the direction cosines of the unit vector n.

Varignon’s Theorem in Three Dimensions

In Art. 2/4 we introduced Varignon’s theorem in two dimensions. F,
The theorem is easily extended to three dimensions. Figure 2/24 shows a
system of concurrent forces F;, Fy, F3,.... The sum of the moments
about O of these forces is A

rxF,+rxFy+rxF;+ - =rxEF +F,+Fg+ )

=r xIF Figure 2/24
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Figure 2/25

where we have used the distributive law for cross products. Using the
symbol My, to represent the sum of the moments on the left side of the
above equation, we have

My=2rxF)=rxR (2/18)

This equation states that the sum of the moments of a system of concur-
rent forces about a given point equals the moment of their sum about
the same point. As mentioned in Art. 2/4, this principle has many appli-
cations in mechanics.

Couples in Three Dimensions

The concept of the couple was introduced in Art. 2/5 and is easily
extended to three dimensions. Figure 2/25 shows two equal and opposite
forces F and —F acting on a body. The vector r runs from any point B
on the line of action of —F to any point A on the line of action of F.
Points A and B are located by position vectors r, and rg from any point
O. The combined moment of the two forces about O is

M=ry,XxF+rgx(-F)=(@x4 —r5) XF

However, r4 — rg = r, so that all reference to the moment center O dis-
appears, and the moment of the couple becomes

M=rxF (2/19)

Thus, the moment of a couple is the same about all points. The magni-
tude of M is M = Fd, where d is the perpendicular distance between the
lines of action of the two forces, as described in Art. 2/5.

The moment of a couple is a free vector, whereas the moment of a
force about a point (which is also the moment about a defined axis
through the point) is a sliding vector whose direction is along the axis
through the point. As in the case of two dimensions, a couple tends to
produce a pure rotation of the body about an axis normal to the plane of
the forces which constitute the couple.

Couple vectors obey all of the rules which govern vector quantities.
Thus, in Fig. 2/26 the couple vector M; due to F; and —F; may be added

Figure 2/26
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as shown to the couple vector My due to Fy and —F, to produce the cou-
ple M, which, in turn, can be produced by F and —F.

In Art. 2/5 we learned how to replace a force by its equivalent
force—couple system. You should also be able to carry out this replace-
ment in three dimensions. The procedure is represented in Fig. 2/27,
where the force F acting on a rigid body at point A is replaced by an
equal force at point B and the couple M = r X F. By adding the equal
and opposite forces F and —F at B, we obtain the couple composed of
—F and the original F. Thus, we see that the couple vector is simply the
moment of the original force about the point to which the force is being
moved. We emphasize that r is a vector which runs from B to any point
on the line of action of the original force passing through A.

53

Figure 2/27

|
I

The three-dimensionality of the cable
system on the Leonard P. Zakim Bunker
Hill Bridge is evident in this view.

© Mark Hunt/Index Stock/Age Fotostock America, Inc.
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SAMPLE PROBLEM 2/11

Determine the moment of force F about point O (@) by inspection and (b) by
the formal cross-product definition My = r X F.

Solution. (a) Because F is parallel to the y-axis, F has no moment about that
axis. It should be clear that the moment arm from the x-axis to the line of action
of F is ¢ and that the moment of F about the x-axis is negative. Similarly, the
moment arm from the z-axis to the line of action of F is a and the moment of F
about the z-axis is positive. So we have

My, = —cFi + aFk = F(—ci + ak) Ans.
(b) Formally,
My =r X F = (ai + ck) X Fj = aFk — cFi
= F(—ci + ak) Ans.
Helpful Hint

@ Again we stress that r runs from the moment center o the line of action of F.
Another permissible, but less convenient, position vector is r = ai + bj + ck.

z
\
\
b
z
\
b

SAMPLE PROBLEM 2/12

The turnbuckle is tightened until the tension in cable AB is 2.4 kN. Deter-
mine the moment about point O of the cable force acting on point A and the
magnitude of this moment.

Solution. We begin by writing the described force as a vector.

0.8i + 1.55 — 211
J0.82 + 1.52 + 22

= 0.731i + 1.371j — 1.829k kN

T="Tn,,= 2.4[

The moment of this force about point O is

M, = ro, x T = (1.6i + 2k) x (0.731i + 1.371j — 1.829k)
= —2.74i + 4.39j + 2.19k kN-m Ans.

This vector has a magnitude

M, = J2.74% + 4.39%2 + 2.19%2 = 5.62 kN -m Ans.

Helpful Hint

@ The student should verify by inspection the signs of the moment components.
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SAMPLE PROBLEM 2/13

A tension T of magnitude 10 kN is applied to the cable attached to the top A
of the rigid mast and secured to the ground at B. Determine the moment M, of T
about the z-axis passing through the base O.

Solution (a). The required moment may be obtained by finding the compo-
nent along the z-axis of the moment My of T about point O. The vector M, is
normal to the plane defined by T and point O, as shown in the accompanying fig-
ure. In the use of Eq. 2/14 to find M), the vector r is any vector from point O to
the line of action of T. The simplest choice is the vector from O to A, which is
written as r = 15j m. The vector expression for T is

12i — 15§ + 9k
T="Tn,;=10
J(12)% + (—15)2 + (9)2
= 10(0.566i — 0.707j + 0.424k) kN
From Eq. 2/14,

My =r x F] M, = 15j x 10(0.566i — 0.707j + 0.424k)
= 150(—0.566k + 0.424i) kN-m

The value M, of the desired moment is the scalar component of My in the
z-direction or M, = My, -k. Therefore,

M, = 150(—0.566k + 0.424i)-k = —84.9 kN-m Ans.

The minus sign indicates that the vector M, is in the negative z-direction. Ex-
pressed as a vector, the moment is M, = —84.9k kN -m.

Solution (b). The force of magnitude 7' is resolved into components T, and T,
in the x-y plane. Since T, is parallel to the z-axis, it can exert no moment about
this axis. The moment M, is, then, due only to T, and is M, = T,,d, where d is
the perpendicular distance from T, to O. The cosine of the angle between 7' and
T, is V152 + 122/ /152 + 122 + 92 = 0.906, and therefore,

T,, = 10(0.906) = 9.06 kN

The moment arm d equals OA multiplied by the sine of the angle between E/
and OA, or
d=15—12__ —937m
122 + 152

Hence, the moment of T about the z-axis has the magnitude

M, =9.06(9.37) = 84.9 kN-m Ans.

and is clockwise when viewed in the x-y plane.

Solution (¢). The component T, is further resolved into its components T, and
T,. It is clear that T', exerts no moment about the z-axis since it passes through it, so
that the required moment is due to 7', alone. The direction cosine of T with respect
to the x-axis is 12//9% + 122 + 152 = 0.566 so that T, = 10(0.566) = 5.66 kN. Thus,

M, = 5.66(15) = 84.9 kN-m Ans.

y
A
15m
T=10kN
O
/ \
< — /
2~ 12 m - 9 m
B
Helpful Hints

@ We could also use the vector from O
to B for r and obtain the same result,
but using vector OA is simpler.

@ 1t is always helpful to accompany your
vector operations with a sketch of the
vectors so as to retain a clear picture
of the geometry of the problem.

© Sketch the x-y view of the problem
and show d.

y

A

.‘
=
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SAMPLE PROBLEM 2/14

Determine the magnitude and direction of the couple M which will replace
the two given couples and still produce the same external effect on the block.
Specify the two forces F and —F, applied in the two faces of the block parallel to
the y-z plane, which may replace the four given forces. The 30-N forces act paral-
lel to the y-z plane.

Solution. The couple due to the 30-N forces has the magnitude M; = 30(0.06) =
1.80 N-m. The direction of M; is normal to the plane defined by the two forces,
and the sense, shown in the figure, is established by the right-hand convention.
The couple due to the 25-N forces has the magnitude My = 25(0.10) = 2.50 N-m
with the direction and sense shown in the same figure. The two couple vectors
combine to give the components

M, = 1.80 sin 60° = 1.559 N-m
M, = —2.50 + 1.80 cos 60° = —1.600 N-m

Thus, M = \/(1.559)2 + (—1.600)2 = 2.23 N-m Ans.
with 6 =tan! %238 =tan10.974 = 44.3° Ans.

The forces F and —F lie in a plane normal to the couple M, and their mo-
ment arm as seen from the right-hand figure is 100 mm. Thus, each force has the
magnitude

F=223 _993N

0.10 Ans.

[M = Fd]

and the direction 6 = 44.3°.

Helpful Hint

@ Bear in mind that the couple vectors
are free vectors and therefore have
no unique lines of action.

SAMPLE PROBLEM 2/15

A force of 40 1b is applied at A to the handle of the control lever which is at-
tached to the fixed shaft OB. In determining the effect of the force on the shaft
at a cross section such as that at O, we may replace the force by an equivalent
force at O and a couple. Describe this couple as a vector M.

Solution. l}he couple may be expressed in vector notation as M = r X F,
wherer = OA = 8j + 5k in. and F = —40i lb. Thus,

M = (8j + 5k) x (—40i) = —200j + 320k lb-in.

Alternatively we see that moving the 40-lb force through a distance d =
J52 + 82 = 9.43 in. to a parallel position through O requires the addition of a
couple M whose magnitude is

M = Fd = 40(9.43) = 377 Ib-in. Ans.

The couple vector is perpendicular to the plane in which the force is shifted, and
its sense is that of the moment of the given force about O. The direction of M in
the y-z plane is given by

0= tan’lg = 32.0° Ans.

\
} 40 1Ib
\

(40 1b)
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PROBLEMS

Introductory Problems

2/121 The three forces act perpendicular to the rectangu-
lar plate as shown. Determine the moments M; of

F,, M, of F,, and M; of F;, all about point O.

z
\
\
|

Problem 2/121

2/122 The weight of the printer is 80 lb with center of
gravity at point G. Determine the moment M, of
this weight about point O on the horizontal table

top. Find the magnitude of M.

z
\
\
\

Problem 2/122

2/123 Determine the moment of force F about point O,
about point A, and about line OB.

Problem 2/123

2/124 The steel H-beam is being designed as a column to
support the two vertical forces shown. Replace
these forces by a single equivalent force along the
vertical centerline of the column and a couple M.

z
100 kips |

\ &

| 150 klpS X/

N
ri\\/
3

Problem 2/124
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2/125 A right-angle bracket is welded to the flange of the
I-beam to support the 9000-1b force, applied paral-
lel to the axis of the beam, and the 5000-1b force,
applied in the end plane of the beam. In analyzing
the capacity of the beam to withstand the applied
loads in the design stage, it is convenient to replace
the forces by an equivalent force at O and a corre-
sponding couple M. Determine the x-, y-, and
z-components of M.

9000 1Ib

5000 1b

Problem 2/125

2/126 The turnbuckle is tightened until the tension in
cable AB is 1.2 kN. Calculate the magnitude of
the moment about point O of the force acting on
point A.

Problem 2/126

2/127 The two forces acting on the handles of the pipe
wrenches constitute a couple M. Express the cou-
ple as a vector.

150 N

150 N

Problem 2/127
2/128 The body is composed of slender bar which has a

mass p per unit of length. Determine the moment
of the weight of the body about point O.

Z

%\
\‘1

[
P

Problem 2/128
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2/129 In opening a door which is equipped with a heavy- 2/131 The bent bar has a mass p per unit of length. De-
duty return mechanism, a person exerts a force P termine the moment of the weight of the bar about
of magnitude 6 1b as shown. Force P and the nor- point O.

mal n to the face of the door lie in a vertical plane.
Compute the moment of P about the z-axis.

407 ] Problem 2/131

2/132 A helicopter is shown here with certain three-
dimensional geometry given. During a ground test,

1 a 400-N aerodynamic force is applied to the tail
E _ - rotor at P as shown. Determine the moment of this

P
30°
n
/ AN force about point O of the airframe.
N
x

Problem 2/129

\

2/130 A 50-lb force is applied to the control pedal as
shown. The force lies in a plane parallel to the x-z
plane and is perpendicular to BC. Determine the

moments of this force about point O and about the
shaft OA.

Problem 2/132

Problem 2/130
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Representative Problems

2/133 A 300-N force is applied to the handle of the winch
as shown. The force lies in a plane which is parallel
to the y-z plane and is perpendicular to line AB of
the handle. Determine the moments of this force
about point O and about the x-axis.

Problem 2/133

2/134 The right-angle pipe OAB of Prob. 2/111 is shown
again here. Replace the 750-N tensile force which
the cable exerts on point B by a force-couple sys-
tem at point O.

Problem 2/134

2/135 Two 1.2-1b thrusters on the nonrotating satellite
are simultaneously fired as shown. Compute the
moment associated with this couple and state
about which satellite axes rotations will begin to
occur.

Problem 2/135

2/136 A space shuttle orbiter is subjected to thrusts from
five of the engines of its reaction control system.
Four of the thrusts are shown in the figure; the
fifth is an 850-N upward thrust at the right rear,
symmetric to the 850-N thrust shown on the left
rear. Compute the moment of these forces about
point G and show that the forces have the same
moment about all points.

Problem 2/136

2/137 The specialty wrench shown in the figure is de-
signed for access to the hold-down bolt on certain
automobile distributors. For the -configuration
shown where the wrench lies in a vertical plane
and a horizontal 200-N force is applied at A per-
pendicular to the handle, calculate the moment M,
applied to the bolt at O. For what value of the dis-
tance d would the z-component of M, be zero?
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Problem 2/137

2/138 A 50-N horizontal force is applied to the handle of
the industrial water valve as shown. The force is
perpendicular to the vertical plane containing line
OA of the handle. Determine the equivalent force—
couple system at point O.

Problem 2/138

2/139 If the magnitude of the moment of F about line CD
is 50 N -m, determine the magnitude of F.

F
0.2m

0.2m 0.4m

Problem 2/139

2/140 Replace the two forces which act on the 3-m cube by
an equivalent single force F at A and a couple M.

30 kN

Problem 2/140

2/141 Using the principles to be developed in Chapter 3
on equilibrium, one can determine that the tension
in cable AB is 143.4 N. Determine the moment
about the x-axis of this tension force acting on
point A. Compare your result with the moment of
the weight W of the 15-kg uniform plate about the
x-axis. What is the moment of the tension force act-
ing at A about line OB?

A

z
I
0.35 m

Problem 2/141
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2/142 The rigid pole and cross-arm assembly of Prob.
2/107 is shown again here. Determine the vector
expression for the moment of the 1.2-kN tension
(a) about point O and (b) about the pole z-axis.
Find each moment in two different ways.

Problem 2/142

2/143 A 1.8-1b vertical force is applied to the knob of the
window-opener mechanism when the crank BC is
horizontal. Determine the moment of the force
about point A and about line AB.

Problem 2/143

2/144 The special-purpose milling cutter is subjected to
the force of 1200 N and a couple of 240 N-m as
shown. Determine the moment of this system about
point O.

Problem 2/144

2/145 The 180-1b force is applied at point A of the bracket.
Determine the moments of this force about point B,
about point C, and about the line BC.

Problem 2/145
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2/146 For the instant shown when the crankpins of a
two-cylinder engine pass through the horizontal y-
z plane, connecting rod A is under a compression of
1.8 kN and rod B is under a compression of 0.8 kN.
Determine the moment (torque) exerted by the two
rods about the crank axis z. For design purposes it
is also necessary to have the vector expression for
the moments of the two forces about one of the
main ball bearings at O.

Dimensions in millimeters

Problem 2/146

2/147 The force F acts along an element of the right cir-
cular cone as shown. Determine the equivalent
force—couple system at point O.

Problem 2/147

»2/148 The threading die is screwed onto the end of the
fixed pipe, which is bent through an angle of 20°.
Replace the two forces by an equivalent force at O
and a couple M. Find M and calculate the magni-
tude M’ of the moment which tends to screw the
pipe into the fixed block about its angled axis

through O.
y G”T/

Problem 2/148
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to

© josemoraes/iStockpl

The cables of this cable-stayed bridge
exert a three-dimensional system of
concentrated forces on the bridge
tower.

2/9 Resultants

In Art. 2/6 we defined the resultant as the simplest force combina-
tion which can replace a given system of forces without altering the ex-
ternal effect on the rigid body on which the forces act. We found the
magnitude and direction of the resultant force for the two-dimensional
force system by a vector summation of forces, Eq. 2/9, and we located the
line of action of the resultant force by applying the principle of moments,
Eq. 2/10. These same principles can be extended to three dimensions.

In the previous article we showed that a force could be moved to a
parallel position by adding a corresponding couple. Thus, for the system
of forces Fy, Fy, F3 . . . acting on a rigid body in Fig. 2/28a, we may move
each of them in turn to the arbitrary point O, provided we also intro-
duce a couple for each force transferred. Thus, for example, we may
move force F; to O, provided we introduce the couple M; = r; X Fy,
where r; is a vector from O to any point on the line of action of F.
When all forces are shifted to O in this manner, we have a system of
concurrent forces at O and a system of couple vectors, as represented in
part b of the figure. The concurrent forces may then be added vectorially
to produce a resultant force R, and the couples may also be added to
produce a resultant couple M, Fig. 2/28¢c. The general force system,
then, is reduced to

R=F,+F,+F,+ - =3F

(2/20)
M=M, +M,+M;+ - =3rxF)

The couple vectors are shown through point O, but because they are
free vectors, they may be represented in any parallel positions. The
magnitudes of the resultants and their components are
R, =7%F, R, =7%F, R,=3F,
R = J(EF,)? + (3F,)? + (IF,)?
M, =3 xF), M, =X(r xF), M,=3rxF),

M= M2+ M; + M2

(2/21)

o N

O.

:

(@) ®) ()
Figure 2/28
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The point O selected as the point of concurrency for the forces is ar-
bitrary, and the magnitude and direction of M depend on the particular
point O selected. The magnitude and direction of R, however, are the
same no matter which point is selected.

In general, any system of forces may be replaced by its resultant
force R and the resultant couple M. In dynamics we usually select the
mass center as the reference point. The change in the linear motion of
the body is determined by the resultant force, and the change in the an-
gular motion of the body is determined by the resultant couple. In stat-
ics, the body is in complete equilibrium when the resultant force R is
zero and the resultant couple M is also zero. Thus, the determination of
resultants is essential in both statics and dynamics.

We now examine the resultants for several special force systems.

Concurrent Forces. When forces are concurrent at a point, only the
first of Eqs. 2/20 needs to be used because there are no moments about
the point of concurrency.

Parallel Forces. For a system of parallel forces not all in the same
plane, the magnitude of the parallel resultant force R is simply the mag-
nitude of the algebraic sum of the given forces. The position of its line of
action is obtained from the principle of moments by requiring that
r X R = My,. Here r is a position vector extending from the force—couple
reference point O to the final line of action of R, and My, is the sum of
the moments of the individual forces about O. See Sample Problem 2/17
for an example of parallel-force systems.

Coplanar Forces. Article 2/6 was devoted to this force system.

Wrench Resultant. When the resultant couple vector M is parallel
to the resultant force R, as shown in Fig. 2/29, the resultant is called a
wrench. By definition a wrench is positive if the couple and force vectors
point in the same direction and negative if they point in opposite direc-
tions. A common example of a positive wrench is found with the applica-
tion of a screwdriver, to drive a right-handed screw. Any general force
system may be represented by a wrench applied along a unique line of
action. This reduction is illustrated in Fig. 2/30, where part a of the fig-
ure represents, for the general force system, the resultant force R acting
at some point O and the corresponding resultant couple M. Although M
is a free vector, for convenience we represent it as acting through O.

In part b of the figure, M is resolved into components M; along the di-
rection of R and My normal to R. In part ¢ of the figure, the couple My is
replaced by its equivalent of two forces R and —R separated by a distance

MI}Y M /R'V
2 )
Positive wrench Negative wrench

Figure 2/29
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M M
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7> R 7 ﬁer R
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(@) (b)
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0O ~ d - ~
=
—R)C g&\/
M,
© &)
Figure 2/30

d = My/R with —R applied at O to cancel the original R. This step leaves
the resultant R, which acts along a new and unique line of action, and the
parallel couple M;, which is a free vector, as shown in part d of the figure.
Thus, the resultants of the original general force system have been trans-
formed into a wrench (positive in this illustration) with its unique axis de-
fined by the new position of R.

We see from Fig. 2/30 that the axis of the wrench resultant lies in a
plane through O normal to the plane defined by R and M. The wrench is
the simplest form in which the resultant of a general force system may
be expressed. This form of the resultant, however, has limited applica-
tion, because it is usually more convenient to use as the reference point
some point O such as the mass center of the body or another convenient
origin of coordinates not on the wrench axis.
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SAMPLE PROBLEM 2/16

Determine the resultant of the force and couple system which acts on the
rectangular solid.

Solution. We choose point O as a convenient reference point for the initial
step of reducing the given forces to a force—couple system. The resultant force is

R =ZF = (80 — 80)i + (100 — 100)j + (50 — 50)k = 0 1b
The sum of the moments about O is

M, = [50(16) — 700]i + [80(12) — 960]j + [100(10) — 1000]k Ib-in.
= 100i lb-in.

Hence, the resultant consists of a couple, which of course may be applied at any
point on the body or the body extended.

Helpful Hints

@ Since the force summation is zero, we conclude that the resultant, if it exists,
must be a couple.

@ The moments associated with the force pairs are easily obtained by using the
M = Fd rule and assigning the unit-vector direction by inspection. In many
three-dimensional problems, this may be simpler than the M = r X F approach.

700 Ib-in.
28
1000 Ib-in.

SAMPLE PROBLEM 2/17

Determine the resultant of the system of parallel forces which act on the
plate. Solve with a vector approach.

Solution. Transfer of all forces to point O results in the force—couple system

R = XF = (200 + 500 — 300 — 50)j = 350j N
M, = [50(0.35) — 300(0.35)]i + [—50(0.50) — 200(0.50)]k
= —87.51i — 125k N-m
The placement of R so that it alone represents the above force—couple system is
determined by the principle of moments in vector form
rxR =M,
(xi +yj + zk) x 350j = —87.5i — 125k
350xk — 350zi = —87.51 — 125k

From the one vector equation we may obtain the two scalar equations
350x = —125 and —350z = —87.5

Hence, x = —0.357 m and z = 0.250 m are the coordinates through which the
line of action of R must pass. The value of y may, of course, be any value, as
permitted by the principle of transmissibility. Thus, as expected, the variable y
drops out of the above vector analysis.

Helpful Hint

@ You should also carry out a scalar
solution to this problem.
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SAMPLE PROBLEM 2/18

Replace the two forces and the negative wrench by a single force R applied
at A and the corresponding couple M.

Solution. The resultant force has the components

[R, =XF] R, = 500 sin 40° + 700 sin 60° = 928 N

[Ry = ):Fy] Ry = 600 + 500 cos 40° cos 45° = 871 N

[R, =2F,] R, = 700 cos 60° + 500 cos 40° sin 45° = 621 N

Thus, R =928i + 871j + 621k N

and R = J(928)% + (871)2 + (621)2 = 1416 N Ans.

The couple to be added as a result of moving the 500-N force is

[M=r xF] M;, = (0.08i + 0.12j + 0.05k) x 500(i sin 40°
+ j cos 40° cos 45° + k cos 40° sin 45°)

where r is the vector from A to B.

The term-by-term, or determinant, expansion gives
M,,, = 18.95i — 5.59j — 16.90k N-m

The moment of the 600-N force about A is written by inspection of its x- and z-
components, which gives

Mg, = (600)(0.060)i + (600)(0.040)k
= 36.0i + 24.0k N-m

The moment of the 700-N force about A is easily obtained from the moments of
the x- and z-components of the force. The result becomes

M, = (700 cos 60°)(0.030)i — [(700 sin 60°)(0.060)
+ (700 cos 60°)(0.100)1j — (700 sin 60°)(0.030)k

=10.51 — 71.4j — 18.19k N-m
Also, the couple of the given wrench may be written

M’ = 25.0(—1 sin 40° — j cos 40° cos 45° — k cos 40° sin 45°)

= —16.07i —13.54j — 13.54k N'm

Therefore, the resultant couple on adding together the i-, j-, and k-terms of the
four M’s is

M =49.4i — 90.5] — 246k N-m

and M = J(49.4)% + (90.5)2 + (24.6)2 = 106.0 N-m Ans.

Helpful Hints

@ Suggestion: Check the cross-product

results by evaluating the moments
about A of the components of the
500-N force directly from the sketch.

For the 600-N and 700-N forces it is
easier to obtain the components of
their moments about the coordinate
directions through A by inspection
of the figure than it is to set up the
cross-product relations.

The 25-N-m couple vector of the
wrench points in the direction oppo-
site to that of the 500-N force, and
we must resolve it into its x-, y-, and
z-components to be added to the
other couple-vector components.

@ Although the resultant couple vec-

tor M in the sketch of the resultants
is shown through A, we recognize
that a couple vector is a free vector
and therefore has no specified line
of action.
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SAMPLE PROBLEM 2/19

Determine the wrench resultant of the three forces acting on the bracket.
Calculate the coordinates of the point P in the x-y plane through which the resul-
tant force of the wrench acts. Also find the magnitude of the couple M of the
wrench.

Solution. The direction cosines of the couple M of the wrench must be the
@ same as those of the resultant force R, assuming that the wrench is positive. The
resultant force is

R = 20i + 40j + 40k 1b R = J(20)2 + (40)% + (40)%2 = 60 Ib
and its direction cosines are
cos 0, = 20/60 = 1/3  cos 0, = 40/60 = 2/3  cos 0, = 40/60 = 2/3
The moment of the wrench couple must equal the sum of the moments of

the given forces about point P through which R passes. The moments about P of
the three forces are

(M)_= 20yk Ib-in.
(M)Ry = —40(3)i — 40xk 1b-in.
(M), = 40(4 — y)i — 40(5 — x)j Ib-in. Helpful Hint
and the total moment is @ We assume initially that the wrench
is positive. If M turns out to be neg-
M = (40 — 40y)i + (=200 + 40x)j + (—40x + 20y)k lb-in. ative, then the direction of the cou-
ple vector is opposite to that of the
The direction cosines of M are resultant force.

cos 0, = (40 — 40y)/M
cos 0, = (—200 + 40x)/M

cos 0, = (—40x + 20y)/M

where M is the magnitude of M. Equating the direction cosines of R and M gives

M
40 — 40y =7
0 Oy 3
900 +40x = %
—40x +20y = %
Solution of the three equations gives
M = —120 lb-in. x = 3in. y = 2in. Ans.

We see that M turned out to be negative, which means that the couple vector is
pointing in the direction opposite to R, which makes the wrench negative.
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PROBLEMS

Introductory Problems

2/149 A baseball is thrown with spin so that three con-
current forces act on it as shown in the figure. The
weight Wis 5 oz, the drag D is 1.7 oz, and the lift L
is perpendicular to the velocity v of the ball. If it is
known that the y-component of the resultant is
—5.5 oz and the z-component is —0.866 oz, deter-
mine L, 6, and R.

Problem 2/149

2/150 A table exerts the four forces shown on the floor sur-
face. Reduce the force system to a force-couple sys-
tem at point O. Show that R is perpendicular to M.

z 160 N
\
[

Problem 2/150

2/151 Two forces act on the rectangular plate as shown.
Reduce this force system to an equivalent force—
couple system acting at point O. Then determine
the resultant of the system, expressed as a single
force if possible, with its line of action.

z
\
\
\

F (@)

- ~y

2F

Problem 2/151

2/152 The concrete slab supports the six vertical loads
shown. Determine the x- and y-coordinates of the
point on the slab through which the resultant of
the loading system passes.

40 kN

Dimensions in meters

Problem 2/152
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2/153 The thin rectangular plate is subjected to the
four forces shown. Determine the equivalent force—
couple system at O. Is R perpendicular to My?

Problem 2/153

2/154 The pulley wheels are subjected to the loads shown.
Determine the equivalent force—couple system at
point O.

Problem 2/154

2/155 The spacecraft of Prob. 2/135 is repeated here. The
plan is to fire four 1.2-lb thrusters as shown in
order to spin up the spacecraft about its z-axis, but
the thruster at A fails. Determine the equivalent
forced—couple system at G for the remaining three
thrusters.

Problem 2/155

2/156 An oil tanker moves away from its docked position
under the action of reverse thrust from screw A,
forward thrust from screw B, and side thrust from
the bow thruster C. Determine the equivalent
forced—couple system at the mass center G.

Problem 2/156
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2/157 Determine the force—couple system at O which is
equivalent to the two forces applied to the shaft
AOB. Is R perpendicular to M,?

800 N

Problem 2/157

Representative Problems

2/158 Replace the two forces and single couple by an
equivalent force—couple system at point A.

35 kN-m
1m

| 4
1m
20 kN I

|
|
|
|
z

Problem 2/158

2/159 The commercial airliner of Prob. 2/90 is redrawn
here with three-dimensional information supplied.
If engine 3 suddenly fails, determine the resultant
of the three remaining engine thrust vectors, each
of which has a magnitude of 90 kN. Specify the
y- and z-coordinates of the point through which the
line of action of the resultant passes. This informa-
tion would be critical to the design criteria of per-
formance with engine failure.

Problem 2/159

2/160 Two upward loads are exerted on the small three-
dimensional truss. Reduce these two loads to a sin-
gle force—couple system at point O. Show that R is
perpendicular to M. Then determine the point in
the x-z plane through which the resultant passes.

y
\
\
|

Problem 2/160
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2/161 The horizontal top of a concrete column is sub- 2/163 In tightening a bolt whose center is at point O, a
jected to the system of forces shown. Represent the person exerts a 40-lb force on the ratchet handle
resultant of all forces as a force R at point O and a with his right hand. In addition, with his left hand
couple M. Also specify the magnitudes of R and M. he exerts a 20-lb force as shown in order to secure

the socket onto the bolt head. Determine the equiv-
alent force—couple system at O. Then find the point
in the x-y plane through which the line of action of
the resultant force of the wrench passes.

401b

L 201b >

Q- Sy

Problem 2/161 Problem 2/163

2/164 Replace the two forces acting on the pole by a
wrench. Write the moment M associated with the
wrench as a vector and specify the coordinates of
the point P in the y-z plane through which the line
of action of the wrench passes.

2/162 Replace the two forces and one couple acting on
the rigid pipe frame by their equivalent resultant
force R acting at point O and a couple M,,.

Problem 2/162 *
Problem 2/164
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2/165 Replace the two forces acting on the frame by a
wrench. Write the moment associated with the
wrench as a vector and specify the coordinates of
the point P in the y-z plane through which the line
of action of the wrench passes. Note that the force
of magnitude F is parallel to the x-axis.

z
\
\
3F
@ F
2a
¢
//0\\\
// \\\
& -
// \\\
X ~

Problem 2/165

2/166 For the system of two forces in Prob. 2/157, deter-
mine the coordinates of the point in the x-z plane
through which the line of action of the resultant of
the system passes.

»2/167 Replace the two forces acting on the rectangular
solid by a wrench. Write the moment M associated
with the wrench as a vector and specify the coordi-
nates of the point P in the x-y plane through which
the line of action of the wrench passes.

Problem 2/167

»2/168 Replace the system of two forces and couple shown
in Prob. 2/158 by a wrench. Determine the magni-
tude of the moment M of the wrench, the magni-
tude of the force R of the wrench, and the
coordinates of the point P in the x-y plane through
which R passes.
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2/10 Chapter Review

In Chapter 2 we have established the properties of forces, moments,
and couples, and the correct procedures for representing their effects.
Mastery of this material is essential for our study of equilibrium in the
chapters which follow. Failure to correctly use the procedures of Chap-
ter 2 is a common cause of errors in applying the principles of equilib-
rium. When difficulties arise, you should refer to this chapter to be sure
that the forces, moments, and couples are correctly represented.

Forces

There is frequent need to represent forces as vectors, to resolve a
single force into components along desired directions, and to combine
two or more concurrent forces into an equivalent resultant force. Specif-
ically, you should be able to:

1. Resolve a given force vector into its components along given direc-
tions, and express the vector in terms of the unit vectors along a
given set of axes.

2. Express a force as a vector when given its magnitude and informa-
tion about its line of action. This information may be in the form of
two points along the line of action or angles which orient the line of
action.

3. Use the dot product to compute the projection of a vector onto a
specified line and the angle between two vectors.

4. Compute the resultant of two or more forces concurrent at a point.

Moments

The tendency of a force to rotate a body about an axis is described
by a moment (or torque), which is a vector quantity. We have seen that
finding the moment of a force is often facilitated by combining the mo-
ments of the components of the force. When working with moment vec-
tors you should be able to:

1. Determine a moment by using the moment-arm rule.

2. Use the vector cross product to compute a moment vector in terms
of a force vector and a position vector locating the line of action of
the force.

3. Utilize Varignon’s theorem to simplify the calculation of moments,
in both scalar and vector forms.

4. Use the triple scalar product to compute the moment of a force vec-
tor about a given axis through a given point.

Couples

A couple is the combined moment of two equal, opposite, and non-
collinear forces. The unique effect of a couple is to produce a pure twist
or rotation regardless of where the forces are located. The couple is
useful in replacing a force acting at a point by a force-couple system at
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a different point. To solve problems involving couples you should be
able to:

1. Compute the moment of a couple, given the couple forces and either
their separation distance or any position vectors locating their lines
of action.

2. Replace a given force by an equivalent force—couple system, and vice
versa.

Resultants

We can reduce an arbitrary system of forces and couples to a single
resultant force applied at an arbitrary point, and a corresponding resul-
tant couple. We can further combine this resultant force and couple into
a wrench to give a single resultant force along a unique line of action,
together with a parallel couple vector. To solve problems involving re-
sultants you should be able to:

1. Compute the magnitude, direction, and line of action of the resul-
tant of a system of coplanar forces if that resultant is a force; other-
wise, compute the moment of the resultant couple.

2. Apply the principle of moments to simplify the calculation of the
moment of a system of coplanar forces about a given point.

3. Replace a given general force system by a wrench along a specific
line of action.

Equilibrium
You will use the preceding concepts and methods when you study

equilibrium in the following chapters. Let us summarize the concept of
equilibrium:

1. When the resultant force on a body is zero (XF = 0), the body is in
translational equilibrium. This means that its center of mass is ei-
ther at rest or moving in a straight line with constant velocity.

2. In addition, if the resultant couple is zero (XM = 0), the body is in
rotational equilibrium, either having no rotational motion or rotat-
ing with a constant angular velocity.

3. When both resultants are zero, the body is in complete equilibrium.
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REVIEW PROBLEMS

2/169 A cable stretched between the fixed supports A and B
is under a tension 7' of 2 kN. Express the tension as a
vector using the unit vectors i and j, first, as a force
T, acting on A and second, as a force Ty acting on B.

<————— 600 mm

400 mm

Problem 2/169

2/170 It is known that the y-component of the force F
exerted on pin P is 20 lb when 6 = 30° and
B = 15°. Determine the force magnitude F and the
x-component of F.

Problem 2/170

2/171 The three forces act perpendicular to the rectangu-
lar plate as shown. Determine the moments M; of
F, M, of F,, and Mj; of F, all about point O.

¥4
\
F, }

Problem 2/171

2/172 A die is being used to cut threads on a rod. If 15-1b
forces are applied as shown, determine the magni-
tude F of the equal forces exerted on the i-in. rod
by each of the four cutting surfaces so that their
external effect on the rod is equivalent to that of
the two 15-Ib forces.

| 5//

Problem 2/172
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2/173 The control lever is subjected to a clockwise couple
of 80 N-m exerted by its shaft at A and is designed
to operate with a 200-N pull as shown. If the resul-
tant of the couple and the force passes through A,
determine the proper dimension x of the lever.

\

Problem 2/173

2/174 Calculate the moment M, of the 250-N force about
the base point O of the robot.

500

Problem 2/174

2/175 Replace the three forces shown by an equivalent
force—couple system at point A. If the forces are
replaced by a single resultant force, determine the
distance d below point A to its line of action.

100 N
600 mm
N
P
600 mm
160 N
600 mm
240 N

Problem 2/175

2/176 Reduce the given loading system to a force—couple
system at point A. Then determine the distance x
to the right of point A at which the resultant of the
three forces acts.

200 1b 180 Ib

8" 20"

18"

3001b

Problem 2/176

2/177 Represent the resultant of the three forces and
couple by a force—couple system located at point A.

3.5m
________7 E
T62m9
4 kN

Problem 2/177
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2/178 Express and identify the resultant of the two forces 2/180 A force F acts along the line AB inside the right
and one couple shown acting on the shaft angled in circular cylindrical shell as shown. The quantities
the x-z plane. r,h,0, and F are known. Using the x-,y-, and

z-coordinates shown, express F as a vector.

y
I

Problem 2/180

2/181 The spring which connects point B of the disk and

Problem 2/178 point C on the vertical surface is under a tension of

500 N. Write this tension as it acts on point B as a

2/179 When the pole OA is in the position shown, the ten- force vector T in terms of the unit vectors i, j, and

sion in cable AB is 3 kN. (@) Write the tension force k, and determine the moment M, of this force
exerted on the small collar at point A as a vector about the shaft axis OA.

using the coordinates shown. (b) Determine the
moment of this force about point O and state the mo-
ments about the x-, y-, and z-axes. (¢) Determine the
projection of this tension force onto line AO.

Problem 2/181
Problem 2/179
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2/182 Three couples are formed by the three pairs of
equal and opposite forces. Determine the resultant
M of the three couples.

Problem 2/182
2/183 The combined action of the three forces on the
base at O may be obtained by establishing their

resultant through O. Determine the magnitudes of
R and the accompanying couple M.

400 1b

600 1b

Problem 2/183

Ay

*2/184 The eyebolt supports the four forces shown. If the
net effect on the bolt is a direct pull of 3 kN in the
x-direction, determine the necessary values of 6
and T.

*Computer-Oriented Problems

Problem 2/184

*2/185 The throttle-control lever OA rotates in the range
0 =60 =90°. An internal torsional return spring
exerts a restoring moment about O given by
M = K( + m/4), where K = 500 N-mm/rad and 6
is in radians. Determine and plot as a function of
0 the tension T required to make the net moment
about O zero. Use the two values d = 60 mm and
d =160 mm and comment on the relative design
merits. The effects of the radius of the pulley at B
are negligible.

A B
‘ Q.ﬁ\
. ‘ 40 mm ¢
RN N
AR

d

Problem 2/185

*2/186 The figure of Prob. 2/78 is repeated here. The force
of magnitude F acts along line MA, where M is the
midpoint of the radius along the x-axis. Determine
and plot the moment M, of the force about the ori-
gin O as a function of § over the range 0 = 6 = 90°.
State the maximum value of M, and the corre-
sponding value of 6.
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R
2

o |5y

Problem 2/186

*2/187 A motor attached to the shaft at O causes the arm

OA to rotate over the range 0 = 0 = 180°. The un-
stretched length of the spring is 0.65 m, and it can
support both tension and compression. If the net
moment about O must be zero, determine and plot
the required motor torque M as a function of 6.

-

Problem 2/187

*2/188 A person locks his elbow so that the angle ABC is

maintained at 130° and rotates the shoulder joint
at A so that the arm remains in the vertical plane
shown. The shoulder joint remains fixed. Deter-
mine and plot on the same axes the moments about
points A and B of the weight of the 8-1b sphere
as the angle 6 is varied from 0 to 120°. Comment on
the physical significance of the maximum value of
the moment on each curve.

| Vertical
\

Problem 2/188

*2/189 The tension T in cable AB is maintained at a constant

value of 120 N. Determine the moment M, of this
tension about point O over the range 0 = 6 = 90°.
Plot the x-, y-, and z-components of M, as functions
of 6.

800 mm

Problem 2/189
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*2/190 Assume that the hydraulic cylinder AB exerts a
force F of constant magnitude 500 lb as the bin is
elevated. Determine and plot the moment of this
force about the point O for the range 0 = 6 = 90°.
At what angle 6 is this moment a maximum and
what is the maximum moment?

*2/191

Problem 2/190

As part of the design process for a larger mecha-
nism, the portion shown in the figure is considered.
The spring of modulus 2 = 200 N/m is attached to
the fixed point O and to the slider A which moves
along the slot. The unstretched length of the
spring is 150 mm, and the force in the spring is the
constant % times the deflection of the spring. Plot
the x-, y-, and z-components of the spring force as
applied to A as the slider moves in the range
—200 = x = 200 mm.

Problem 2/191

*2/192 The arm AB rotates in the range 0 = 6 = 180°, and

the spring is unstretched when 6 = 90°. Determine
as a function of # the moment about O of the spring
force as applied at B. Plot the three scalar compo-
nents of M), and state the maximum absolute value
of each component.

Problem 2/192
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In many applications of mechanics, the sum of the forces acting on a body is zero, and a state of equi-
librium exists. As this boat is slowly lifted by several cables, the sum of the vertical components of the
cable forces is equal and opposite to the weight of the boat. The horizontal components of the cable

forces are also balanced.

© gaspr13/iStockphoto



Equilibrium

CHAPTER OUTLINE

3/1 Introduction Section B Equilibrium in Three Dimensions
Section A Equilibrium in Two Dimensions 3/4 Equilibrium Conditions

3/2 System Isolation and the Free-Body Diagram 3/5 Chapter Review

3/3 Equilibrium Conditions

3/1 Introduction

Statics deals primarily with the description of the force conditions
necessary and sufficient to maintain the equilibrium of engineering
structures. This chapter on equilibrium, therefore, constitutes the
most important part of statics, and the procedures developed here form
the basis for solving problems in both statics and dynamics. We will
make continual use of the concepts developed in Chapter 2 involving
forces, moments, couples, and resultants as we apply the principles of
equilibrium.

When a body is in equilibrium, the resultant of all forces acting on
it is zero. Thus, the resultant force R and the resultant couple M are
both zero, and we have the equilibrium equations

R=2F=0 M=XM=0 3/1)

These requirements are both necessary and sufficient conditions for
equilibrium.

All physical bodies are three-dimensional, but we can treat many of
them as two-dimensional when the forces to which they are subjected
act in a single plane or can be projected onto a single plane. When this
simplification is not possible, the problem must be treated as three-
dimensional. We will follow the arrangement used in Chapter 2, and dis-
cuss in Section A the equilibrium of bodies subjected to two-dimensional

109
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force systems and in Section B the equilibrium of bodies subjected to
three-dimensional force systems.

SECTION A EQUILIBRIUM IN TWO DIMENSIONS

3/2 System Isolation and the Free-Body Diagram

Before we apply Eqs. 3/1, we must define unambiguously the partic-
ular body or mechanical system to be analyzed and represent clearly
and completely all forces acting on the body. Omission of a force which
acts on the body in question, or inclusion of a force which does not act
on the body, will give erroneous results.

A mechanical system is defined as a body or group of bodies which
can be conceptually isolated from all other bodies. A system may be a
single body or a combination of connected bodies. The bodies may be
rigid or nonrigid. The system may also be an identifiable fluid mass, ei-
ther liquid or gas, or a combination of fluids and solids. In statics we
study primarily forces which act on rigid bodies at rest, although we also
study forces acting on fluids in equilibrium.

Once we decide which body or combination of bodies to analyze, we
then treat this body or combination as a single body isolated from all
surrounding bodies. This isolation is accomplished by means of the
free-body diagram, which is a diagrammatic representation of the
isolated system treated as a single body. The diagram shows all forces
applied to the system by mechanical contact with other bodies, which
are imagined to be removed. If appreciable body forces are present,
such as gravitational or magnetic attraction, then these forces must
also be shown on the free-body diagram of the isolated system. Only
after such a diagram has been carefully drawn should the equilibrium
equations be written. Because of its critical importance, we emphasize
here that

the free-body diagram is the most important single
step in the solution of problems in mechanics.

Before attempting to draw a free-body diagram, we must recall the
basic characteristics of force. These characteristics were described in
Art. 2/2, with primary attention focused on the vector properties of
force. Forces can be applied either by direct physical contact or by re-
mote action. Forces can be either internal or external to the system
under consideration. Application of force is accompanied by reactive
force, and both applied and reactive forces may be either concentrated
or distributed. The principle of transmissibility permits the treatment
of force as a sliding vector as far as its external effects on a rigid body
are concerned.

We will now use these force characteristics to develop conceptual
models of isolated mechanical systems. These models enable us to
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write the appropriate equations of equilibrium, which can then be

analyzed.

Modeling the Action of Forces

Figure 3/1 shows the common types of force application on mechani-
cal systems for analysis in two dimensions. Each example shows the
force exerted on the body to be isolated, by the body to be removed. New-
ton’s third law, which notes the existence of an equal and opposite reac-
tion to every action, must be carefully observed. The force exerted on
the body in question by a contacting or supporting member is always in
the sense to oppose the movement of the isolated body which would
occur if the contacting or supporting body were removed.

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS

Type of Contact and Force Origin

Action on Body to Be Isolated

1. Flexible cable, belt,
chain, or rope

Weight of cable g
negligible

Weight of cable FSA/Z
not negligible

Force exerted by
a flexible cable is

T always a tension away

_ from the body in the
6 direction of the cable.

2. Smooth surfaces

N Contact force is
< compressive and is
N ~  normal to the surface.

3. Rough surfaces

~
e

Rough surfaces are
capable of supporting
~s a tangential compo-
nent F (frictional

S~

R / ~ force) as well as a

SV normal component
N N of the resultant
contact force R.

4. Roller support

@ : 6\\ f/ 6\\;

Roller, rocker, or ball
N support transmits a

compressive force

normal to the

supporting surface.
N

5. Freely sliding guide

=i @b

Collar or slider free to

move along smooth
guides; can support
force normal to guide
only.

N N

Figure 3/1
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MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS (cont.)

Type of Contact and Force Origin

Action on Body to Be Isolated

6. Pin connection

Pin free to turn A freely hinged pin

connection is capable
0 of supporting a force
R G” in any direction in the
* R plane normal to the
R,

pin axis. We may
either show two
Pin not free to turn components R, and
R, or a magnitude R
and direction 6. A pin
not free to turn also
supports a couple M.

7. Built-in or fixed support

A A built-in or fixed
\ support is capable of

M
A A supporting an axial
or F force F, a transverse
— : force V (shear force),
“—Weld

and a couple M
v (bending moment) to
prevent rotation.

8. Gravitational attraction

The resultant of
gravitational
attraction on all
elements of a body of
mass m is the weight
W = mg and acts
toward the center of
the earth through the
center mass G.

i I

9. Spring action

‘ F = kx ‘ ] F
X
&’_ﬂ F y
}:\t\:\t\o\:‘-o—)— \ I' )/ Softening
JEE— ——Xx

Spring force is tensile

Linear Nonlinear if spring is stretched
Neutral F F and compressive if
position | | Hardening compressed. For a

linearly elastic spring
the stiffness £ is the
force required to
deform the spring a
unit distance.

Figure 3/1, continued

In Fig. 3/1, Example 1 depicts the action of a flexible cable, belt, rope,
or chain on the body to which it is attached. Because of its flexibility, a
rope or cable is unable to offer any resistance to bending, shear, or com-
pression and therefore exerts only a tension force in a direction tangent to
the cable at its point of attachment. The force exerted by the cable on the
body to which it is attached is always away from the body. When the ten-
sion T is large compared with the weight of the cable, we may assume that
the cable forms a straight line. When the cable weight is not negligible
compared with its tension, the sag of the cable becomes important, and
the tension in the cable changes direction and magnitude along its length.

When the smooth surfaces of two bodies are in contact, as in Exam-
ple 2, the force exerted by one on the other is normal to the tangent to
the surfaces and is compressive. Although no actual surfaces are per-
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fectly smooth, we can assume this to be so for practical purposes in
many instances.

When mating surfaces of contacting bodies are rough, as in Exam-
ple 3, the force of contact is not necessarily normal to the tangent to the
surfaces, but may be resolved into a tangential or frictional component F
and a normal component N.

Example 4 illustrates a number of forms of mechanical support
which effectively eliminate tangential friction forces. In these cases the
net reaction is normal to the supporting surface.

Example 5 shows the action of a smooth guide on the body it sup-
ports. There cannot be any resistance parallel to the guide.

Example 6 illustrates the action of a pin connection. Such a connec-
tion can support force in any direction normal to the axis of the pin. We
usually represent this action in terms of two rectangular components.
The correct sense of these components in a specific problem depends on
how the member is loaded. When not otherwise initially known, the
sense is arbitrarily assigned and the equilibrium equations are then
written. If the solution of these equations yields a positive algebraic sign
for the force component, the assigned sense is correct. A negative sign
indicates the sense is opposite to that initially assigned.

If the joint is free to turn about the pin, the connection can support
only the force R. If the joint is not free to turn, the connection can also
support a resisting couple M. The sense of M is arbitrarily shown here,
but the true sense depends on how the member is loaded.

Example 7 shows the resultants of the rather complex distribution
of force over the cross section of a slender bar or beam at a built-in or
fixed support. The sense of the reactions F and V and the bending cou-
ple M in a given problem depends, of course, on how the member is
loaded.

One of the most common forces is that due to gravitational attrac-
tion, Example 8. This force affects all elements of mass in a body and is,
therefore, distributed throughout it. The resultant of the gravitational
forces on all elements is the weight W = mg of the body, which passes
through the center of mass G and is directed toward the center of the
earth for earthbound structures. The location of G is frequently obvious
from the geometry of the body, particularly where there is symmetry.
When the location is not readily apparent, it must be determined by ex-
periment or calculations.

Similar remarks apply to the remote action of magnetic and electric
forces. These forces of remote action have the same overall effect on a
rigid body as forces of equal magnitude and direction applied by direct
external contact.

Example 9 illustrates the action of a linear elastic spring and of a
nonlinear spring with either hardening or softening characteristics. The
force exerted by a linear spring, in tension or compression, is given by
F = kx, where k is the stiffness of the spring and x is its deformation
measured from the neutral or undeformed position.

The representations in Fig. 3/1 are not free-body diagrams, but are
merely elements used to construct free-body diagrams. Study these nine
conditions and identify them in the problem work so that you can draw
the correct free-body diagrams.

This apparatus is designed to hold
a car body in equilibrium for a wide
range of orientations during vehicle
production.

© Peter Biclobrzeski/Laif/Redux
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(P) KEY CONCEPTS

o

Construction of Free-Body Diagrams

The full procedure for drawing a free-body diagram which isolates a
body or system consists of the following steps.

Step 1. Decide which system to isolate. The system chosen should
usually involve one or more of the desired unknown quantities.

Step 2. Next isolate the chosen system by drawing a diagram which
represents its complete external boundary. This boundary defines the
isolation of the system from all other attracting or contacting bodies,
which are considered removed. This step is often the most crucial of all.
Make certain that you have completely isolated the system before pro-
ceeding with the next step.

Step 3. Identify all forces which act on the isolated system as ap-
plied by the removed contacting and attracting bodies, and represent
them in their proper positions on the diagram of the isolated system.
Make a systematic traverse of the entire boundary to identify all contact
forces. Include body forces such as weights, where appreciable. Repre-
sent all known forces by vector arrows, each with its proper magnitude,
direction, and sense indicated. Each unknown force should be repre-
sented by a vector arrow with the unknown magnitude or direction indi-
cated by symbol. If the sense of the vector is also unknown, you must
arbitrarily assign a sense. The subsequent calculations with the equilib-
rium equations will yield a positive quantity if the correct sense was as-
sumed and a negative quantity if the incorrect sense was assumed. It is
necessary to be consistent with the assigned characteristics of unknown
forces throughout all of the calculations. If you are consistent, the solu-
tion of the equilibrium equations will reveal the correct senses.

Step 4. Show the choice of coordinate axes directly on the diagram.
Pertinent dimensions may also be represented for convenience. Note,
however, that the free-body diagram serves the purpose of focusing at-
tention on the action of the external forces, and therefore the diagram
should not be cluttered with excessive extraneous information. Clearly
distinguish force arrows from arrows representing quantities other than
forces. For this purpose a colored pencil may be used.

Completion of the foregoing four steps will produce a correct free-
body diagram to use in applying the governing equations, both in statics
and in dynamics. Be careful not to omit from the free-body diagram cer-
tain forces which may not appear at first glance to be needed in the cal-
culations. It is only through complete isolation and a systematic
representation of all external forces that a reliable accounting of the ef-
fects of all applied and reactive forces can be made. Very often a force
which at first glance may not appear to influence a desired result does
indeed have an influence. Thus, the only safe procedure is to include on
the free-body diagram all forces whose magnitudes are not obviously
negligible.
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The free-body method is extremely important in mechanics because
it ensures an accurate definition of a mechanical system and focuses at-
tention on the exact meaning and application of the force laws of statics
and dynamics. Review the foregoing four steps for constructing a free-
body diagram while studying the sample free-body diagrams shown in
Fig. 3/2 and the Sample Problems which appear at the end of the next

article.

Examples of Free-Body Diagrams

Figure 3/2 gives four examples of mechanisms and structures to-
gether with their correct free-body diagrams. Dimensions and magni-
tudes are omitted for clarity. In each case we treat the entire system as

SAMPLE FREE-BODY DIAGRAMS

Mechanical System

Free-Body Diagram of Isolated Body

1. Plane truss

Weight of truss
assumed negligible
compared with P

2. Cantilever beam

P
|—I

A Mass m 3"
W =m, !
g
3. Beam
2 —
Smooth surface M M
contact at A.
Mass m
A N
P —> P _)i / \
= poETTE
B,
4. Rigid system of interconnected bodies
analyzed as a single unit 3"
P ~<— Weight of mechanism P —<=— \
neglected Ly

Figure 3/2



116 Chapter3 Equilibrium

a single body, so that the internal forces are not shown. The characteris-
tics of the various types of contact forces illustrated in Fig. 3/1 are used
in the four examples as they apply.

In Example 1 the truss is composed of structural elements which,
taken all together, constitute a rigid framework. Thus, we may remove
the entire truss from its supporting foundation and treat it as a single
rigid body. In addition to the applied external load P, the free-body dia-
gram must include the reactions on the truss at A and B. The rocker at
B can support a vertical force only, and this force is transmitted to the
structure at B (Example 4 of Fig. 3/1). The pin connection at A (Exam-
ple 6 of Fig. 3/1) is capable of supplying both a horizontal and a vertical
force component to the truss. If the total weight of the truss members is
appreciable compared with P and the forces at A and B, then the
weights of the members must be included on the free-body diagram as
external forces.

In this relatively simple example it is clear that the vertical compo-
nent A, must be directed down to prevent the truss from rotating clock-
wise about B. Also, the horizontal component A, will be to the left to
keep the truss from moving to the right under the influence of the hori-
zontal component of P. Thus, in constructing the free-body diagram for
this simple truss, we can easily perceive the correct sense of each of the
components of force exerted on the truss by the foundation at A and can,
therefore, represent its correct physical sense on the diagram. When the
correct physical sense of a force or its component is not easily recog-
nized by direct observation, it must be assigned arbitrarily, and the cor-
rectness of or error in the assignment is determined by the algebraic
sign of its calculated value.

In Example 2 the cantilever beam is secured to the wall and sub-
jected to three applied loads. When we isolate that part of the beam to
the right of the section at A, we must include the reactive forces applied
to the beam by the wall. The resultants of these reactive forces are
shown acting on the section of the beam (Example 7 of Fig. 3/1). A verti-
cal force V to counteract the excess of downward applied force is shown,
and a tension F to balance the excess of applied force to the right must
also be included. Then, to prevent the beam from rotating about A, a
counterclockwise couple M is also required. The weight mg of the beam
must be represented through the mass center (Example 8 of Fig. 3/1).

In the free-body diagram of Example 2, we have represented the
somewhat complex system of forces which actually act on the cut section
of the beam by the equivalent force—couple system in which the force is
broken down into its vertical component V (shear force) and its horizon-
tal component F' (tensile force). The couple M is the bending moment in
the beam. The free-body diagram is now complete and shows the beam
in equilibrium under the action of six forces and one couple.

In Example 3 the weight W = mg is shown acting through the cen-
ter of mass of the beam, whose location is assumed known (Example 8 of
Fig. 3/1). The force exerted by the corner A on the beam is normal to the
smooth surface of the beam (Example 2 of Fig. 3/1). To perceive this ac-
tion more clearly, visualize an enlargement of the contact point A,
which would appear somewhat rounded, and consider the force exerted
by this rounded corner on the straight surface of the beam, which is as-
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sumed to be smooth. If the contacting surfaces at the corner were not
smooth, a tangential frictional component of force could exist. In addi-
tion to the applied force P and couple M, there is the pin connection at
B, which exerts both an x- and a y-component of force on the beam. The
positive senses of these components are assigned arbitrarily.

In Example 4 the free-body diagram of the entire isolated mecha-
nism contains three unknown forces if the loads mg and P are known.
Any one of many internal configurations for securing the cable leading
from the mass m would be possible without affecting the external re-
sponse of the mechanism as a whole, and this fact is brought out by the
free-body diagram. This hypothetical example is used to show that the
forces internal to a rigid assembly of members do not influence the val-
ues of the external reactions.

We use the free-body diagram in writing the equilibrium equations,
which are discussed in the next article. When these equations are
solved, some of the calculated force magnitudes may be zero. This would
indicate that the assumed force does not exist. In Example 1 of Fig. 3/2,
any of the reactions A,, A,, or B, can be zero for specific values of the
truss geometry and of the magnitude, direction, and sense of the applied
load P. A zero reaction force is often difficult to identify by inspection,
but can be determined by solving the equilibrium equations.

Similar comments apply to calculated force magnitudes which are
negative. Such a result indicates that the actual sense is the opposite of
the assumed sense. The assumed positive senses of B, and B, in Exam-
ple 3 and B, in Example 4 are shown on the free-body diagrams. The
correctness of these assumptions is proved or disproved according to
whether the algebraic signs of the computed forces are plus or minus
when the calculations are carried out in an actual problem.

The isolation of the mechanical system under consideration is a cru-
cial step in the formulation of the mathematical model. The most impor-
tant aspect to the correct construction of the all-important free-body
diagram is the clear-cut and unambiguous decision as to what is in-
cluded and what is excluded. This decision becomes unambiguous only
when the boundary of the free-body diagram represents a complete tra-
verse of the body or system of bodies to be isolated, starting at some ar-
bitrary point on the boundary and returning to that same point. The
system within this closed boundary is the isolated free body, and all con-
tact forces and all body forces transmitted to the system across the
boundary must be accounted for.

The following exercises provide practice with drawing free-body dia-
grams. This practice is helpful before using such diagrams in the appli-
cation of the principles of force equilibrium in the next article.

Complex pulley systems are easily
handled with a systematic equilib-
rium analysis.

© xyno/iStockphoto
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FREE-BODY DIAGRAM EXERCISES

3/A In each of the five following examples, the body to be necessary in each case to form a complete free-body
isolated is shown in the left-hand diagram, and an in- diagram. The weights of the bodies are negligible un-
complete free-body diagram (FBD) of the isolated less otherwise indicated. Dimensions and numerical
body is shown on the right. Add whatever forces are values are omitted for simplicity.

Body Incomplete FBD
1. Bell crank ) Tk mg
supporting mass Flexible m
ith pi t
ZZXI pin suppor cable A A2 A .
Pull P P

2. Control lever
applying torque 0 p
to shaft at O.

7L

3. Boom OA, of
negligible mass
compared with
mass m. Boom
hinged at O and
supported by
hoisting cable at B.

4. Uniform crate of
mass m leaning A
against smooth
vertical wall and
supported on a
rough horizontal

surface.

5. Loaded bracket
supported by pin i f
connection at A and B \B
fixed pin in smooth L
slot at B. A o Load LL A °

Problem 3/A
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3/B In each of the five following examples, the body to be
isolated is shown in the left-hand diagram, and either
a wrong or an incomplete free-body diagram (FBD) is
shown on the right. Make whatever changes or addi-

tions are necessary in each case to form a correct and
complete free-body diagram. The weights of the bod-
ies are negligible unless otherwise indicated. Dimen-
sions and numerical values are omitted for simplicity.

Body

Wrong or Incomplete FBD

1. Lawn roller of
mass m being
pushed up
incline 6.

2. Prybar lifting
body A having
smooth horizontal
surface. Bar rests
on horizontal
rough surface.

3. Uniform pole of
mass m being
hoisted into posi-
tion by winch.
Horizontal sup-
porting surface
notched to prevent

5. Bent rod welded to
support at A and
subjected to two
forces and couple.

slipping of pole. Notch /
O
F
4. Supporting angle B
bracket for frame;
pin joints.
F

Problem 3/B
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3/C Draw a complete and correct free-body diagram of each
of the bodies designated in the statements. The weights
of the bodies are significant only if the mass is stated.

All forces, known and unknown, should be labeled.
(Note: The sense of some reaction components cannot
always be determined without numerical calculation.)

1. Uniform horizontal bar of mass m
suspended by vertical cable at A and
supported by rough inclined surface
at B.

Als m |B

5. Uniform grooved wheel of mass m
supported by a rough surface and by
action of horizontal cable.

@

2. Wheel of mass m on verge of being
rolled over curb by pull P.

6. Bar, initially horizontal but deflected
under load L. Pinned to rigid support
at each end.

Y —{

L

3. Loaded truss supported by pin joint at
A and by cable at B.

S

7. Uniform heavy plate of mass m
supported in vertical plane by cable
C and hinge A.

C

4. Uniform bar of mass m and roller of
mass mg taken together. Subjected to
couple M and supported as shown.

ller is f .
Roller is free to turn . ’)M

8. Entire frame, pulleys, and contacting
cable to be isolated as a single unit.

Problem 3/C
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3/3 Equilibrium Conditions

In Art. 3/1 we defined equilibrium as the condition in which the re-
sultant of all forces and moments acting on a body is zero. Stated in an-
other way, a body is in equilibrium if all forces and moments applied to
it are in balance. These requirements are contained in the vector equa-
tions of equilibrium, Egs. 3/1, which in two dimensions may be written
in scalar form as

XF,. =0 IF, =0 XMy=0 (3/2)

The third equation represents the zero sum of the moments of all forces
about any point O on or off the body. Equations 3/2 are the necessary
and sufficient conditions for complete equilibrium in two dimensions.
They are necessary conditions because, if they are not satisfied, there can
be no force or moment balance. They are sufficient because once they are
satisfied, there can be no imbalance, and equilibrium is assured.

The equations relating force and acceleration for rigid-body motion
are developed in Vol. 2 Dynamics from Newton’s second law of motion.
These equations show that the acceleration of the mass center of a body
is proportional to the resultant force XF acting on the body. Conse-
quently, if a body moves with constant velocity (zero acceleration), the
resultant force on it must be zero, and the body may be treated as in a
state of translational equilibrium.

For complete equilibrium in two dimensions, all three of Eqgs. 3/2
must hold. However, these conditions are independent requirements,
and one may hold without another. Take, for example, a body which
slides along a horizontal surface with increasing velocity under the ac-
tion of applied forces. The force—equilibrium equations will be satisfied in
the vertical direction where the acceleration is zero, but not in the hori-
zontal direction. Also, a body, such as a flywheel, which rotates about its
fixed mass center with increasing angular speed is not in rotational equi-
librium, but the two force—equilibrium equations will be satisfied.

Categories of Equilibrium

Applications of Eqgs. 3/2 fall naturally into a number of categories
which are easily identified. The categories of force systems acting on
bodies in two-dimensional equilibrium are summarized in Fig. 3/3 and
are explained further as follows.

Category 1, equilibrium of collinear forces, clearly requires only
the one force equation in the direction of the forces (x-direction), since
all other equations are automatically satisfied.

Category 2, equilibrium of forces which lie in a plane (x-y plane)
and are concurrent at a point O, requires the two force equations only,
since the moment sum about O, that is, about a z-axis through O, is nec-
essarily zero. Included in this category is the case of the equilibrium of a
particle.

Category 3, equilibrium of parallel forces in a plane, requires the
one force equation in the direction of the forces (x-direction) and one mo-
ment equation about an axis (z-axis) normal to the plane of the forces.
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4

Two-force members

Figure 3/4

CATEGORIES OF EQUILIBRIUM IN TWO DIMENSIONS

Force System

Free-Body Diagram

Independent Equations

1. Collinear

XF,=0
2. Concurrent *F,=0
at a point
IF,=0
3. Parallel XF,=0 XIM,=0
4. General XF,=0 XM,=0

1F,=0

Figure 3/3

Category 4, equilibrium of a general system of forces in a plane
(x-y), requires the two force equations in the plane and one moment
equation about an axis (z-axis) normal to the plane.

Two- and Three-Force Members

You should be alert to two frequently occurring equilibrium situa-
tions. The first situation is the equilibrium of a body under the action
of two forces only. Two examples are shown in Fig. 3/4, and we see
that for such a two-force member to be in equilibrium, the forces must
be equal, opposite, and collinear. The shape of the member does not af-
fect this simple requirement. In the illustrations cited, we consider the
weights of the members to be negligible compared with the applied
forces.

The second situation is a three-force member, which is a body under
the action of three forces, Fig. 3/5a. We see that equilibrium requires
the lines of action of the three forces to be concurrent. If they were not
concurrent, then one of the forces would exert a resultant moment
about the point of intersection of the other two, which would violate the
requirement of zero moment about every point. The only exception oc-
curs when the three forces are parallel. In this case we may consider the
point of concurrency to be at infinity.
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The principle of the concurrency of three forces in equilibrium is of
considerable use in carrying out a graphical solution of the force equa-
tions. In this case the polygon of forces is drawn and made to close, as
shown in Fig. 3/5b. Frequently, a body in equilibrium under the action
of more than three forces may be reduced to a three-force member by a
combination of two or more of the known forces.

Alternative Equilibrium Equations

In addition to Eqgs. 3/2, there are two other ways to express the gen-
eral conditions for the equilibrium of forces in two dimensions. The first
way is illustrated in Fig. 3/6, parts (a) and (b). For the body shown in
Fig. 3/6a, if XM, = 0, then the resultant, if it still exists, cannot be a
couple, but must be a force R passing through A. If now the equation
YF, = 0 holds, where the x-direction is arbitrary, it follows from Fig.
3/6b that the resultant force R, if it still exists, not only must pass
through A, but also must be perpendicular to the x-direction as shown.
Now, if XMp = 0, where B is any point such that the line AB is not per-
pendicular to the x-direction, we see that R must be zero, and thus the
body is in equilibrium. Therefore, an alternative set of equilibrium
equations is

where the two points A and B must not lie on a line perpendicular to the
x-direction.

A third formulation of the equilibrium conditions may be made for
a coplanar force system. This is illustrated in Fig. 3/6, parts (¢) and
(d). Again, if XM 4 = 0 for any body such as that shown in Fig. 3/6¢c, the
resultant, if any, must be a force R through A. In addition, if XMz = 0,
the resultant, if one still exists, must pass through B as shown in Fig.
3/6d. Such a force cannot exist, however, if M- = 0, where C is not

M, = 0} satisfied

XM, = 0 satisfied SF.=0

(a) (b)

XMy = 0 satisfied

(©
Figure 3/6

Fy

F;
(a) Three-force member

(b) Closed polygon
satisfies XF = 0

Figure 3/5



124 Chapter3 Equilibrium

collinear with A and B. Thus, we may write the equations of equilib-
rium as

SM,=0  SMz=0  3IM,=0

where A, B, and C are any three points not on the same straight line.

When equilibrium equations are written which are not indepen-
dent, redundant information is obtained, and a correct solution of the
equations will yield 0 = 0. For example, for a general problem in two di-
mensions with three unknowns, three moment equations written about
three points which lie on the same straight line are not independent.
Such equations will contain duplicated information, and solution of two
of them can at best determine two of the unknowns, with the third
equation merely verifying the identity 0 = 0.

Constraints and Statical Determinacy

The equilibrium equations developed in this article are both neces-
sary and sufficient conditions to establish the equilibrium of a body.
However, they do not necessarily provide all the information required to
calculate all the unknown forces which may act on a body in equilib-
rium. Whether the equations are adequate to determine all the un-
knowns depends on the characteristics of the constraints against
possible movement of the body provided by its supports. By constraint
we mean the restriction of movement.

In Example 4 of Fig. 3/1 the roller, ball, and rocker provide con-
straint normal to the surface of contact, but none tangent to the sur-
face. Thus, a tangential force cannot be supported. For the collar and
slider of Example 5, constraint exists only normal to the guide. In Ex-
ample 6 the fixed-pin connection provides constraint in both directions,
but offers no resistance to rotation about the pin unless the pin is not
free to turn. The fixed support of Example 7, however, offers constraint
against rotation as well as lateral movement.

If the rocker which supports the truss of Example 1 in Fig. 3/2 were
replaced by a pin joint, as at A, there would be one additional constraint
beyond those required to support an equilibrium configuration with no
freedom of movement. The three scalar conditions of equilibrium, Egs.
3/2, would not provide sufficient information to determine all four un-
knowns, since A, and B, could not be solved for separately; only their
sum could be determined. These two components of force would be de-
pendent on the deformation of the members of the truss as influenced
by their corresponding stiffness properties. The horizontal reactions A,
and B, would also depend on any initial deformation required to fit the
dimensions of the structure to those of the foundation between A and B.
Thus, we cannot determine A, and B, by a rigid-body analysis.

Again referring to Fig. 3/2, we see that if the pin B in Example 3
were not free to turn, the support could transmit a couple to the beam
through the pin. Therefore, there would be four unknown supporting re-
actions acting on the beam—namely, the force at A, the two components
of force at B, and the couple at B. Consequently the three independent
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scalar equations of equilibrium would not provide enough information to
compute all four unknowns.

A rigid body, or rigid combination of elements treated as a single
body, which possesses more external supports or constraints than are
necessary to maintain an equilibrium position is called statically inde-
terminate. Supports which can be removed without destroying the equi-
librium condition of the body are said to be redundant. The number of
redundant supporting elements present corresponds to the degree of sta-
tical indeterminacy and equals the total number of unknown external
forces, minus the number of available independent equations of equilib-
rium. On the other hand, bodies which are supported by the minimum
number of constraints necessary to ensure an equilibrium configuration
are called statically determinate, and for such bodies the equilibrium
equations are sufficient to determine the unknown external forces.

The problems on equilibrium in this article and throughout Vol. 1
Statics are generally restricted to statically determinate bodies where
the constraints are just sufficient to ensure a stable equilibrium configu-
ration and where the unknown supporting forces can be completely de-
termined by the available independent equations of equilibrium.

We must be aware of the nature of the constraints before we attempt
to solve an equilibrium problem. A body can be recognized as statically
indeterminate when there are more unknown external reactions than
there are available independent equilibrium equations for the force sys-
tem involved. It is always well to count the number of unknown variables
on a given body and to be certain that an equal number of independent
equations can be written; otherwise, effort might be wasted in attempt-
ing an impossible solution with the aid of the equilibrium equations only.
The unknown variables may be forces, couples, distances, or angles.

Adequacy of Constraints

In discussing the relationship between constraints and equilibrium,
we should look further at the question of the adequacy of constraints.
The existence of three constraints for a two-dimensional problem does
not always guarantee a stable equilibrium configuration. Figure 3/7
shows four different types of constraints. In part a of the figure, point A
of the rigid body is fixed by the two links and cannot move, and the third
link prevents any rotation about A. Thus, this body is completely fixed
with three adequate (proper) constraints.

In part b of the figure, the third link is positioned so that the force
transmitted by it passes through point A where the other two constraint
forces act. Thus, this configuration of constraints can offer no initial re-
sistance to rotation about A, which would occur when external loads
were applied to the body. We conclude, therefore, that this body is in-
completely fixed under partial constraints.

The configuration in part ¢ of the figure gives us a similar condition
of incomplete fixity because the three parallel links could offer no initial
resistance to a small vertical movement of the body as a result of exter-
nal loads applied to it in this direction. The constraints in these two ex-
amples are often termed improper.

(a) Complete fixity
Adequate constraints

(b) Incomplete fixity
Partial constraints

(¢) Incomplete fixity
Partial constraints

/4

(d) Excessive fixity
Redundant constraint

Figure 3/7
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In part d of Fig. 3/7 we have a condition of complete fixity, with link
4 acting as a fourth constraint which is unnecessary to maintain a fixed
position. Link 4, then, is a redundant constraint, and the body is stati-
cally indeterminate.

As in the four examples of Fig. 3/7, it is generally possible by direct
observation to conclude whether the constraints on a body in two-
dimensional equilibrium are adequate (proper), partial (improper), or
redundant. As indicated previously, the vast majority of problems in this
book are statically determinate with adequate (proper) constraints.

Q KEY CONCEPTS

Approach to Solving Problems

The sample problems at the end of this article illustrate the application
of free-body diagrams and the equations of equilibrium to typical statics
problems. These solutions should be studied thoroughly. In the problem
work of this chapter and throughout mechanics, it is important to de-
velop a logical and systematic approach which includes the following
steps:

1. Identify clearly the quantities which are known and unknown.

2. Make an unambiguous choice of the body (or system of connected
bodies treated as a single body) to be isolated and draw its complete
free-body diagram, labeling all external known and unknown but
identifiable forces and couples which act on it.

3. Choose a convenient set of reference axes, always using right-
handed axes when vector cross products are employed. Choose mo-
ment centers with a view to simplifying the calculations. Generally
the best choice is one through which as many unknown forces pass
as possible. Simultaneous solutions of equilibrium equations are
frequently necessary, but can be minimized or avoided by a careful
choice of reference axes and moment centers.

4. Identify and state the applicable force and moment principles or
equations which govern the equilibrium conditions of the problem.
In the following sample problems these relations are shown in
brackets and precede each major calculation.

5. Match the number of independent equations with the number of
unknowns in each problem.

6. Carry out the solution and check the results. In many problems en-
gineering judgment can be developed by first making a reasonable
guess or estimate of the result prior to the calculation and then
comparing the estimate with the calculated value.




Aricle 3/3 Equilibrium Conditions 127

SAMPLE PROBLEM 3/1

Determine the magnitudes of the forces C and T, which, along with the
other three forces shown, act on the bridge-truss joint.

Solution. The given sketch constitutes the free-body diagram of the isolated
section of the joint in question and shows the five forces which are in equilibrium.

Solution 1 (scalar algebra). For the x-y axes as shown we have

[ZF, = 0] 8 + T cos 40° + Csin 20° — 16 = 0

0.766T + 0.342C = 8 (@)
[ZF, = 0] T sin 40° — Ccos20° -3 =0

0.643T — 0.940C = 3 (®)

Simultaneous solution of Egs. (a) and (b) produces

T =9.09 kN C = 3.03 kN Ans.

Solution Il (scalar algebra). To avoid a simultaneous solution, we may use axes
x'-y" with the first summation in the y’-direction to eliminate reference to 7. Thus,

[ZF,, = 0] —C cos 20° — 3 cos 40° — 8 sin 40° + 16 sin 40° = 0

C =3.03kN Ans.
[XF, = 0] T + 8 cos 40° — 16 cos 40° — 3 sin 40° — 3.03 sin 20° = 0

T =9.09 kN Ans.

Solution Il (vector algebra). With unit vectors i and j in the x- and y-direc-
tions, the zero summation of forces for equilibrium yields the vector equation

[ZF = 0] 8i + (T cos 40°)i + (T sin 40°)j — 3j + (C sin 20°)i
—(Ccos20°j —16i =0

Equating the coefficients of the i- and j-terms to zero gives

8 + T cos40° + Csin20°— 16 =0
T sin40° — 3 — Ccos 20° =0

which are the same, of course, as Egs. (a) and (b), which we solved above.

Solution IV (geometric). The polygon representing the zero vector sum of
the five forces is shown. Equations (a) and (b) are seen immediately to give the
projections of the vectors onto the x- and y-directions. Similarly, projections onto
the x'- and y’-directions give the alternative equations in Solution II.

A graphical solution is easily obtained. The known vectors are laid off head-
to-tail to some convenient scale, and the directions of T and C are then drawn to
close the polygon. The resulting intersection at point P completes the solution,
thus enabling us to measure the magnitudes of T and C directly from the draw-
ing to whatever degree of accuracy we incorporate in the construction.

Helpful Hints

@ Since this is a problem of concur-
rent forces, no moment equation is
necessary.

@ The selection of reference axes to fa-
cilitate computation is always an im-
portant consideration. Alternatively
in this example we could take a set
of axes along and normal to the di-
rection of C and employ a force sum-
mation normal to C to eliminate it.

P~
20°
T ¢ + 8 kN
3kN
10°
16 kN

© The known vectors may be added in
any order desired, but they must be
added before the unknown vectors.
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SAMPLE PROBLEM 3/2

Calculate the tension 7' in the cable which supports the 1000-1b load with
the pulley arrangement shown. Each pulley is free to rotate about its bearing,
and the weights of all parts are small compared with the load. Find the magni-
tude of the total force on the bearing of pulley C.

Solution. The free-body diagram of each pulley is drawn in its relative posi-
tion to the others. We begin with pulley A, which includes the only known force.
With the unspecified pulley radius designated by r, the equilibrium of moments
about its center O and the equilibrium of forces in the vertical direction require

[EM,, = 0] Ty —Ty=0 T,=T,
[ZF, = 0] T,+T,—1000=0 2T, =1000 T, =T,=>5001lb

From the example of pulley A we may write the equilibrium of forces on pulley B
by inspection as

Ty =T, = Ty2 = 250 Ib

For pulley C the angle § = 30° in no way affects the moment of T' about the cen-
ter of the pulley, so that moment equilibrium requires

T=T, or T =2501b Ans.
Equilibrium of the pulley in the x- and y-directions requires

[SF, = 0] 250 cos 30° — F, = 0 F,=2171b
[ZF, = 0] F, + 250 sin 30° — 250 = 0 F,=1251b

[F=JF2+ FyZ] F= /21772 + (125)2 = 250 Ib Ans.

1000 1b
Helpful Hint

@ Clearly the radius r does not influence
the results. Once we have analyzed a
simple pulley, the results should be
perfectly clear by inspection.

SAMPLE PROBLEM 3/3

The uniform 100-kg I-beam is supported initially by its end rollers on the
horizontal surface at A and B. By means of the cable at C it is desired to elevate
end B to a position 3 m above end A. Determine the required tension P, the reac-
tion at A, and the angle 6 made by the beam with the horizontal in the elevated
position.

Solution. In constructing the free-body diagram, we note that the reaction on
the roller at A and the weight are vertical forces. Consequently, in the absence of
other horizontal forces, P must also be vertical. From Sample Problem 3/2 we
see immediately that the tension P in the cable equals the tension P applied to
the beam at C.

Moment equilibrium about A eliminates force R and gives

(XM, = 0] P(6 cos 6) — 981(4 cos 0) = 0 P =654 N Ans.
Equilibrium of vertical forces requires
[ZF, = 0] 654 + R —981 =0 R =327TN Ans.
The angle 6 depends only on the specified geometry and is

sin 6 = 3/8 0 = 22.0° Ans.

Helpful Hint

@ Clearly the equilibrium of this paral-
lel force system is independent of 6.
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SAMPLE PROBLEM 3/4

Determine the magnitude 7' of the tension in the supporting cable and the
magnitude of the force on the pin at A for the jib crane shown. The beam AB is a
standard 0.5-m I-beam with a mass of 95 kg per meter of length.

Algebraic solufion. The system is symmetrical about the vertical x-y plane
through the center of the beam, so the problem may be analyzed as the equilib-
rium of a coplanar force system. The free-body diagram of the beam is shown in
the figure with the pin reaction at A represented in terms of its two rectangular
components. The weight of the beam is 95(10 %)(5)9.81 = 4.66 kN and acts
through its center. Note that there are three unknowns A,, A,, and T, which may
be found from the three equations of equilibrium. We begin with a moment
equation about A, which eliminates two of the three unknowns from the equa-
tion. In applying the moment equation about A4, it is simpler to consider the mo-
ments of the x- and y-components of T than it is to compute the perpendicular
distance from T to A. Hence, with the counterclockwise sense as positive we
write

[ZM, = 0] (T cos 25°)0.25 + (T sin 25°)(5 — 0.12)

—10(6 — 1.5 — 0.12) — 4.66(2.5 — 0.12) = 0
from which T =19.61 kN Ans.
Equating the sums of forces in the x- and y-directions to zero gives
[ZF, = 0] A, —19.61cos25°=0 A, = 17.7TkN
[ZF, = 0] A, + 19.61 sin 25° — 4.66 — 10 = 0 A, =6.37TkN
[A=JAZ+A2 A=/A7.7772 + (6.37)% = 18.88 kN Ans.

Graphical solution. The principle that three forces in equilibrium must be
concurrent is utilized for a graphical solution by combining the two known verti-
cal forces of 4.66 and 10 kN into a single 14.66-kN force, located as shown on the
modified free-body diagram of the beam in the lower figure. The position of this
resultant load may easily be determined graphically or algebraically. The inter-
section of the 14.66-kN force with the line of action of the unknown tension T
defines the point of concurrency O through which the pin reaction A must pass.
The unknown magnitudes of T and A may now be found by adding the forces
head-to-tail to form the closed equilibrium polygon of forces, thus satisfying
their zero vector sum. After the known vertical load is laid off to a convenient
scale, as shown in the lower part of the figure, a line representing the given di-
rection of the tension T is drawn through the tip of the 14.66-kN vector. Like-
wise a line representing the direction of the pin reaction A, determined from the
concurrency established with the free-body diagram, is drawn through the tail of
the 14.66-kN vector. The intersection of the lines representing vectors T and A
establishes the magnitudes 7" and A necessary to make the vector sum of the
forces equal to zero. These magnitudes are scaled from the diagram. The x- and
y-components of A may be constructed on the force polygon if desired.

10 kN

5m

A 25°

A, Y
4.66 kN
10 kN
Free-body diagram

Helpful Hints

@ The justification for this step is
Varignon’s theorem, explained in
Art. 2/4. Be prepared to take full ad-
vantage of this principle frequently.

@ The calculation of moments in two-
dimensional problems is generally
handled more simply by scalar alge-
bra than by the vector cross product
r X F. In three dimensions, as we will
see later, the reverse is often the case.

© The direction of the force at A could
be easily calculated if desired. How-
ever, in designing the pin A or in
checking its strength, it is only the
magnitude of the force that matters.

~ 0 _
ol
— T
A /// !250\
|
=

14.66 kN

Graphical solution



130 Chapter3 Equilibrium

PROBLEMS

Introductory Problems

3/1 The 50-kg homogeneous smooth sphere rests on the
30° incline A and bears against the smooth vertical
wall B. Calculate the contact forces at A and B.

Problem 3/1

3/2 A carpenter holds a 12-1b 2-in. by 4-in. board as shown.
If he exerts vertical forces on the board, determine
the forces at A and B.

Problem 3/2

3/3 The weight of the bicycle is 29 1b with center of grav-
ity at G. Determine the normal forces at A and B
when the bicycle is in equilibrium.

Problem 3/3

3/4 The uniform beam has a mass of 50 kg per meter of
length. Determine the reactions at the supports.

¥

\

|

\

‘ 24m ‘ 1.2m

300 kg
1
A= s B
B e
Problem 3/4

3/5 The 500-kg uniform beam is subjected to the three
external loads shown. Compute the reactions at the
support point O. The x-y plane is vertical.

y
!
\
‘ o

15 kN-m 303kN
0 A /\
Ce . ) ¥~ ——x

\ |/ ¢

1.4 kN
1.2m— 1.8m : 1.8m
Problem 3/5

3/6 Calculate the force and moment reactions at the bolted
base O of the overhead traffic-signal assembly. Each
traffic signal has a mass of 36 kg, while the masses of
members OC and AC are 50 kg and 55 kg, respectively.
The mass center of member AC is at G.

A B
B ey
36 kg 36 kg |
5m 1 4m |
m |
| Tm
|
50kg|
lo
ol R~
Problem 3/6
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3/7 A former student of mechanics wishes to weigh him-
self but has access only to a scale A with capacity lim-
ited to 100 lb and a small 20-lb spring dynamometer
B. With the rig shown he discovers that when he ex-
erts a pull on the rope so that B registers 19 lb, the
scale A reads 67 Ib. What is his correct weight?

r'ﬂr'd

Problem 3/7

3/8 A 120-lb crate rests on the 60-1b pickup tailgate. Cal-
culate the tension 7' in each of the two restraining ca-
bles, one of which is shown. The centers of gravity
are at G; and G, The crate is located midway be-
tween the two cables.

- 147

Gy

9.5”

2.75"j

Problem 3/8

3/9 When the 0.05-kg body is in the position shown, the
linear spring is stretched 10 mm. Determine the
force P required to break contact at C. Complete so-
lutions for (a) including the effects of the weight
and (b) neglecting the weight.

Ple 60 mmﬁh 60 mmﬁ
@ @
10)

A
40 mm
'39—’\/\/\/\/\/\/\/—- B i
k = 1750 N/m T
40 mm
Y C
Problem 3/9

3/10 When the 0.05-kg body is in the position shown, the
torsional spring at O is pretensioned so as to exert a
0.75-N 'm clockwise moment on the body. Deter-
mine the force P required to break contact at C.
Complete solutions for (a) including the effect of the
weight and (b) neglecting the weight.

Ple 60 mm Hﬁ 60 mm
@ (@
A kg [0)
80 mm
o C

Problem 3/10
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3/11 When on level ground, the car is placed on four indi-
vidual scales—one under each tire. The scale read-
ings are 4450 N at each front wheel and 2950 N at
each rear wheel. Determine the x-coordinate of the
mass center G and the mass of the car.

Problem 3/11

3/12 Determine the force magnitude P required to lift
one end of the 250-kg crate with the lever dolly as
shown. State any assumptions.

250 kg

A Z

275 mm

Problem 3/12

3/13 Three cables are joined at the junction ring C. De-
termine the tensions in cables AC and BC caused by
the weight of the 30-kg cylinder.

Problem 3/13

3/14 A woodcutter wishes to cause the tree trunk to fall
uphill, even though the trunk is leaning downhill.
With the aid of the winch W, what tension T in the
cable will be required? The 1200-1b trunk has a cen-
ter of gravity at G. The felling notch at O is suffi-
ciently large so that the resisting moment there is
negligible.

5°

—— Horizontal
G 10 W

Problem 3/14
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3/15 Find the angle of tilt 6 with the horizontal so that
the contact force at B will be one-half that at A for
the smooth cylinder.

B

A
45°
450 /
=

Problem 3/15

3/16 A bicyclist applies a 40-N force to the brake lever of
her bicycle as shown. Determine the corresponding
tension T transmitted to the brake cable. Neglect
friction at the pivot O.

Problem 3/16

3/17 The “deadman” lever controls the augers of a snow
thrower. If a force F = 30 N is required to begin ro-
tating the lever about the ideal pivot at O, deter-
mine the corresponding tension 7' in the control
cable AB and the magnitude of the pin reaction
at O. Neglect the weight of the lever.

Problem 3/17

3/18 The right-angle uniform slender bar AOB has mass
m. If friction at the pivot O is neglected, determine
the magnitude of the normal force at A and the
magnitude of the pin reaction at O.

Problem 3/18
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3/19 Determine the minimum cylinder mass m; required
to cause loss of contact at A.

A

my

Problem 3/19

3/20 A 700-N axial force is required to remove the pulley
from its shaft. What force F must be exerted on the
handle of each of the two prybars? Friction at the
contact points B and E is sufficient to prevent slip-
ping; friction at the pulley contact points C and F' is

negligible.
38,31
mm [mm
B ¢ O |fp |E
250 mm
F F
A D N
50

Problem 3/20

3/21 Determine the magnitude P of the vertical force re-
quired to lift the wheelbarrow free of the ground at
point B. The combined weight of the wheelbarrow
and its load is 240 1b with center of gravity at G.

P

19” 217 8"

Problem 3/21

3/22 The force P on the handle of the positioning lever
produces a vertical compression of 60 lb in the
coiled spring in the position shown. Determine
the corresponding force exerted by the pin at O on
the lever.

Problem 3/22
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Representative Problems

3/23 A pipe P is being bent by the pipe bender as shown.
If the hydraulic cylinder applies a force of magni-
tude F' = 24 kN to the pipe at C, determine the mag-
nitude of the roller reactions at A and B.

—

Problem 3/25

3/26 The elements of a heavy-duty fluid valve are shown
in the figure. When the member OB rotates clock-

Problem 3/23 wise about the fixed pivot O under the action of the
force P, the element S slides freely upward in its
3/24 Cable AB passes over the small ideal pulley C with- slot, releasing the flow. If an internal torsional
out a change in its tension. What length of cable CD spring exerts a moment M = 20 N-m as shown, de-
is required for static equilibrium in the position termine the force P required to open the valve. Ne-
shown? What is the tension 7" in cable CD? glect all friction.
°B 180 mm
P
M S
D
S
Problem 3/24 A v

3/25 While digging a small hole prior to planting a tree, a
homeowner encounters rocks. If he exerts a hori- Problem 3/26
zontal 225-N force on the prybar as shown, what is
the horizontal force exerted on rock C? Note that a
small ledge on rock C supports a vertical force
reaction there. Neglect friction at B. Complete solu-
tions (@) including and (b) excluding the weight of
the uniform 18-kg prybar.
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3/27 The asymmetric simple truss is loaded as shown.
Determine the reactions at A and D. Neglect the
weight of the structure compared with the applied
loads. Is knowledge of the size of the structure nec-
essary?

Problem 3/27

3/28 A 35-N axial force at B is required to open the
spring-loaded plunger of the water nozzle. Deter-
mine the required force F applied to the handle at A
and the magnitude of the pin reaction at O. Note
that the plunger passes through a vertically-elon-
gated hole in the handle at B, so that negligible ver-
tical force is transmitted there.

Problem 3/28

3/29 The indicated location of the center of gravity of the
3600-1b pickup truck is for the unladen condition. If
a load whose center of gravity is x = 16 in. behind
the rear axle is added to the truck, determine the
load weight W, for which the normal forces under
the front and rear wheels are equal.

‘ B
L— 45" 67" ~x

Problem 3/29

3/30 A block placed under the head of the claw hammer
as shown greatly facilitates the extraction of the
nail. If a 50-1b pull on the handle is required to pull
the nail, calculate the tension T in the nail and the
magnitude A of the force exerted by the hammer
head on the block. The contacting surfaces at A are
sufficiently rough to prevent slipping.

50 Ib

8"
20°

: E%”

2//%

\

Problem 3/30
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3/31 Because of long-term loading from the 900-N ten-
sion in the power line, the uniform utility pole has
developed a 5° lean. If the mass per unit length of
the 9-m pole is 24 kg/m and the mass of the lamp
fixture is negligible, determine the reactions at the
ground support A.

Horiz.

Power line

Vertical

Problem 3/31

3/32 The uniform slender bar of length 3r and mass m
rests against the circular surface as shown. Deter-
mine the normal force at the contact point C and
the magnitude of the ideal pivot reaction at O.

(0)

Problem 3/32

3/33 The uniform slender bar of length 2r and mass m
rests against the circular surface as shown. Deter-
mine the normal force at the small roller A and the
magnitude of the ideal pivot reaction at O.

Problem 3/33

3/34 The chain binder is used to secure loads of logs,
lumber, pipe, and the like. If the tension T is 2 kN
when 6 = 30°, determine the force P required on the
lever and the corresponding tension 7’5 for this posi-
tion. Assume that the surface under A is perfectly
smooth.

Problem 3/34

3/35 The device shown is designed to apply pressure
when bonding laminate to each side of a countertop
near an edge. If a 120-N force is applied to the han-
dle, determine the force which each roller exerts on
its corresponding surface.

120 N

B@immm T

Problem 3/35
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3/36 A mechanic is reinstalling a newly-sharpened blade
on a lawn mower. A wedged-in block of wood at C
prevents the blade from rotating as the 30-1b force
is applied to the wrench handle. The blade is bolted
to a bracket attached to the motor shaft O, which
protrudes through the bracket and blade. Deter-
mine the normal force at C. State any assumptions.
Does it matter whether the bolt at B is installed?

Problem 3/36

3/37 The two light pulleys are fastened together and
form an integral unit. They are prevented from
turning about their bearing at O by a cable wound
securely around the smaller pulley and fastened to
point A. Calculate the magnitude R of the force sup-
ported by the bearing O for the applied 2-kN load.

2kN

Problem 3/37

3/38 Calculate the magnitude of the force supported by
the pin at A under the action of the 1.5-kN load ap-
plied to the bracket. Neglect friction in the slot.

Problem 3/38

3/39 In a procedure to evaluate the strength of the tri-
ceps muscle, a person pushes down on a load cell
with the palm of his hand as indicated in the figure.
If the load-cell reading is 160 N, determine the ver-
tical tensile force F' generated by the triceps muscle.
The mass of the lower arm is 1.5 kg with mass cen-
ter at G. State any assumptions.

Humerus

Triceps

Problem 3/39
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3/40 A woman is holding a 3.6-kg sphere in her hand
with the entire arm held horizontally as shown in
the figure. A tensile force in the deltoid muscle pre-
vents the arm from rotating about the shoulder
joint O; this force acts at the 21° angle shown. De-
termine the force exerted by the deltoid muscle on
the upper arm at A and the x- and y-components of
the force reaction at the shoulder joint O. The mass
of the upper arm is my = 1.9 kg, the mass of the
lower arm is m; = 1.1 kg, and the mass of the hand
is my = 0.4 kg; all the corresponding weights act at
the locations shown in the figure.

Problem 3/40

3/41 A person is performing slow arm curls with a 10-kg
weight as indicated in the figure. The brachialis
muscle group (consisting of the biceps and
brachialis muscles) is the major factor in this exer-
cise. Determine the magnitude F of the brachialis-
muscle-group force and the magnitude E of the
elbow joint reaction at point E for the forearm posi-
tion shown in the figure. Take the dimensions
shown to locate the effective points of application of
the two muscle groups; these points are 200 mm di-
rectly above E and 50 mm directly to the right of E.
Include the effect of the 1.5-kg forearm mass with
mass center at point G. State any assumptions.

Humerus
Biceps
Brachialis

200

Problem 3/41

3/42 With his weight W equally distributed on both feet,
a man begins to slowly rise from a squatting posi-
tion as indicated in the figure. Determine the tensile
force F in the patellar tendon and the magnitude of
the force reaction at point O, which is the contact
area between the tibia and the femur. Note that the
line of action of the patellar tendon force is along its
midline. Neglect the weight of the lower leg.

Quadriceps muscle

Femur

Fibula Patella
Patellar
tendon

Problem 3/42
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3/43

The exercise machine is designed with a lightweight
cart which is mounted on small rollers so that it is
free to move along the inclined ramp. Two cables
are attached to the cart—one for each hand. If the
hands are together so that the cables are parallel
and if each cable lies essentially in a vertical plane,
determine the force P which each hand must exert
on its cable in order to maintain an equilibrium po-
sition. The mass of the person is 70 kg, the ramp
angle 0 is 15°, and the angle B is 18°. In addition,
calculate the force R which the ramp exerts on the
cart.

3/44

Problem 3/43

The portable floor crane in the automotive shop is lift-
ing a 420-1b engine. For the position shown compute
the magnitude of the force supported by the pin at C
and the oil pressure p against the 3.20-in.-diameter
piston of the hydraulic-cylinder unit AB.

Problem 3/44

3/45 The device shown is used to test automobile-engine

valve springs. The torque wrench is directly con-
nected to arm OB. The specification for the automo-
tive intake-valve spring is that 83 1b of force should
reduce its length from 2 in. (unstressed length) to
1% in. What is the corresponding reading M on
the torque wrench, and what force F' exerted on the
torque-wrench handle is required to produce this
reading? Neglect the small effects of changes in the
angular position of arm OB.

55°

< 6”

Problem 3/45

3/46 Calculate the normal forces associated with the

front and rear wheel pairs of the 1600-kg front-
wheel-drive van. Then repeat the calculations when
the van (a) climbs a 10-percent grade and (b) de-
scends a 10-percent grade, both at constant speed.
Compute the percent changes n, and np in the nor-
mal forces compared with the nominal values. Be
sure to recognize that propulsive and braking forces
are present for cases (a) and ().

A B
1200 mm —+~=—--1800 mm

Problem 3/46
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3/47

3/48

During an engine test on the ground, a propeller
thrust 7' = 3000 N is generated on the 1800-kg air-
plane with mass center at G. The main wheels at B
are locked and do not skid; the small tail wheel at A
has no brake. Compute the percent change n in the
normal forces at A and B as compared with their
“engine-off” values.

Problem 3/47

The small crane is mounted on one side of the bed of
a pickup truck. For the position 6 = 40°, determine
the magnitude of the force supported by the pin at
O and the oil pressure p against the 50-mm-diame-
ter piston of the hydraulic cylinder BC.

Problem 3/48

3/49 A rocker arm with rollers at A and B is shown in the

position when the valve is open and the valve spring
is fully compressed. In this position, the spring force
is 900 N. Determine the force which the rocker arm
exerts on the camshaft C. Also calculate the magni-
tude of the force supported by the rocker-arm shaft O.

10°\\

44

48 mm 30 mm

Problem 3/49

3/50 The pin A, which connects the 200-kg steel beam

with center of gravity at G to the vertical column, is
welded both to the beam and to the column. To test
the weld, the 80-kg man loads the beam by exerting
a 300-N force on the rope which passes through a
hole in the beam as shown. Calculate the torque
(couple) M supported by the pin.

300 mm

L*IZOO mm 9LGOO
mm

Problem 3/50
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3/51 The dolly shown is useful in the handling of 55-gallon 3/53 The uniform bar OC of length L pivots freely about

drums. Determine the force F' necessary to hold a
drum in the position shown. You may neglect the
weight of the dolly in comparison with the 500-1b
weight of the drum, whose center of gravity is at G.
There is sufficient friction to prevent slipping at the
contact point P.

Problem 3/51

3/52 A portion of the shifter mechanism for a manual car

transmission is shown in the figure. For the 8-N
force exerted on the shift knob, determine the corre-
sponding force P exerted by the shift link BC on the
transmission (not shown). Neglect friction in the
ball-and-socket joint at O, in the joint at B, and in
the slip tube near support D. Note that a soft rubber
bushing at D allows the slip tube to self-align with
link BC.

Slip tube

Problem 3/52

a horizontal axis through O. If the spring of modu-
lus % is unstretched when C is coincident with A, de-
termine the tension 7' required to hold the bar in
the 45° position shown. The diameter of the small
pulley at D is negligible.

Problem 3/53

3/54 To test the deflection of the uniform 200-lb beam

the 120-1b boy exerts a pull of 40 1b on the rope
rigged as shown. Compute the force supported by
the pin at the hinge O.

Problem 3/54
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3/55 The cargo door for an airplane of circular fuselage
section consists of the uniform semicircular cowling
AB of mass m. Determine the compression C in the
horizontal strut at B to hold the door open in the
position shown. Also find an expression for the total
force supported by the hinge at A. (Consult Table
D/3 of Appendix D for the position of the centroid or
mass center of the cowling.)

Light strut

Closed position of B

Problem 3/55

3/56 Determine the external reactions at A and F for the
roof truss loaded as shown. The vertical loads repre-
sent the effect of the supported roofing materials,
while the 400-N force represents a wind load.

500 N

10 m

Problem 3/56

3/57 1t is desired that a person be able to begin closing
the van hatch from the open position shown with a
10-lb vertical force P. As a design exercise, deter-
mine the necessary force in each of the two hy-
draulic struts AB. The center of gravity of the 90-1b
door is 1.5 in. directly below point A. Treat the
problem as two-dimensional.

Problem 3/57

3/58 The pipe bender consists of two grooved pulleys
mounted and free to turn on a fixed frame. The pipe
is bent into the shape shown by a force P = 300 N.
Calculate the forces supported by the bearings of
the pulleys.

<500 mm -/ /—<— 150 mmq

Problem 3/58
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3/59 Certain elements of an in-refrigerator ice-cube

maker are shown in the figure. (A “cube” has the
form of a cylindrical segment!) Once the cube
freezes and a small heater (not shown) forms a thin
film of water between the cube and supporting sur-
face, a motor rotates the ejector arm OA to remove
the cube. If there are eight cubes and eight arms,
determine the required torque M as a function of 6.
The mass of eight cubes is 0.25 kg, and the center-
of-mass distance r = 0.55r. Neglect friction, and as-
sume that the resultant of the distributed normal
force acting on the cube passes through point O.

&
&

o\

o

Problem 3/59

»3/60 The lumbar portion of the human spine supports the

entire weight of the upper torso and the force load
imposed on it. We consider here the disk (shaded red)
between the lowest vertebra of the lumbar region
(Ls) and the uppermost vertebra of the sacrum re-
gion. (a) For the case L = 0, determine the compres-
sive force C and the shear force S supported by this
disk in terms of the body weight W. The weight W,, of
the upper torso (above the disk in question) is 68% of
the total body weight W and acts at G;. The vertical
force F' which the rectus muscles of the back exert on
the upper torso acts as shown in the figure. (b) Re-
peat for the case when the person holds a weight of
magnitude L = W/3 as shown. State any assump-
tions.

Gy

Problem 3/60
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SECTION B EQUILIBRIUM IN THREE DIMENSIONS

3/4 Equilibrium Conditions

We now extend our principles and methods developed for two-
dimensional equilibrium to the case of three-dimensional equilibrium.
In Art. 3/1 the general conditions for the equilibrium of a body were
stated in Eqs. 3/1, which require that the resultant force and resultant
couple on a body in equilibrium be zero. These two vector equations of
equilibrium and their scalar components may be written as

SF,. =0
SF=0 or 3F, =0
SF,=0

(3/3)
SM, =0
SM =0 or M, =0
M, =0

The first three scalar equations state that there is no resultant force act-
ing on a body in equilibrium in any of the three coordinate directions.
The second three scalar equations express the further equilibrium re-
quirement that there be no resultant moment acting on the body about
any of the coordinate axes or about axes parallel to the coordinate axes.
These six equations are both necessary and sufficient conditions for
complete equilibrium. The reference axes may be chosen arbitrarily as a
matter of convenience, the only restriction being that a right-handed co-
ordinate system should be chosen when vector notation is used.

The six scalar relationships of Eqs. 3/3 are independent conditions
because any of them can be valid without the others. For example, for a
car which accelerates on a straight and level road in the x-direction,
Newton’s second law tells us that the resultant force on the car equals
its mass times its acceleration. Thus XF, # 0, but the remaining two
force—equilibrium equations are satisfied because all other acceleration
components are zero. Similarly, if the flywheel of the engine of the accel-
erating car is rotating with increasing angular speed about the x-axis, it
is not in rotational equilibrium about this axis. Thus, for the flywheel
alone, M, # 0 along with XF, # 0, but the remaining four equilibrium
equations for the flywheel would be satisfied for its mass-center axes.

In applying the vector form of Egs. 3/3, we first express each of the
forces in terms of the coordinate unit vectors i, j, and k. For the first
equation, XF = 0, the vector sum will be zero only if the coefficients of i,
j, and k in the expression are, respectively, zero. These three sums,
when each is set equal to zero, yield precisely the three scalar equations
of equilibrium, XF, = 0, XF, = 0, and XF, = 0.

For the second equation, XM = 0, where the moment sum may be
taken about any convenient point O, we express the moment of each
force as the cross product r X F, where r is the position vector from O to
any point on the line of action of the force F. Thus M = Z(r x F) = 0.
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When the coefficients of i, j, and k in the resulting moment equation are
set equal to zero, respectively, we obtain the three scalar moment equa-
tions M, = 0, M, = 0, and =M, = 0.

Free-Body Diagrams

The summations in Eqgs. 3/3 include the effects of all forces on the
body under consideration. We learned in the previous article that the
free-body diagram is the only reliable method for disclosing all forces
and moments which should be included in our equilibrium equations. In
three dimensions the free-body diagram serves the same essential pur-
pose as it does in two dimensions and should always be drawn. We have
our choice either of drawing a pictorial view of the isolated body with all
external forces represented or of drawing the orthogonal projections of
the free-body diagram. Both representations are illustrated in the sam-
ple problems at the end of this article.

The correct representation of forces on the free-body diagram re-
quires a knowledge of the characteristics of contacting surfaces. These
characteristics were described in Fig. 3/1 for two-dimensional problems,
and their extension to three-dimensional problems is represented in Fig.
3/8 for the most common situations of force transmission. The representa-
tions in both Figs. 3/1 and 3/8 will be used in three-dimensional analysis.

The essential purpose of the free-body diagram is to develop a reli-
able picture of the physical action of all forces (and couples if any) acting
on a body. So it is helpful to represent the forces in their correct physi-
cal sense whenever possible. In this way, the free-body diagram becomes
a closer model to the actual physical problem than it would be if the
forces were arbitrarily assigned or always assigned in the same mathe-
matical sense as that of the assigned coordinate axis.

For example, in part 4 of Fig. 3/8, the correct sense of the unknowns
R, and R, may be known or perceived to be in the sense opposite to those
of the assigned coordinate axes. Similar conditions apply to the sense of
couple vectors, parts 5 and 6, where their sense by the right-hand rule
may be assigned opposite to that of the respective coordinate direction. By
this time, you should recognize that a negative answer for an unknown
force or couple vector merely indicates that its physical action is in the
sense opposite to that assigned on the free-body diagram. Frequently, of
course, the correct physical sense is not known initially, so that an arbi-
trary assignment on the free-body diagram becomes necessary.

Categories of Equilibrium

Application of Eqgs. 3/3 falls into four categories which we identify
with the aid of Fig. 3/9. These categories differ in the number and type
(force or moment) of independent equilibrium equations required to
solve the problem.

Category 1, equilibrium of forces all concurrent at point O, re-
quires all three force equations, but no moment equations because the
moment of the forces about any axis through O is zero.

Category 2, equilibrium of forces which are concurrent with a line,
requires all equations except the moment equation about that line,
which is automatically satisfied.
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MODELING THE ACTION OF FORCES IN THREE-DIMENSIONAL ANALYSIS

Type of Contact and Force Origin

Action on Body to Be Isolated

. Member in contact with smooth
surface, or ball-supported member
z z

Force must be normal to the
surface and directed toward
the member.

_ ~

x y

—~ >~ —~ ~
- ~ - ~
x~ Sy ox” Sy
. Member in contact z z
with rough \ \
surface \ \ The possibility exists for a
| | ) force F' tangent to the surface
< F (friction force) to act on the
o PN member, as well as a normal
7 N 7 + S force N.
. Roller or wheel support P
with lateral \ |
constraint A lateral force P exerted by the
(CJ/ guide on the wheel can exist, in
addition to the normal force N.
& ~ p
e ~

. Ball-and-socket joint

A ball-and-socket joint free to
pivot about the center of the
ball can support a force R with
all three components.

. Fixed connection (embedded or welded)

In addition to three components
of force, a fixed connection

can support a couple M
represented by its three
components.

6. Thrust-bearing support

z
~ \

~

Thrust bearing is capable of
supporting axial force R, as
well as radial forces R, and R,.
Couples M, and M, must, in
some cases, be assumed zero
in order to provide statical
determinacy.

Figure 3/8
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CATEGORIES OF EQUILIBRIUM IN THREE DIMENSIONS
Force System Free-Body Diagram Independent Equations
1. Concurrent y
at a point Fy / Fy
‘ — x ZFx = O
~ A k —
X0 < 3F, =0
/ ~, y
F5 \F3 IF, =0
Fy
2. Concurrent |y
with a line FZ/ ‘ x
Q //’/k\ SF, =0 M, =0
~N
~ Z F,=0 M, =0
< y 2
N ~ F,
= | \ YF,=0
F
Fy 4
3. Parallel F y
/ ! \
o Fy | x 3F, =0 M, =0
P 4 < - M, =0
F5 / F3 h z
F4/
4. General Fl\ F, % M 3‘,
X& L X $F, =0 M, =0
S F, =0 =M, =0
? SF, =0 M, =0
\ Fs
Figure 3/9

Category 3, equilibrium of parallel forces, requires only one force
equation, the one in the direction of the forces (x-direction as shown),
and two moment equations about the axes (y and z) which are normal to
the direction of the forces.

Category 4, equilibrium of a general system of forces, requires all
three force equations and all three moment equations.

The observations contained in these statements are generally quite
evident when a given problem is being solved.

Constraints and Statical Determinacy

The six scalar relations of Egs. 3/3, although necessary and suffi-
cient conditions to establish equilibrium, do not necessarily provide all
of the information required to calculate the unknown forces acting in a
three-dimensional equilibrium situation. Again, as we found with two
dimensions, the question of adequacy of information is decided by the
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characteristics of the constraints provided by the supports. An analyti-
cal criterion for determining the adequacy of constraints is available,
but it is beyond the scope of this treatment.* In Fig. 3/10, however, we
cite four examples of constraint conditions to alert the reader to the
problem.

Part a of Fig. 3/10 shows a rigid body whose corner point A is com-
pletely fixed by the links 1, 2, and 3. Links 4, 5, and 6 prevent rotations
about the axes of links 1, 2, and 3, respectively, so that the body is com-
pletely fixed and the constraints are said to be adequate. Part b of the fig-
ure shows the same number of constraints, but we see that they provide
no resistance to a moment which might be applied about axis AE. Here
the body is incompletely fixed and only partially constrained.

Similarly, in Fig. 3/10c the constraints provide no resistance to an
unbalanced force in the y-direction, so here also is a case of incomplete
fixity with partial constraints. In Fig. 3/10d, if a seventh constraining
link were imposed on a system of six constraints placed properly for
complete fixity, more supports would be provided than would be neces-
sary to establish the equilibrium position, and link 7 would be redun-
dant. The body would then be statically indeterminate with such a
seventh link in place. With only a few exceptions, the supporting con-
straints for rigid bodies in equilibrium in this book are adequate, and
the bodies are statically determinate.

© Zoran Djekic/iStockphoto

The three-dimensional equilibrium of this bridge tower must be carefully
analyzed in the design process so as to avoid excessive net horizontal
force applied by the cable system, which would tend to bend the tower.

*See the first author’s Statics, 2nd Edition SI Version, 1975, Art. 16.

(a) Complete fixity
Adequate constraints

(b) Incomplete fixity
Partial constraints

(¢) Incomplete fixity
Partial constraints

(d) Excessive fixity
Redundant constraints

Figure 3/10



150 Chapter3 Equilibrium

SAMPLE PROBLEM 3/5

The uniform 7-m steel shaft has a mass of 200 kg and is supported by a ball-
and-socket joint at A in the horizontal floor. The ball end B rests against the
smooth vertical walls as shown. Compute the forces exerted by the walls and the
floor on the ends of the shaft.

Solution. The free-body diagram of the shaft is first drawn where the contact
forces acting on the shaft at B are shown normal to the wall surfaces. In addition
to the weight W = mg = 200(9.81) = 1962 N, the force exerted by the floor on
the ball joint at A is represented by its x-, y-, and z-components. These compo-
nents are shown in their correct physical sense, as should be evident from the re-
quirement that A be held in place. The vertical position of B is found from

22 + 62 + h2, h = 3 m. Right-handed coordinate axes are assigned as shown.

Vector solution. We will use A as a moment center to eliminate reference to
the forces at A. The position vectors needed to compute the moments about A are

rpg=-1li—-3j+15km and rpp= —2i—6j+3km

where the mass center G is located halfway between A and B.
The vector moment equation gives

[EM, = 0] ru X B, +B) + 1 x W=10
(—2i — 6j + 3k) X (B,i + B,j) + (—i — 3j + 1.5k) x (~1962k) = 0
i j k i j k
-2 -6 3|+|-1 -3 15 |=0
B, B, 0 0 0 —1962

(—3B, + 5890)i + (3B, — 1962)j + (—2B, + 6B,)k = 0

Equating the coefficients of i, j, and k to zero and solving give

B, =654 N and B, = 1962 N Ans.
The forces at A are easily determined by
[ZF = 0] (654 — A)i + (1962 — A))j + (-1962 + Ak = 0
and A, =654N A, =1962N A, =1962N
Finally, A= \/‘W
= J(654)% + (1962)2 + (1962)% = 2850 N Ans.

Scalar solution. Evaluating the scalar moment equations about axes through
A parallel, respectively, to the x- and y-axes, gives

[ZM, = 0] 1962(3) — 8B, =0 B, = 1962 N
(=M, = 0] ~1962(1) + 3B, =0 B, = 654N
The force equations give, simply,

[ZF, = 0] —-A, +654=0 A, =654N
[ZF, = 0] ~A,+1962=0 A, =1962N
[SF, = 0] A, —1962=0 A, =1962N

Helpful Hints

o We could, of course, assign all of the
unknown components of force in the
positive mathematical sense, in which
case A, and A, would turn out to be
negative upon computation. The free-
body diagram describes the physical
situation, so it is generally preferable
to show the forces in their correct
physical senses wherever possible.

@ Note that the third equation —2B, +
6B, = 0 merely checks the results of
the first two equations. This result
could be anticipated from the fact
that an equilibrium system of forces
concurrent with a line requires only
two moment equations (Category 2
under Categories of Equilibrium).

© We observe that a moment sum
about an axis through A parallel to
the z-axis merely gives us 6B, —
2B, = 0, which serves only as a
check as noted previously. Alterna-
tively we could have first obtained
A, from XF,=0 and then taken
our moment equations about axes
through B to obtain A, and A,.
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SAMPLE PROBLEM 3/6

A 200-N force is applied to the handle of the hoist in the direction shown.
The bearing A supports the thrust (force in the direction of the shaft axis), while
bearing B supports only radial load (load normal to the shaft axis). Determine

the mass m which can be supported and the total radial force exerted on the 100
shaft by each bearing. Assume neither bearing to be capable of supporting a mo-
ment about a line normal to the shaft axis. Radial -
bearing C Thrust =
bearing
m
Solution. The system is clearly three-dimensional with no lines or planes of Dimensions in millimeters

symmetry, and therefore the problem must be analyzed as a general space sys-
tem of forces. A scalar solution is used here to illustrate this approach, although |
a solution using vector notation would also be satisfactory. The free-body dia-
gram of the shaft, lever, and drum considered a single body could be shown by a
@ space view if desired, but is represented here by its three orthogonal projections.
The 200-N force is resolved into its three components, and each of the three
views shows two of these components. The correct directions of A, and B, may be
seen by inspection by observing that the line of action of the resultant of the two
70.7-N forces passes between A and B. The correct sense of the forces A, and B,
cannot be determined until the magnitudes of the moments are obtained, so they
are arbitrarily assigned. The x-y projection of the bearing forces is shown in
terms of the sums of the unknown x- and y-components. The addition of A, and
the weight W = mg completes the free-body diagrams. It should be noted that
the three views represent three two-dimensional problems related by the corre-
sponding components of the forces.

70.7N

70.7N

(2] From the x-y projection: Helpful Hints
(M, = 0] 100(9.81m) — 250(173.2) = 0 m = 44.1kg Ans. @ If the standard three views of ortho-
graphic projection are not entirely
From the x-z projection: familiar, then review and practice
them. Visualize the three views as
[ZMA :0] 150Bx ar 175(707) — 250(707) =0 Bx =354N the images of the body projected
onto the front, top, and end surfaces
[ZF, = 0] A +354-1707=0 A, =354N of a clear plastic box placed over and

aligned with the body.
@ The y-z view gives ¢ v

©® We could have started with the x-z

[ZM, = 0] 150B, + 175(173.2) — 250(44.1)(9.81) = 0 B, =520 N projection rather than with the x-y
projection.
[XF, = 0] A, +520 - 173.2 — (44.1)(9.81) = 0 A, =868N
© The y-z view could have followed im-
[XF, = 0] A, = 707N mediately after the x-y view since
the determination of A, and B, may
The total radial forces on the bearings become be made after m is found.
[4, = VA2 + Ay2] A, = /(35.4)% + (86.8)* = 93.5 N Ans. o Without the assumption of zero mo-

O B- %Bx2+By2] B = /(3547 + (520)2 = 521 N Ans. ment supported by each bearing

about a line normal to the shaft axis,
the problem would be statically in-
determinate.
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SAMPLE PROBLEM 3/7

The welded tubular frame is secured to the horizontal x-y plane by a ball-
and-socket joint at A and receives support from the loose-fitting ring at B. Under
the action of the 2-kN load, rotation about a line from A to B is prevented by the
cable CD, and the frame is stable in the position shown. Neglect the weight of
the frame compared with the applied load and determine the tension 7' in the
cable, the reaction at the ring, and the reaction components at A.

Solutfion. The system is clearly three-dimensional with no lines or planes of
symmetry, and therefore the problem must be analyzed as a general space sys-
tem of forces. The free-body diagram is drawn, where the ring reaction is shown
in terms of its two components. All unknowns except T may be eliminated by a
moment sum about the line AB. The direction of AB is specified by the unit

vector n = ;52 (4.55 + 6k) = %(3j + 4k). The moment of T about AB

J6% + 4.
is the component in the direction of AB of the vector moment about the point A
and equals r; X T-n. Similarly the moment of the applied load F' about AB is
ry, X F-n. With CD = /46.2 m, the vector expressions for T, F, r;, and r, are

T=—T_(9i+25§-6k F=2kN
2

J46.
r = —i+25m  r,=25i+6km

The moment equation now becomes

T

[EM,p = 0] (i + 2.5 X
AB 46.2

(2 + 2,55 — 6k)-1(3j + 4k

+ (251 + 6k) X (2j)-5(3j + 4k) = 0
Completion of the vector operations gives

48T

V46.2

and the components of 7' become

+20=0 T = 2.83 kN Ans.

T,=0833kN  T,=1042kN  T,=-250kN

We may find the remaining unknowns by moment and force summations as
follows:

[EM,=0]  225)—45B,—1.0423) =0 B, = 0.417kN Ans.
[ZM, = 0] 45B, — 2(6) — 1.042(6) =0 B, = 4.06 kN Ans.
[SF, = 0] A, +0417+0833=0 A, = -1.250kN Ans.
[SF, = 0] A +2+1042=0 A =-304kN Ans.
[SF, = 0] A +406-250=0 A = —1556kN Ans.

z B
\ n/
\
-/
1~1><T-nN /
\
\ ~_ rxT
\
AT
x” Ty
Helpful Hints

@ The advantage of using vector nota-
tion in this problem is the freedom
to take moments directly about any
axis. In this problem this freedom
permits the choice of an axis that
eliminates five of the unknowns.

@ Recall that the vector r in the expres-
sion r X F for the moment of a force
is a vector from the moment center to
any point on the line of action of the
force. Instead of ry, an equally simple
choice would be the vector AC .

© The negative signs associated with
the A-components indicate that they
are in the opposite direction to those
shown on the free-body diagram.
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PROBLEMS

Introductory Problems

3/61 A force of magnitude P = 180 N is applied to the
stationary machine handle as shown. Write the
force and moment reactions at O as vectors. Neglect
the weight of the handle assembly.

i
!
=

Problem 3/61

3/62 Determine the tensions in cables AB, AC, and AD.

[ﬂ 100 Ib

Problem 3/62

3/63 A uniform steel plate 18 in. square weighing 68 1b is
suspended in the horizontal plane by the three ver-
tical wires as shown. Calculate the tension in each
wire.

Problem 3/63
3/64 The uniform I-beam has a mass of 60 kg per meter

of its length. Determine the tension in the two sup-
porting cables and the reaction at D.

1m

Problem 3/64

3/65 Determine the tensions in the three cables which
support the uniform 80-kg plate whose shape is that
of an equilateral triangle. The mass center G of the
plate is located one-third of the distance MC from M.

DO
(=3
°

SR

7 <>
Wz e
N By~

‘ ©

} | M o2 7
1\ D200 €
| /T/ R\ = ’¢
| ‘\‘\
\4 =
A C
v 1.2m

Problem 3/65
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3/66 The young tree, originally bent, has been brought
into the vertical position by adjusting the three guy-
wire tensions to AB = 0, AC = 10 lb, and AD = 15
Ib. Determine the force and moment reactions at
the trunk base point O. Neglect the weight of the
tree.

Problem 3/66

3/67 The vertical mast supports the 4-kN force and is
constrained by the two fixed cables BC and BD and
by a ball-and-socket connection at A. Calculate the
tension 7T'; in BD. Can this be accomplished by using
only one equation of equilibrium?

Problem 3/67

3/68 The vertical and horizontal poles at the traffic-light
assembly are erected first. Determine the additional
force and moment reactions at the base O caused by
the addition of the three 100-1b traffic signals B, C,
and D. Report your answers as a force magnitude
and a moment magnitude.

\
o5 |

/f A sy
o

100 1b

100 1b

Problem 3/68

3/69 The body is constructed of uniform slender rod
which has mass p per unit length. Determine the
magnitudes of the force and moment reactions at
the built-in support O.

a
4 b

3a

< e

O'e

Problem 3/69
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3/70 When on level ground, the car is placed on four indi-
vidual scales—one under each tire. The four scale
readings are 4300 N at A, 2900 N at B, 3000 N at C,
and 4600 N at D. Determine the x- and y-coordinates
of the mass center G and the mass of the car.

Problem 3/70

3/71 An overhead view of a car is shown in the figure.

Two different locations C and D are considered for a
single jack. In each case, the entire right side of the
car is lifted just off the ground. Determine the nor-
mal reaction forces at A and B and the vertical jack-
ing force required for the case of each jacking
location. Consider the 1600-kg car to be rigid. The
mass center G is on the midline of the car.

A B

1575 mm

c| D
P 140044« 1120 4

mm

Problem 3/71

3/72 The body is constructed of slender rod which has a

mass p per unit length. Determine the force and mo-
ment reactions at O.

Problem 3/72

3/73 The light right-angle boom which supports the 400-

kg cylinder is supported by three cables and a ball-
and-socket joint at O attached to the vertical x-y
surface. Determine the reactions at O and the cable
tensions.

Problem 3/73
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3/74 The industrial door is a uniform rectangular panel
weighing 1200 Ib and rolls along the fixed rail D on
its hanger-mounted wheels A and B. The door is
maintained in a vertical plane by the floor-mounted
guide roller C, which bears against the bottom edge.
For the position shown compute the horizontal side
thrust on each of the wheels A and B, which must
be accounted for in the design of the brackets.

Detail of
door hanger

Problem 3/74

3/75 The two I-beams are welded together and are initially
supported by the three cables of equal length hanging
vertically from supports directly above A, B, and C.
When applied with the appropriate offset d, the 200-N
force causes the system to assume the new equilib-
rium configuration shown. All three cables are in-
clined at the same angle 6 from the vertical, in planes
parallel to the y-z plane. Determine this deflection 6
and the proper offset d. Beams AB and OC have
masses of 72 kg and 50 kg, respectively. The mass
center of beam OC has a y-coordinate of 725 mm.

Problem 3/75

3/76 The large bracket is constructed of heavy plate

which has a mass p per unit area. Determine the
force and moment reactions at the support bolt at O.

Problem 3/76

3/77 A uniform steel ring 60 in. in diameter and weigh-

ing 600 Ib is lifted by the three cables, each 50 in.
long, attached at points A, B, and C as shown. Com-
pute the tension in each cable.

Problem 3/77
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Representative Problems

3/78

The three-wheel truck is used to carry the 100-kg
box as shown. Calculate the changes in the normal
force reactions at the three wheels due to the weight
of the box.

3/79

3/80

Problem 3/78

The square steel plate has a mass of 1800 kg with
mass center at its center G. Calculate the tension in
each of the three cables with which the plate is
lifted while remaining horizontal.

Problem 3/79

The two uniform rectangular plates each weighing
800 lb are freely hinged about their common edge
and suspended by the central cable and four sym-
metrical corner cables. Calculate the tension 7' in
each of the corner cables and the tension T in the
center cable.

N

Problem 3/80

3/81 The smooth homogeneous sphere rests in the 120°
groove and bears against the end plate, which is
normal to the direction of the groove. Determine the
angle 0, measured from the horizontal, for which
the reaction on each side of the groove equals the
force supported by the end plate.

of V-groove

—————— Horizontal

Problem 3/81
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3/82 Because of a combination of soil support conditions

and the tension in the single power cable, the utility
pole has developed the indicated 5° lean. The 9-m
uniform pole has a mass per unit length of 25 kg/m,
and the tension in the power cable is 900 N. Deter-
mine the reactions at the base O. Note that the
power cable lies in a vertical plane parallel to the x-z
plane.

Problem 3/82

3/83 As part of a check on its design, a lower A-arm (part

of an automobile suspension) is supported by bear-
ings at A and B and subjected to the pair of 900-N
forces at C and D. The suspension spring, not shown
for clarity, exerts a force Fg at E as shown, where E
is in plane ABCD. Determine the magnitude Fg of
the spring force and the magnitudes F4 and Fy of
the bearing forces at A and B which are perpendicu-
lar to the hinge axis AB.

900 N

Problem 3/83

3/84

3/85

377

A smooth homogeneous sphere of mass m and ra-
dius r is suspended by a wire AB of length 2r from
point B on the line of intersection of the two smooth
vertical walls at right angles to one another. Deter-
mine the reaction R of each wall against the sphere.

2r

Problem 3/84

A rider holds her bicycle at the 10° angle shown by
exerting a force perpendicular to the plane of the bi-
cycle frame. If friction at A and B is sufficient to
prevent lateral slippage, determine the force exerted
by the rider on the seat, the upward normal forces
at A and B, and the lateral friction forces at A and
B. Even though the bicycle is free to roll, assume
that it does not. The bicycle weighs 29 b with cen-
ter of gravity at G.

vertical

Problem 3/85
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3/86 The 100-Ib uniform square plate is supported by a

ball-and-socket joint at O, a cable at E, a fixture at A
which can support vertical force only, and a linear
spring at C. If the unstretched length of the spring
is 6 in., determine the spring constant & required for
equilibrium in the position shown.

z
g
\

\

Problem 3/86

3/87 During a test, the left engine of the twin-engine air-
plane is revved up and a 2-kN thrust is generated.
The main wheels at B and C are braked in order to
prevent motion. Determine the change (compared
with the nominal values with both engines off) in
the normal reaction forces at A, B, and C.

Problem 3/87

3/88 The uniform 15-kg plate is welded to the vertical

shaft, which is supported by bearings A and B.
Calculate the magnitude of the force supported by
bearing B during application of the 120-N-m couple
to the shaft. The cable from C to D prevents the
plate and shaft from turning, and the weight of the
assembly is carried entirely by bearing A.

400 mm

Problem 3/88

3/89 The uniform panel door weighs 60 lb and is pre-

vented from opening by the strut C, which is a light
two-force member whose upper end is secured
under the door knob and whose lower end is at-
tached to a rubber cup which does not slip on the
floor. Of the door hinges A and B, only B can sup-
port force in the vertical z-direction. Calculate the
compression C in the strut and the horizontal com-
ponents of the forces supported by hinges A and B
when a horizontal force P = 50 1b is applied normal
to the plane of the door as shown.

f

z

P\‘r‘/

48"

=

A

40”

40"

Problem 3/89
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3/90 The spring of modulus 2 = 900 N/m is stretched a
distance § = 60 mm when the mechanism is in the
position shown. Calculate the force P, ;, required to
initiate rotation about the hinge axis BC, and deter-
mine the corresponding magnitudes of the bearing
forces which are perpendicular to BC. What is the
normal reaction force at D if P = P ; /2?7

55 mm

Problem 3/90

3/91 Determine the forces on the bearings A and B if a
30-Ib force on the crank is required to maintain
equilibrium of the crankshaft of a single-cylinder
engine against a compression in the 10-in. connect-
ing rod in the direction CD.

Problem 3/91

3/92 Consider the rudder assembly of a radio-controlled
model airplane. For the 15° position shown in the
figure, the net pressure acting on the left side of the
rectangular rudder area is p = 4(10~%) N/mm?2. De-
termine the required force P in the control rod DE
and the horizontal components of the reactions at
hinges A and B which are parallel to the rudder sur-
face. Assume the aerodynamic pressure to be uni-
form.

Dimensions in
millimeters

Problem 3/92

3/93 The uniform 30- by 40-in. trap door weighs 200 lb
and is propped open by the light strut AB at the
angle § = tan~! (4/3). Calculate the compression Fg
in the strut and the force supported by the hinge D
normal to the hinge axis. Assume that the hinges
act at the extreme ends of the lower edge.

RPN

Problem 3/93
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»>3/94

»3/95

Under the action of the 40-N-m torque (couple)
applied to the vertical shaft, the restraining cable
AC limits the rotation of the arm OA and attached
shaft to an angle of 60° measured from the y-axis.
The collar D fastened to the shaft prevents down-
ward motion of the shaft in its bearing. Calculate
the bending moment M, the compression P, and the
shear force V in the shaft at section B. (Note: Bend-
ing moment, expressed as a vector, is normal to the
shaft axis, and shear force is also normal to the
shaft axis.)

180 mm

Problem 3/94

The electric sander has a mass of 3 kg with mass
center at G and is held in a slightly tilted position
(z-axis vertical) so that the sanding disk makes con-
tact at its top A with the surface being sanded. The
sander is gripped by its handles at B and C. If the
normal force R against the disk is maintained at
20 N and is due entirely to the force component B,
(i.e., C, = 0), and if the friction force F' acting on the
disk is 60 percent of R, determine the components
of the couple M which must be applied to the handle
at C to hold the sander in position. Assume that half
of the weight is supported at C.

mm

Problem 3/95

»3/96 The uniform rectangular panel ABCD has a mass of

40 kg and is hinged at its corners A and B to the
fixed vertical surface. A wire from E to D keeps
edges BC and AD horizontal. Hinge A can support
thrust along the hinge axis AB, whereas hinge B
supports force normal to the hinge axis only. Find
the tension T' in the wire and the magnitude B of
the force supported by hinge B.

1200 mm B
&

2400 mm

D

Problem 3/96
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»3/97 The portable reel is used to wind up and store an air »3/98 The vertical plane containing the utility cable turns

hose. The tension in the hose is 100 N and a vertical
200-N force is applied to the handle in order to
steady the reel frame. Determine the minimum
force P which must be applied perpendicular to the
handle DE and the vertical components of the force
reactions at the feet A, B, and C. The diameter of
the coil of reeled hose is 300 mm, and the weight of
the loaded reel and its frame may be neglected. Note
that force P is perpendicular to OD. State any
assumptions.

375
B/

500 —
\/ OD = 300 mm

Dimensions in millimeters

Problem 3/97

30° at the vertical pole OC. The tensions T and T,
are both 950 N. In order to prevent long-term lean-
ing of the pole, guy wires AD and BE are utilized. If
the two guy wires are adjusted so as to carry equal
tensions T which together reduce the moment at O
to zero, determine the net horizontal reaction at O.
Determine the required value of T. Neglect the
weight of the pole.

OA = 9m OD = 8m
11m OE = 10m
13 m

SIS
L} I

Problem 3/98
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3/5 Chapter Review

In Chapter 3 we have applied our knowledge of the properties of
forces, moments, and couples studied in Chapter 2 to solve problems in-
volving rigid bodies in equilibrium. Complete equilibrium of a body re-
quires that the vector resultant of all forces acting on it be zero (XF = 0)
and the vector resultant of all moments on the body about a point (or
axis) also be zero (XM = 0). We are guided in all of our solutions by
these two requirements, which are easily comprehended physically.

Frequently, it is not the theory but its application which presents
difficulty. The crucial steps in applying our principles of equilibrium
should be quite familiar by now. They are:

1. Make an unequivocal decision as to which system (a body or collec-
tion of bodies) in equilibrium is to be analyzed.

2. Isolate the system in question from all contacting bodies by drawing
its free-body diagram showing all forces and couples acting on the
isolated system from external sources.

3. Observe the principle of action and reaction (Newton’s third law)
when assigning the sense of each force.

4. Label all forces and couples, known and unknown.

5. Choose and label reference axes, always choosing a right-handed set
when vector notation is used (which is usually the case for three-
dimensional analysis).

6. Check the adequacy of the constraints (supports) and match the
number of unknowns with the number of available independent
equations of equilibrium.

When solving an equilibrium problem, we should first check to see
that the body is statically determinate. If there are more supports than
are necessary to hold the body in place, the body is statically indetermi-
nate, and the equations of equilibrium by themselves will not enable us
to solve for all of the external reactions. In applying the equations of
equilibrium, we choose scalar algebra, vector algebra, or graphical
analysis according to both preference and experience; vector algebra is
particularly useful for many three-dimensional problems.

The algebra of a solution can be simplified by the choice of a mo-
ment axis which eliminates as many unknowns as possible or by the
choice of a direction for a force summation which avoids reference to
certain unknowns. A few moments of thought to take advantage of
these simplifications can save appreciable time and effort.

The principles and methods covered in Chapter 2 and 3 constitute
the most basic part of statics. They lay the foundation for what follows
not only in statics but in dynamics as well.
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REVIEW PROBLEMS

3/99 The pin at O can support a maximum force of 3.5
kN. What is the corresponding maximum load L
which can be applied to the angled bracket AOB?

\ 4

Problem 3/101

3/102 The device shown in the figure is useful for lifting
drywall panels into position prior to fastening to
the stud wall. Estimate the magnitude P of the
force required to lift the 25-kg panel. State any as-
sumptions.

Problem 3/99

3/100 The light bracket ABC is freely hinged at A and is
constrained by the fixed pin in the smooth slot at
B. Calculate the magnitude R of the force sup-
ported by the pin at A under the action of the 80-

N-m applied couple.
| 25kg P

C

B
L—QO mmHFGO mm>l

36 mm

>

200

Problem 3/102

Problem 3/100

3/103 The tool shown is used for straightening twisted

3/101 The uniform bar with end rollers weighs 60 1b and members as WOf)den fljaming is completed. If the
is supported by the horizontal and vertical sur- force P = 30 b is applied to the har~1d1e as shovx.fn,
faces and by the wire AC. Calculate the tension T' determine the normal forces applied to the in-
in the wire and the reactions against the rollers at stalled stud at points A and B. Ignore friction.

A and at B.
| 3.35"

A
!

‘ 14.5”

Problem 3/103
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3/104 Determine a general expression for the normal
force N, exerted by the smooth vertical wall on the
uniform slender bar of mass m and length L. The
mass of the cylinder is m;, and all bearings are
ideal. Determine the value of m; which makes (a)
N, =mg/2 and (b) Ny =0.

Problem 3/104

3/105 The gear reducer shown is acted on by the two cou-
ples and its weight of 200 N. To design adequate
mounts, determine the vertical force supported by
each of the reducer mountings at A and B.

120 N-m

150 mm —
A B
200 N

Problem 3/105

3/106 If the weight of the boom is negligible compared
with the applied 30-kN load, determine the cable
tensions T'; and Ty and the force acting at the ball
joint at A.

30 kN

Problem 3/106

3/107 The power unit of the post-hole digger supplies a
torque of 4000 lb-in. to the auger. The arm B is
free to slide in the supporting sleeve C but is not
free to rotate about the horizontal axis of C. If the
unit is free to swivel about the vertical axis of
the mount D, determine the force exerted against
the right rear wheel by the block A (or A’), which
prevents the unbraked truck from rolling. (Hint:
View the system from above.)

Problem 3/107
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AC support a power line which lies in the vertical
y-z plane. The tangents to the power line at the in-
sulator below A make 15° angles with the horizon- s
tal y-axis. If the tension in the power line at the OC B O’ ‘
insulator is 1.3 kN, calculate the total force sup-

ported by the bolt at D on the pole bracket. The
weight of the arm BC can be neglected compared
with the other forces, and it can be assumed that
the bolt at E supports horizontal force only. 120 mm

3/108 The curved arm BC and attached cables AB and
o0 .

U

i
3
=]
2

Problem 3/109

3/110 A large symmetrical drum for drying sand is oper-
ated by the geared motor drive shown. If the mass
of the sand is 750 kg and an average gear-tooth
force of 2.6 kN is supplied by the motor pinion A to
the drum gear normal to the contacting surfaces at
B, calculate the average offset x of the center of
mass G of the sand from the vertical centerline.
Neglect all friction in the supporting rollers.

Detail of contact
at B

Detail of arm attachment

Problem 3/108

3/109 The pulley bracket is secured to its foundation by
two bolts B and two bolts C with an initial tension
in each of the four bolts prior to application of the
500-N tension in the cable. Determine the increase Problem 3/110
AT in tension in each of the bolts C and the in-
crease AF in force under each side of the bracket
at B resulting from application of the cable ten-
sion. Assume that the bolt holes are oversized with
all horizontal force supported by the small ledge at
A. Also assume that the vertical reactions on the
base are concentrated at the centerlines of the
bolts. These assumptions would be typical design
considerations.
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3/111 Each of the three uniform 1200-mm bars has a
mass of 20 kg. The bars are welded together into
the configuration shown and suspended by three
vertical wires. Bars AB and BC lie in the horizon-
tal x-y plane, and the third bar lies in a plane par-
allel to the x-z plane. Compute the tension in each
wire.

Problem 3/111

3/112 Determine the tension T required to hold the rec-

tangular solid in the position shown. The 125-kg
rectangular solid is homogeneous. Friction at D is
negligible.

Problem 3/112

3/113 A type of small, adjustable doorstop which fits onto
hinge pins is shown in the figure. The door is
shown closed in the regular view and open 90° in
the enlarged view of the doorstop. If a person pulls
on the doorknob with a 1-Ib force P which is per-
pendicular to the door when it is in the 90° open
position, determine the force F, which the bumper
A exerts on the wall. Treat this problem as two-
dimensional.

-

[l

_“
i ‘
l 27”

Problem 3/113

3/114 Three identical steel balls, each of mass m, are
placed in the cylindrical ring which rests on a hori-
zontal surface and whose height is slightly greater
than the radius of the balls. The diameter of the
ring is such that the balls are virtually touching
one another. A fourth identical ball is then placed
on top of the three balls. Determine the force P ex-
erted by the ring on each of the three lower balls.

Problem 3/114
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3/115 A vertical force P on the foot pedal of the bell
crank is required to produce a tension T of 400 N
in the vertical control rod. Determine the corre-
sponding bearing reactions at A and B.

200 mm

T=400N

Problem 3/115

»3/116 We will see when we study friction in Chapter 6

that a very large force T' can be required to raise
the 10-kg body when the cable is wound around a
fixed rough cylinder as shown. For the static-equi-
librium values shown, determine the force and mo-
ment reactions at point O. The 0.3-m dimension
refers to the point A where the cable loses contact
with the cylinder. Neglect the weight of the fixed
cylinder.

Problem 3/116

*3/117

*3/118

*Computer-Oriented Problems

Determine and plot the tension ratio T/mg re-
quired to hold the uniform slender bar in equilib-
rium for any angle 6 from just above zero to just
under 45°. The bar AB of mass m is uniform.

Problem 3/117

Determine and plot as a function of 6 the tension T'
which must be produced by the winch in order to
steadily rotate the structural member about the
fixed pivot at O. Use the range 0 =< 0 = 0, ., where
Omax 18 the value of 6 at which T goes to zero. The
structural member has a mass of 35 kg per meter
of its length.

—an—

Problem 3/118
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*3/119 The jib crane is designed for a maximum capacity
of 10 kN, and its uniform I-beam has a mass of 200
kg. (@) Plot the magnitude R of the force on the pin
at A as a function of x through its operating range
of x = 0.2 m tox = 3.8 m. On the same set of axes,
plot the x- and y-components of the pin reaction at
A. (b) Determine the minimum value of R and the
corresponding value of x. (¢) For what value of R
should the pin at A be designed? (Use g = 10 m/s2.)

y

!

\

30° Al
& c 2 | L———x

X
10 kN
1m— 3m

Problem 3/119

*3/120 The 50-kg cylinder is suspended from a clamping
collar at C which can be positioned at any horizon-
tal position x between the fixed supports at A and
B. The cable is 11 m in length. Determine and plot
the tensions in cable segments AC and BC as func-
tions of x over the interval 0 = x = 10 m. What is
the maximum value of each tension and for what
value of x does it occur?

50 kg

Problem 3/120

*3/121 Two traffic signals are attached to the 36-ft sup-
port cable at equal intervals as shown. Determine
the equilibrium configuration angles «, B, and v, as
well as the tension in each cable segment

| 35’ i

100 Ib

Problem 3/121

*3/122 The two traffic signals of Prob. 3/121 are now repo-
sitioned so that segment BC of the 36-ft support
cable is 10 ft in length and is horizontal. Specify
the necessary lengths AB and CD and the tensions
in all three cable segments.

| 35’ |

100 Ib 200 1b

Problem 3/122
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*3/123 The mass center of the 1.5-kg link OC is located at
G, and the spring of constant £ = 25 N/m is un-
stretched when 6 = 0. Plot the tension T required
for static equilibrium over the range 0 < 6 = 90°
and state the values of T for § = 45° and 6 = 90°.

34”

Problem 3/124

*3/125 The system of Prob. 3/112 is shown again here,
only now the 125-kg homogeneous rectangular
solid is depicted as having rotated an angle 6 about
the hinge axis AB. Determine and plot the follow-
ing quantities as functions of 6 over the range
0=0=60"T,A,A, B, B, and B,. The hinge at

OG = 160 mm

OB = BC = 240 mm A cannot exert an axial thrust. Assume all hinge
force components to be in the positive coordinate
directions.

Problem 3/123

*3/124 The basic features of a small backhoe are shown in
the illustration. Member BE (complete with hy-
draulic cylinder CD and bucket-control links DF
and DE) weighs 500 1b with mass center at G;. The
bucket and its load of clay weigh 350 1b with mass
center at Gy. To disclose the operational design
characteristics of the backhoe, determine and plot
the force T in the hydraulic cylinder AB as a func-
tion of the angular position 6 of member BE over
the range 0 = 6 = 90°. For what value of 6 is the
force T equal to zero? Member OH is fixed for this
exercise; note that its controlling hydraulic cylin-
der (hidden) extends from near point O to pin I.
Similarly, the bucket-control hydraulic cylinder Problem 3/125
CD is held at a fixed length.
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*3/126 The vertical pole, utility cable, and two guy wires
from Prob. 3/98 are shown again here. As part of a
design study, the following conditions are consid-
ered. The tension T, is a constant 1000 N, and its
10° angle is fixed. The 10° angle for T is also fixed,
but the magnitude of T'; is allowed to vary from 0
to 2000 N. For each value of T;, determine and
plot the magnitude of the equal tensions T in ca-
bles AD and BE and the angle 0 for which the mo-
ment at O will be zero. State the values of T and 60

for T, = 1000 N.

OA = 9m OD = 8m
OB=11m OE = 10m
OC = 13m

Problem 3/126




This view of Sydney Harbour shows a variety of structures. In all cases, the engineers had to calculate the
force supported by each major component of the overall structure.

© Yann Guichaoua/SuperStock




Structures

CHAPTER OUTLINE

4/1 Introduction 4/5 Space Trusses

4/2 Plane Trusses 4/6 Frames and Machines
4/3 Method of Joints 4/7 Chapter Review

4/4 Method of Sections

4/1 Introduction

In Chapter 3 we studied the equilibrium of a single rigid body or a
system of connected members treated as a single rigid body. We first
drew a free-body diagram of the body showing all forces external to
the isolated body and then we applied the force and moment equa-
tions of equilibrium. In Chapter 4 we focus on the determination of
the forces internal to a structure—that is, forces of action and reaction
between the connected members. An engineering structure is any
connected system of members built to support or transfer forces and
to safely withstand the loads applied to it. To determine the forces in-
ternal to an engineering structure, we must dismember the structure
and analyze separate free-body diagrams of individual members or
combinations of members. This analysis requires careful application
of Newton’s third law, which states that each action is accompanied
by an equal and opposite reaction.

In Chapter 4 we analyze the internal forces acting in several types
of structures—namely, trusses, frames, and machines. In this treatment
we consider only statically determinate structures, which do not have
more supporting constraints than are necessary to maintain an equilib-
rium configuration. Thus, as we have already seen, the equations of
equilibrium are adequate to determine all unknown reactions.

The analysis of trusses, frames and machines, and beams under
concentrated loads constitutes a straightforward application of the ma-
terial developed in the previous two chapters. The basic procedure de-
veloped in Chapter 3 for isolating a body by constructing a correct
free-body diagram is essential for the analysis of statically determinate
structures.

173
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4/2 Plane Trusses

A framework composed of members joined at their ends to form a
rigid structure is called a #russ. Bridges, roof supports, derricks, and
other such structures are common examples of trusses. Structural mem-
bers commonly used are I-beams, channels, angles, bars, and special
shapes which are fastened together at their ends by welding, riveted
connections, or large bolts or pins. When the members of the truss lie
essentially in a single plane, the truss is called a plane truss.

For bridges and similar structures, plane trusses are commonly uti-
lized in pairs with one truss assembly placed on each side of the struc-
ture. A section of a typical bridge structure is shown in Fig. 4/1. The
combined weight of the roadway and vehicles is transferred to the longi-
tudinal stringers, then to the cross beams, and finally, with the weights
of the stringers and cross beams accounted for, to the upper joints of the
two plane trusses which form the vertical sides of the structure. A sim-
plified model of the truss structure is indicated at the left side of the il-
lustration; the forces L represent the joint loadings.

Several examples of commonly used trusses which can be analyzed
as plane trusses are shown in Fig. 4/2.

Simple Trusses

The basic element of a plane truss is the triangle. Three bars joined
by pins at their ends, Fig. 4/3a, constitute a rigid frame. The term rigid
is used to mean noncollapsible and also to mean that deformation of the
members due to induced internal strains is negligible. On the other
hand, four or more bars pin-jointed to form a polygon of as many sides
constitute a nonrigid frame. We can make the nonrigid frame in Fig.
4/3b rigid, or stable, by adding a diagonal bar joining A and D or B and C
and thereby forming two triangles. We can extend the structure by
adding additional units of two end-connected bars, such as DE and CE
or AF and DF, Fig. 4/3c, which are pinned to two fixed joints. In this
way the entire structure will remain rigid.

Structures built from a basic triangle in the manner described are
known as simple trusses. When more members are present than are
needed to prevent collapse, the truss is statically indeterminate. A stati-
cally indeterminate truss cannot be analyzed by the equations of equi-
librium alone. Additional members or supports which are not necessary
for maintaining the equilibrium configuration are called redundant.

To design a truss we must first determine the forces in the various
members and then select appropriate sizes and structural shapes to
withstand the forces. Several assumptions are made in the force analy-
sis of simple trusses. First, we assume all members to be two-force mem-
bers. A two-force member is one in equilibrium under the action of two
forces only, as defined in general terms with Fig. 3/4 in Art. 3/3. Each
member of a truss is normally a straight link joining the two points of
application of force. The two forces are applied at the ends of the mem-
ber and are necessarily equal, opposite, and collinear for equilibrium.

The member may be in tension or compression, as shown in Fig.
4/4. When we represent the equilibrium of a portion of a two-force mem-
ber, the tension T or compression C acting on the cut section is the same

(©)
Figure 4/3

T
C
T
C
C C
T T

Tension

Compression

Two-Force Members

Figure 4/4
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for all sections. We assume here that the weight of the member is small
compared with the force it supports. If it is not, or if we must account
for the small effect of the weight, we can replace the weight W of the
member by two forces, each W/2 if the member is uniform, with one
force acting at each end of the member. These forces, in effect, are
treated as loads externally applied to the pin connections. Accounting
for the weight of a member in this way gives the correct result for the
average tension or compression along the member but will not account
for the effect of bending of the member.

Truss Connections and Supports

When welded or riveted connections are used to join structural
members, we may usually assume that the connection is a pin joint if
the centerlines of the members are concurrent at the joint as in Fig. 4/5.

We also assume in the analysis of simple trusses that all external
forces are applied at the pin connections. This condition is satisfied in
most trusses. In bridge trusses the deck is usually laid on cross beams
which are supported at the joints, as shown in Fig. 4/1.

For large trusses, a roller, rocker, or some kind of slip joint is used
at one of the supports to provide for expansion and contraction due to
temperature changes and for deformation from applied loads. Trusses
and frames in which no such provision is made are statically indetermi-
nate, as explained in Art. 3/3. Figure 3/1 shows examples of such joints.

Two methods for the force analysis of simple trusses will be given.
Each method will be explained for the simple truss shown in Fig. 4/6a.
The free-body diagram of the truss as a whole is shown in Fig. 4/6b. The
external reactions are usually determined first, by applying the equilib-
rium equations to the truss as a whole. Then the force analysis of the re-
mainder of the truss is performed.

4/3 Method of Joints

This method for finding the forces in the members of a truss con-
sists of satisfying the conditions of equilibrium for the forces acting on
the connecting pin of each joint. The method therefore deals with the
equilibrium of concurrent forces, and only two independent equilibrium
equations are involved.

We begin the analysis with any joint where at least one known load
exists and where not more than two unknown forces are present. The
solution may be started with the pin at the left end. Its free-body dia-
gram is shown in Fig. 4/7. With the joints indicated by letters, we usu-
ally designate the force in each member by the two letters defining the
ends of the member. The proper directions of the forces should be evi-
dent by inspection for this simple case. The free-body diagrams of por-
tions of members AF and AB are also shown to clearly indicate the
mechanism of the action and reaction. The member AB actually makes
contact on the left side of the pin, although the force AB is drawn from
the right side and is shown acting away from the pin. Thus, if we consis-
tently draw the force arrows on the same side of the pin as the member,
then tension (such as AB) will always be indicated by an arrow away
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from the pin, and compression (such as AF) will always be indicated by
an arrow toward the pin. The magnitude of AF is obtained from the
equation XF, = 0 and AB is then found from XF, = 0.

Joint F' may be analyzed next, since it now contains only two un-
knowns, EF and BF. Proceeding to the next joint having no more than
two unknowns, we subsequently analyze joints B, C, E, and D in that
order. Figure 4/8 shows the free-body diagram of each joint and its cor-
responding force polygon, which represents graphically the two equilib-
rium conditions XF, = 0 and ZF, = 0. The numbers indicate the order in
which the joints are analyzed. We note that, when joint D is finally
reached, the computed reaction R, must be in equilibrium with the
forces in members CD and ED, which were determined previously from
the two neighboring joints. This requirement provides a check on the
correctness of our work. Note that isolation of joint C shows that the
force in CE is zero when the equation XF, = 0 is applied. The force in

1 AF 2 EF EF
BF
AF AF
- . /I V
AF BF
AB Joint F'
4 CE=0
R,
Joint A BC CD
3 Joint C
BF BC 5
BE EF
BE 7 N\ BEi EDE
DE
AB f BC
—E— L BE EF
BF Joint E
6 DE
AB cD
CD
R
L R, DN 2
Joint B Joint D
F E
y
\
|
A D L———x
BJ/ C
R, L R,

Figure 4/8

This New York City bridge structure
suggests that members of a simple
truss need not be straight.

© STéphen WiIkes/THe I-moge Bcnk/GéTTy Images
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The New River Gorge Bridge in West
Virginia is the longest arch bridge in
the United States.

this member would not be zero, of course, if an external vertical load
were applied at C.

It is often convenient to indicate the tension 7" and compression C of
the various members directly on the original truss diagram by drawing
arrows away from the pins for tension and toward the pins for compres-
sion. This designation is illustrated at the bottom of Fig. 4/8.

Sometimes we cannot initially assign the correct direction of one or
both of the unknown forces acting on a given pin. If so, we may make an
arbitrary assignment. A negative computed force value indicates that
the initially assumed direction is incorrect.

Internal and External Redundancy

If a plane truss has more external supports than are necessary to
ensure a stable equilibrium configuration, the truss as a whole is stati-
cally indeterminate, and the extra supports constitute external redun-
dancy. If a truss has more internal members than are necessary to
prevent collapse when the truss is removed from its supports, then the
extra members constitute internal redundancy and the truss is again
statically indeterminate.

For a truss which is statically determinate externally, there is a def-
inite relation between the number of its members and the number of its
joints necessary for internal stability without redundancy. Because we
can specify the equilibrium of each joint by two scalar force equations,
there are in all 2j such equations for a truss with j joints. For the entire
truss composed of m two-force members and having the maximum of
three unknown support reactions, there are in all m + 3 unknowns (m
tension or compression forces and three reactions). Thus, for any plane
truss, the equation m + 3 = 2j will be satisfied if the truss is statically
determinate internally.

A simple plane truss, formed by starting with a triangle and adding
two new members to locate each new joint with respect to the existing
structure, satisfies the relation automatically. The condition holds for
the initial triangle, where m = j = 3, and m increases by 2 for each
added joint while j increases by 1. Some other (nonsimple) statically de-
terminate trusses, such as the K-truss in Fig. 4/2, are arranged differ-
ently, but can be seen to satisfy the same relation.

This equation is a necessary condition for stability but it is not a
sufficient condition, since one or more of the m members can be
arranged in such a way as not to contribute to a stable configuration of
the entire truss. If m + 3 > 2j, there are more members than indepen-
dent equations, and the truss is statically indeterminate internally
with redundant members present. If m + 3 < 2j, there is a deficiency
of internal members, and the truss is unstable and will collapse under
load.

Special Conditions

We often encounter several special conditions in the analysis
of trusses. When two collinear members are under compression, as indi-
cated in Fig. 4/9a, it is necessary to add a third member to maintain
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XF, = 0 requires F; =0
XF, = 0 requires Fp =0

XF, = 0 requires F3 =0 7
/ XF, = 0 requires F| = Fy 2
Fy

(@) (b)

Figure 4/9

alignment of the two members and prevent buckling. We see from a
force summation in the y-direction that the force F3 in the third mem-
ber must be zero and from the x-direction that F; = Fy. This conclusion
holds regardless of the angle 6 and holds also if the collinear members
are in tension. If an external force with a component in the y-direction
were applied to the joint, then F5 would no longer be zero.

When two noncollinear members are joined as shown in Fig. 4/9b,
then in the absence of an externally applied load at this joint, the
forces in both members must be zero, as we can see from the two force
summations.

When two pairs of collinear members are joined as shown in Fig.
4/9¢, the forces in each pair must be equal and opposite. This conclusion
follows from the force summations indicated in the figure.

Truss panels are frequently cross-braced as shown in Fig. 4/10a.
Such a panel is statically indeterminate if each brace can support ei-
ther tension or compression. However, when the braces are flexible
members incapable of supporting compression, as are cables, then only
the tension member acts and we can disregard the other member. It is
usually evident from the asymmetry of the loading how the panel will
deflect. If the deflection is as indicated in Fig. 4/10b, then member AB
should be retained and CD disregarded. When this choice cannot be
made by inspection, we may arbitrarily select the member to be re-
tained. If the assumed tension turns out to be positive upon calcula-
tion, then the choice was correct. If the assumed tension force turns
out to be negative, then the opposite member must be retained and
the calculation redone.

We can avoid simultaneous solution of the equilibrium equations for
two unknown forces at a joint by a careful choice of reference axes.
Thus, for the joint indicated schematically in Fig. 4/11 where L is known
and F; and Fy are unknown, a force summation in the x-direction elimi-
nates reference to F'; and a force summation in the x'-direction elimi-
nates reference to Fy. When the angles involved are not easily found,
then a simultaneous solution of the equations using one set of reference
directions for both unknowns may be preferable.

b

(@)

(®)

Figure 4/10

Figure 4/11

XF, = 0 requires F| = F,
XF,. = 0 requires F3 = F}
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SAMPLE PROBLEM 4/1

Compute the force in each member of the loaded cantilever truss by the
method of joints.

Solution. 1If it were not desired to calculate the external reactions at D and E,
the analysis for a cantilever truss could begin with the joint at the loaded end.
However, this truss will be analyzed completely, so the first step will be to com-
pute the external forces at D and E from the free-body diagram of the truss as a
whole. The equations of equilibrium give

[ZM; = 0] 5T — 20(5) — 30(10) = 0 T = 80 kN
[2F, = 0] 80 cos 30° — E, = 0 E, = 69.3kN
[ZF, = 0] 80 sin 30° + E, — 20 — 30 = 0 E, = 10kN

Next we draw free-body diagrams showing the forces acting on each of the
connecting pins. The correctness of the assigned directions of the forces is veri-
fied when each joint is considered in sequence. There should be no question
about the correct direction of the forces on joint A. Equilibrium requires

[XF, = 0] 0.866AB — 30 =0 AB=346KkNT Ans.
[XF, = 0] AC - 0.5(34.6) =0 AC =1732kNC Ans.

where T stands for tension and C stands for compression.

Joint B must be analyzed next, since there are more than two unknown
forces on joint C. The force BC must provide an upward component, in which
case BD must balance the force to the left. Again the forces are obtained from

[XF, = 0] 0.866BC — 0.866(34.6) = 0 BC =346kNC Ans.
[XF, = 0] BD — 2(0.5)(34.6) = 0 BD =346kNT Ans.

Joint C now contains only two unknowns, and these are found in the same
way as before:

[XF, = 0] 0.866CD — 0.866(34.6) — 20 = 0

CD =577kNT Ans.
[XF, = 0] CE — 17.32 — 0.5(34.6) — 0.5(57.7) = 0

CE =635kNC Ans.

Finally, from joint E there results

[ZF, = 0] 0.866DE = 10 DE = 11.55kN C Ans.

and the equation XF, = 0 checks.
Note that the weights of the truss members have been neglected in compari-
son with the external loads.

y
| AB
\
\
|/ 60° AC BD

- ——x

AB = 600
34.6 kN /0
BC
30 kN
Joint A Joint B
Helpful Hint

@ 1t should be stressed that the ten-
sion/compression designation refers
to the member, not the joint. Note
that we draw the force arrow on the
same side of the joint as the member
which exerts the force. In this way
tension (arrow away from the joint)
is distinguished from compression
(arrow toward the joint).

BC =
34.6 kN

cD DE
GMO eox( 69.3 kN
AC = 1 CE CE-= T
17.32 kN 63.5 kN
10 kN

20 kN

Joint C Joint E
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SAMPLE PROBLEM 4/2

The simple truss shown supports the two loads, each of magnitude L. Deter-
mine the forces in members DE, DF, DG, and CD.

Solution. First of all, we note that the curved members of this simple truss
are all two-force members, so that the effect of each curved member within the
truss is the same as that of a straight member.

We can begin with joint E because there are only two unknown member
forces acting there. With reference to the free-body diagram and accompanying
geometry for joint E, we note that 8 = 180° — 11.25° — 90° = 78.8°.

[XF, = 0] DE sin 78.8° — L =0 DE =1.020L T Ans.
[XF, = 0] EF — DE cos 78.8° =0 EF = 0.1989L C

We must now move to joint F, as there are still three unknown members at joint
D. From the geometric diagram,

_ 1 2R sin 22.5° _ o
Y= tan [21% cos 22.5° —R| ‘21

From the free-body diagram of joint F,

[XF, = 0] —GF cos 67.5° + DF cos 42.1° — 0.1989L = 0
[XF, = 0] GF sin 67.5° + DF sin42.1° —= L =0 Helpful Hint

Simultaneous solution of these two equations yields @ Rather than caleulate and use the

angle B = 78.8° in the force equa-
tions, we could have used the 11.25°
angle directly.

GF = 0.646L T DF = 0.601L T Ans.

For member DG, we move to the free-body diagram of joint D and the accompa-

nying geometry.
_1| 2R cos 22.5° — 2R cos 45°
5 = tan~! —338°
tan [2R sin 45° — 2R sin 22.5‘} 33.8 .
2R
_ _1| 2R sin 22.5° — R sin 45° — 9.99°
€= tan |:2R cos 22.5° — R cos 45° 9 ! o
F E
Then from joint D: OF=FE=R

[XF, = 0] —DG cos 2.92° — CD sin 33.8° — 0.601L sin 47.9° + 1.020L cos 78.8° = 0
[EF, = 0] —DG sin 2.92° + CD cos 33.8° — 0.601L cos 47.9° — 1.020L sin 78.8° = 0

The simultaneous solution is

CD=1617LT DG = —1.147L or DG = 1.147L C Ans.

Note that € is shown exaggerated in the accompanying figures.

DF =0.601L pEg =1.020L
Joint D
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PROBLEMS
Introductory Problems

4/1 Determine the force in each member of the loaded
truss.

‘ 12m |

=
N
™

C 100 kg

Problem 4/1

4/2 Determine the force in each member of the loaded
truss.

400 kg

Problem 4/2

4/3 Determine the force in each member of the loaded
truss.

Problem 4/3

4/4 Determine the force in each member of the truss. Note
the presence of any zero-force members.

5 kN
A
‘\ 3m B
1m
’\/D 2m c

Problem 4/4

4/5 Calculate the forces in members AC, AD, and DE for
the loaded truss. Restraining link BC is horizontal.

600 1b

Problem 4/5

4/6 Calculate the force in each member of the loaded
truss.

E D
2 kN
3m
A 3m 3m c
B

Problem 4/6
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4/7 Determine the force in each member of the loaded
truss. Make use of the symmetry of the truss and of

the loading.
B C D
4m
E
A 5m 5m 5m 5m

lH lG lF

30 kN 60 kN 30 kN
Problem 4/7

4/8 Determine the force in each member of the loaded

truss.
A
2m
4m B
D
3m
C
|
5 kN &150
Problem 4/8

4/9 Determine the force in each member of the loaded
truss.

A

D

Problem 4/9

4/10 Calculate the force in each member of the loaded
truss.

| 12/ |

1000 Ib

Problem 4/10

4/11 Determine the forces in members AB, BC, and BD
of the loaded truss.

B

Problem 4/11

Representative Problems

4/12 Determine the force in each member of the loaded
truss. All triangles are isosceles.

D k
Fs,mﬂw N

Problem 4/12
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4/13 Each member of the truss is a uniform 20-ft bar
weighing 400 lb. Calculate the average tension or
compression in each member due to the weights of
the members.

E D

Problem 4/13

4/14 Determine the force in each member of the loaded
truss. All triangles are equilateral.

8 kN

4 kN 2 kN

Problem 4/14

4/15 A drawbridge is being raised by a cable EI. The four
joint loadings shown result from the weight of the
roadway. Determine the forces in members EF, DE,
DF, CD, and FG.

4 kips

2 kips

Problem 4/15

4/16 The rectangular frame is composed of four perim-
eter two-force members and two cables AC and BD
which are incapable of supporting compression.
Determine the forces in all members due to the load
L in position (a) and then in position (b).

L
(@)
B
4d
D 1
Y (b)
L

Problem 4/16

4/17 Determine the force in each member of the truss.

B

a 30°

D \60°

L\,

Problem 4/17

4/18 The equiangular truss is loaded and supported as
shown. Determine the forces in all members in terms
of the horizontal load L.

Problem 4/18



Article 4/3 Problems 185

4/19 Calculate the forces in members AB, BH, and BG.
Members BF and CG are cables which can support
tension only.

4 kN 6 kKN
A 3m \lB 3 m lC 3 m D
60° 60° 60° 60°
H G F E
Problem 4/19

4/20 Calculate the forces in members CF, CG, and EF of
the loaded truss.

/ 2000 1b
E 10

26’

Problem 4/20

4/21 A snow load transfers the forces shown to the upper
joints of a Pratt roof truss. Neglect any horizontal
reactions at the supports and solve for the forces in
all members.

1kN

2m H 2m G 2m F 2m

Problem 4/21

4/22 The loading of Prob. 4/21 is shown applied to a Howe
roof truss. Neglect any horizontal reactions at the
supports and solve for the forces in all members.
Compare with the results of Prob. 4/21.

1kN

2m H 2m G 2m F 2m

Problem 4/22

4/23 A small Ferris wheel is constructed of two identi-
cal trusses, one of which is shown. Member AO is
temporarily removed for replacement. If the
weight of the chairs and structural members
results in a 100-1b load at each joint of the truss
shown, determine the force in each member of the
structure. With member AO replaced, could you
repeat the analysis?

100-1b vertical force on each joint

Problem 4/23
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4/24 Analysis of the wind acting on a small Hawaiian
church, which withstood the 165-mi/hr winds of
Hurricane Iniki in 1992, showed the forces trans-
mitted to each roof truss panel to be as shown.
Treat the structure as a symmetrical simple truss
and neglect any horizontal component of the sup-
port reaction at A. Identify the truss member which
supports the largest force, tension or compression,
and calculate this force.

2450 1b

7000 1b

4550 b

6000 1b

24/ !

Problem 4/24

4/25 Determine the force in each member of the loaded
truss.

Problem 4/25

4/26 The 240-ft structure is used to provide various sup-
port services to launch vehicles prior to liftoff. In a
test, a 10-ton weight is suspended from joints /' and
G, with its weight equally divided between the two
joints. Determine the forces in members GJ and GI.
What would be your path of joint analysis for mem-
bers in the vertical tower, such as AB or KL?

6 sections

—] TIO’
Q o

at 15’

12 sections at 20"

N
DO

-

Problem 4/26

»4/27 Determine the force in member CG of the loaded
truss. Assume that the four external reactions at A,
B, E, and F are equal in magnitude and are directed
perpendicular to the local supporting surface.

L L

Problem 4/27
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»4/28 The tower for a transmission line is modeled by the
truss shown. The crossed members in the center
sections of the truss may be assumed to be capable
of supporting tension only. For the loads of 1.8 kN
applied in the vertical plane, compute the forces
induced in members AB, DB, and CD.

r— 5 panels at 3 m —ﬁ
H 1 J D E A

Problem 4/28

»4/29 Find the forces in members EF, KL, and GL for the
Fink truss shown.

F— 6 panels at 5 m —)‘

Problem 4/29

» 4/30 Determine the force in member CM of the loaded
truss.

€4m9€4m#4m#4m#4m9€4m9
D_E F

Arc of radius 16 m
Arc of radius 18 m

Problem 4/30
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Y

\

|
L_—x

(®)

Figure 4/12

R,

4/4 Method of Sections

When analyzing plane trusses by the method of joints, we need only
two of the three equilibrium equations because the procedures involve
concurrent forces at each joint. We can take advantage of the third or
moment equation of equilibrium by selecting an entire section of the
truss for the free body in equilibrium under the action of a nonconcur-
rent system of forces. This method of sections has the basic advantage
that the force in almost any desired member may be found directly from
an analysis of a section which has cut that member. Thus, it is not nec-
essary to proceed with the calculation from joint to joint until the mem-
ber in question has been reached. In choosing a section of the truss, we
note that, in general, not more than three members whose forces are
unknown should be cut, since there are only three available indepen-
dent equilibrium relations.

Illustration of the Method

The method of sections will now be illustrated for the truss in Fig.
4/6, which was used in the explanation of the method of joints. The truss
is shown again in Fig. 4/12a for ready reference. The external reactions
are first computed as with the method of joints, by considering the truss
as a whole.

Let us determine the force in the member BE, for example. An
imaginary section, indicated by the dashed line, is passed through the
truss, cutting it into two parts, Fig. 4/12b. This section has cut three
members whose forces are initially unknown. In order for the portion of
the truss on each side of the section to remain in equilibrium, it is nec-
essary to apply to each cut member the force which was exerted on it by
the member cut away. For simple trusses composed of straight two-force
members, these forces, either tensile or compressive, will always be in
the directions of the respective members. The left-hand section is in
equilibrium under the action of the applied load L, the end reaction R,
and the three forces exerted on the cut members by the right-hand sec-
tion which has been removed.

We can usually draw the forces with their proper senses by a visual
approximation of the equilibrium requirements. Thus, in balancing the
moments about point B for the left-hand section, the force EF is clearly
to the left, which makes it compressive, because it acts toward the cut
section of member EF. The load L is greater than the reaction R;, so
that the force BE must be up and to the right to supply the needed up-
ward component for vertical equilibrium. Force BE is therefore tensile,
since it acts away from the cut section.

With the approximate magnitudes of B; and L in mind we see that
the balance of moments about point E requires that BC be to the right. A
casual glance at the truss should lead to the same conclusion when it is
realized that the lower horizontal member will stretch under the tension
caused by bending. The equation of moments about joint B eliminates
three forces from the relation, and EF can be determined directly. The
force BE is calculated from the equilibrium equation for the y-direction.
Finally, we determine BC by balancing moments about point E. In this
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way each of the three unknowns has been determined independently of
the other two.

The right-hand section of the truss, Fig. 4/12b, is in equilibrium
under the action of R, and the same three forces in the cut members ap-
plied in the directions opposite to those for the left section. The proper
sense for the horizontal forces can easily be seen from the balance of
moments about points B and E.

Additional Considerations

It is essential to understand that in the method of sections an entire
portion of the truss is considered a single body in equilibrium. Thus, the
forces in members internal to the section are not involved in the analy-
sis of the section as a whole. To clarify the free body and the forces act-
ing externally on it, the cutting section is preferably passed through the
members and not the joints. We may use either portion of a truss for the
calculations, but the one involving the smaller number of forces will
usually yield the simpler solution.

In some cases the methods of sections and joints can be combined
for an efficient solution. For example, suppose we wish to find the force
in a central member of a large truss. Furthermore, suppose that it is not
possible to pass a section through this member without passing through
at least four unknown members. It may be possible to determine the
forces in nearby members by the method of sections and then progress
to the unknown member by the method of joints. Such a combination of
the two methods may be more expedient than exclusive use of either
method.

The moment equations are used to great advantage in the method
of sections. One should choose a moment center, either on or off the sec-
tion, through which as many unknown forces as possible pass.

It is not always possible to assign the proper sense of an unknown
force when the free-body diagram of a section is initially drawn. Once an
arbitrary assignment is made, a positive answer will verify the assumed
sense and a negative result will indicate that the force is in the sense op-
posite to that assumed. An alternative notation preferred by some is to
assign all unknown forces arbitrarily as positive in the tension direction
(away from the section) and let the algebraic sign of the answer distin-
guish between tension and compression. Thus, a plus sign would signify
tension and a minus sign compression. On the other hand, the advan-
tage of assigning forces in their correct sense on the free-body diagram
of a section wherever possible is that doing so emphasizes the physical
action of the forces more directly, and this practice is the one which is
preferred here.

Many simple trusses are periodic in
that there are repeated and identi-
cal structural sections.

© jockejansson/iStockphoto
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SAMPLE PROBLEM 4/3

Calculate the forces induced in members KL, CL, and CB by the 20-ton load
on the cantilever truss.

Solution. Although the vertical components of the reactions at A and M are
statically indeterminate with the two fixed supports, all members other than AM
are statically determinate. We may pass a section directly through members KL,
CL, and CB and analyze the portion of the truss to the left of this section as a
statically determinate rigid body.

The free-body diagram of the portion of the truss to the left of the section is
shown. A moment sum about L quickly verifies the assignment of CB as com-
pression, and a moment sum about C quickly discloses that KL is in tension. The
direction of CL is not quite so obvious until we observe that KL and CB intersect
at a point P to the right of G. A moment sum about P eliminates reference to KL
and CB and shows that CL must be compressive to balance the moment of the
20-ton force about P. With these considerations in mind the solution becomes
straightforward, as we now see how to solve for each of the three unknowns in-
dependently of the other two.

Summing moments about L requires finding the moment arm BL = 16 +
(26 — 16)/2 = 21 ft. Thus,
[XM; = 0] 20(5)(12) — CB(21) = 0 CB = 57.1 tons C Ans.
Next we take moments about C, which requires a calculation of cos 6. From the
given dimensions we see 0 = tan~1(5/12) so that cos 6 = 12/13. Therefore,
[XM. = 0] 20(4)(12) — %KL(IG) =0 KL = 65 tons T Ans.

Finally, we may find CL by a moment sum about P, whose distance from C
is given by PC/16 = 24/(26 — 16) or PC = 38.4 ft. We also need $3, which is given
by B = tan }(CB/BL) = tan"1(12/21) = 29.7° and cos 8 = 0.868. We now have

(3] [EM, = 0] 20(48 — 38.4) — CL(0.868)(38.4) = 0

CL = 5.76 tons C Ans.

20 tons
%]
KL L
y — /7¢
\ - CL
\ - /
e e ——x
P C CB
20 tons
Helpful Hints

@ We note that analysis by the method
of joints would necessitate working
with eight joints in order to calcu-
late the three forces in question.
Thus, the method of sections offers a
considerable advantage in this case.

® We could have started with mo-
ments about C or P just as well.

© We could also have determined CL
by a force summation in either the
x- or y-direction.
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SAMPLE PROBLEM 4/4

Calculate the force in member DJ of the Howe roof truss illustrated. Ne-
glect any horizontal components of force at the supports.

Solution. 1t is not possible to pass a section through DJ without cutting four
members whose forces are unknown. Although three of these cut by section 2 are
concurrent at J and therefore the moment equation about JJ could be used to ob-
tain DE, the force in DJ cannot be obtained from the remaining two equilibrium
principles. It is necessary to consider first the adjacent section 1 before analyzing
section 2.

The free-body diagram for section 1 is drawn and includes the reaction of
18.33 kN at A, which is previously calculated from the equilibrium of the truss
as a whole. In assigning the proper directions for the forces acting on the three
cut members, we see that a balance of moments about A eliminates the effects of
CD and JK and clearly requires that CJ be up and to the left. A balance of mo-
ments about C eliminates the effect of the three forces concurrent at C and indi-
cates that JK must be to the right to supply sufficient counterclockwise moment.
Again it should be fairly obvious that the lower chord is under tension because of
the bending tendency of the truss. Although it should also be apparent that the
top chord is under compression, for purposes of illustration the force in CD will
be arbitrarily assigned as tension.

By the analysis of section 1, CoJ is obtained from
[XM, = 0]

0.707CJ(12) — 10(4) — 10(8) =0 CJ =1414kN C

In this equation the moment of CJ is calculated by considering its horizontal and
vertical components acting at point JJ. Equilibrium of moments about JJ requires

[XM; = 0] 0.894CD(6) + 18.33(12) — 10(4) — 10(8) =0

CD = —18.63 kN

The moment of CD about JJ is calculated here by considering its two components
as acting through D. The minus sign indicates that CD was assigned in the
wrong direction.

Hence, CD = 1863 kN C

From the free-body diagram of section 2, which now includes the known
value of CJ, a balance of moments about G is seen to eliminate DE and JK.
Thus,

(XM = 0] 12DJ + 10(16) + 10(20) — 18.33(24) — 14.14(0.707)(12) =

DJ =16.67TkN T Ans.

Again the moment of CJ is determined from its components considered to be act-
ing at J. The answer for D/ is positive, so that the assumed tensile direction is
correct.

An alternative approach to the entire problem is to utilize section 1 to deter-
mine CD and then use the method of joints applied at D to determine DdJ.

A

18.33 kN

Helpful Hints

@ There is no harm in assigning one or

more of the forces in the wrong di-
rection, as long as the calculations
are consistent with the assumption.
A negative answer will show the
need for reversing the direction of
the force.

If desired, the direction of CD may
be changed on the free-body diagram
and the algebraic sign of CD re-
versed in the calculations, or else the
work may be left as it stands with a
note stating the proper direction.

10 kN

~

Vs 0

14.14 kKN >~

18.33 kN

© Observe that a section through mem-

bers CD, DJ, and DE could be taken
which would cut only three unknown
members. However, since the forces
in these three members are all con-
current at D, a moment equation
about D would yield no information
about them. The remaining two force
equations would not be sufficient to
solve for the three unknowns.

Section 2
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PROBLEMS

Introductory Problems

4/31 Determine the force in member CG.

H 10’ G 10 F 10 E

10’

5 kips 5 kips 5 kips

Problem 4/31

4/32 Determine the forces in members CG and GH of the
symmetrically loaded truss.

<—3m 4m 3m—=

C D

-
w
=
=

A 30° lF

L L
2 2

Problem 4/32

4/33 Determine the force in member BE of the loaded truss.

D
6 kN =——>—

2m

C
5 kN =3 E

4 kN F

——am——

Problem 4/33

4/34 Determine the force in member EF of the loaded
symmetrical truss. Assume no horizontal reactions
at the supports A and C.

E

po |t~

L

Problem 4/34
4/35 Calculate the forces in members AB, BG, and GF.
Solve for each force from an equilibrium equation

which contains that force as the only unknown.

6 kN

Agam Boam C 24m Yy

Problem 4/35

4/36 Determine the forces in members BC, CF, and EF of
the loaded truss.

Problem 4/36
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4/37 Determine the force in member DG of the loaded
truss.

’<— 5 panels at 4’ —)‘
L lL lL lL L L
E D C

3

Problem 4/37

4/38 Determine the forces in members BC, BE, and BF.
The triangles are equilateral.

Problem 4/38

Representative Problems

4/39 The signboard truss is designed to support a hor-
izontal wind load of 800 lb. If the resultant of this
load passes through point C, calculate the forces in
members BG and BF.

800 1b

Problem 4/39

4/40 The truss is composed of equilateral triangles of side
a and is supported and loaded as shown. Determine
the forces in members BC and CG.

Problem 4/40

4/41 Determine the forces in members BC and FG of the
loaded symmetrical truss. Show that this calculation
can be accomplished by using one section and two
equations, each of which contains only one of the
two unknowns. Are the results affected by the stati-
cal indeterminacy of the supports at the base?

D 12
300 1b B
7
o
J
200 1b —< F
o
100 1b —2 ! G
6/
Al o H

Problem 4/41

4/42 Determine the force in member DG for the truss
in terms of the load L. All internal angles are 60°.

B C

F

Problem 4/42
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4/43 The members CJ and CF of the loaded truss cross
but are not connected to members BI and DG. Com-
pute the forces in members BC, CJ, CI, and HI.

6 kN

3 m

H

4 kN 10 kN 8 kN

Problem 4/43

4/44 The truss is composed of equilateral triangles and
supports the load L. Determine the forces in mem-
bers CG and GF. Identify those members for which
the equations of equilibrium are not sufficient to
determine their forces.

Problem 4/44

4/45 The truss supports a ramp (shown with a dashed
line) which extends from a fixed approach level near
joint F to a fixed exit level near J. The loads shown
represent the weight of the ramp. Determine the
forces in members BH and CD.

L/2
Problem 4/45

4/46 The truss shown is composed of 45° right triangles.
The crossed members in the center two panels are
slender tie rods incapable of supporting compres-
sion. Retain the two rods which are under tension
and compute the magnitudes of their tensions. Also
find the force in member MN.

J H G F E D

M N

100 kN

Problem 4/46

4/47 The hinged frames ACE and DFB are connected by
two hinged bars, AB and CD, which cross without
being connected. Compute the force in AB.

M

Problem 4/47
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4/48 Compute the force in member GM of the loaded truss.

6 m

R @ P O N M L

8 panels at 3 m

Problem 4/48

4/49 Determine the force in member BE of the loaded
truss.

12 ‘ 16’ ‘ 12

Problem 4/49

4/50 Determine the forces in members DJ and EJ of the
loaded truss.

0.5m
C D E _

’\
F T15m
R
L L

I Iy
L L L
6 panels at 8 m

Problem 4/50

L
2

4/51 Determine the forces in members DE, EI, FI, and HI
of the arched roof truss.

<4>€69I66 4>‘<4 6 =<6 —><4=

‘ Q

Dimensions in meters

Problem 4/51

4/52 Determine the force in member HP of the loaded
truss. Members FP and G cross without touching
and are incapable of supporting compression.

9 panels at 20"

Problem 4/52

4/53 Determine the forces in members FG, CG, BC, and
EF for the loaded crane truss.

0.25 m

Problem 4/53
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4/54 Determine the force in member CG of the loaded
truss, repeated here from Prob. 4/27. The four
external reactions at A, B, E, and F are equal in mag-
nitude and are directed perpendicular to the local
supporting surfaces.

L L

Problem 4/54

4/55 Find the force in member J@ for the Baltimore truss
where all angles are 30°, 60°, 90°, or 120°.

U )4 w X Y

B C D E F GH| J| K L M

100 kKN 100 kN
Problem 4/55
»4/56 In the traveling bridge crane shown all crossed
members are slender tie rods incapable of support-
ing compression. Determine the forces in members

DF and EF and find the horizontal reaction on the
truss at A. Show that if CF = 0, DE = 0 also.

12 m%T<—5 panels at 8 m —————

e o XX

Problem 4/56

»4/57 Determine the force in member DG of the compound
truss. The joints all lie on radial lines subtending an-
gles of 15° as indicated, and the curved members act
as two-force members. Distance OC = OA = OB = R.

Problem 4/57

»>4/58 A design model for a transmission-line tower is
shown in the figure. Members GH, FG, OP, and NO
are insulated cables; all other members are steel
bars. For the loading shown, compute the forces in
members FI, FJ, EJ, EK, and ER. Use a combina-
tion of methods if desired.

‘4m‘4m‘4m‘4m 4m | 4m

54m

Problem 4/58
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4/5 Space Trusses

A space truss is the three-dimensional counterpart of the plane
truss described in the three previous articles. The idealized space truss
consists of rigid links connected at their ends by ball-and-socket joints
(such a joint is illustrated in Fig. 3/8 in Art. 3/4). Whereas a triangle of
pin-connected bars forms the basic noncollapsible unit for the plane
truss, a space truss, on the other hand, requires six bars joined at their
ends to form the edges of a tetrahedron as the basic noncollapsible unit.
In Fig. 4/13a the two bars AD and BD joined at D require a third sup-
port CD to keep the triangle ADB from rotating about AB. In Fig. 4/13b
the supporting base is replaced by three more bars AB, BC, and AC to
form a tetrahedron not dependent on the foundation for its own rigidity.

We may form a new rigid unit to extend the structure with three ad-
ditional concurrent bars whose ends are attached to three fixed joints on
the existing structure. Thus, in Fig. 4/13c the bars AF, BF, and CF are
attached to the foundation and therefore fix point F' in space. Likewise
point H is fixed in space by the bars AH, DH, and CH. The three addi-
tional bars CG, FG, and HG are attached to the three fixed points C, F,
and H and therefore fix G in space. The fixed point E is similarly cre-
ated. We see now that the structure is entirely rigid. The two applied
loads shown will result in forces in all of the members. A space truss
formed in this way is called a simple space truss.

Ideally there must be point support, such as that given by a ball-
and-socket joint, at the connections of a space truss to prevent bend-
ing in the members. As in riveted and welded connections for plane
trusses, if the centerlines of joined members intersect at a point, we
can justify the assumption of two-force members under simple tension
and compression.

Statically Determinate Space Trusses

When a space truss is supported externally so that it is statically de-
terminate as an entire unit, a relationship exists between the number of
its joints and the number of its members necessary for internal stability
without redundancy. Because the equilibrium of each joint is specified by
three scalar force equations, there are in all 3j such equations for a space
truss with j joints. For the entire truss composed of m members there are
m unknowns (the tensile or compressive forces in the members) plus six
unknown support reactions in the general case of a statically determinate
space structure. Thus, for any space truss, the equation m + 6 = 3;j will be
satisfied if the truss is statically determinate internally. A simple space
truss satisfies this relation automatically. Starting with the initial tetra-
hedron, for which the equation holds, the structure is extended by adding
three members and one joint at a time, thus preserving the equality.

As in the case of the plane truss, this relation is a necessary condi-
tion for stability, but it is not a sufficient condition, since one or more
of the m members can be arranged in such a way as not to contribute
to a stable configuration of the entire truss. If m + 6 > 3j, there are
more members than there are independent equations, and the truss is
statically indeterminate internally with redundant members present.

(c)

Figure 4/13
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Space trusses are used in the design
of many transmission-line towers.

If m + 6 < 3j, there is a deficiency of internal members, and the truss
is unstable and subject to collapse under load. This relationship be-
tween the number of joints and the number of members is very helpful
in the preliminary design of a stable space truss, since the configura-
tion is not as obvious as with a plane truss, where the geometry for
statical determinacy is generally quite apparent.

Method of Joints for Space Trusses

The method of joints developed in Art. 4/3 for plane trusses may be
extended directly to space trusses by satisfying the complete vector
equation

XF =0 (4/1)

for each joint. We normally begin the analysis at a joint where at least one
known force acts and not more than three unknown forces are present.
Adjacent joints on which not more than three unknown forces act may
then be analyzed in turn.

This step-by-step joint technique tends to minimize the number of
simultaneous equations to be solved when we must determine the forces
in all members of the space truss. For this reason, although it is not
readily reduced to a routine, such an approach is recommended. As an
alternative procedure, however, we may simply write 3j joint equations
by applying Eq. 4/1 to all joints of the space frame. The number of un-
knowns will be m + 6 if the structure is noncollapsible when removed
from its supports and those supports provide six external reactions.
If, in addition, there are no redundant members, then the number of
equations (3j) equals the number of unknowns (m + 6), and the entire
system of equations can be solved simultaneously for the unknowns. Be-
cause of the large number of coupled equations, a computer solution is
usually required. With this latter approach, it is not necessary to begin
at a joint where at least one known and no more than three unknown
forces act.

Method of Sections for Space Trusses

The method of sections developed in the previous article may also
be applied to space trusses. The two vector equations

SF=0 and SM=0

must be satisfied for any section of the truss, where the zero moment
sum will hold for all moment axes. Because the two vector equations are
equivalent to six scalar equations, we conclude that, in general, a sec-
tion should not be passed through more than six members whose forces
are unknown. The method of sections for space trusses is not widely
used, however, because a moment axis can seldom be found which elimi-
nates all but one unknown, as in the case of plane trusses.

Vector notation for expressing the terms in the force and moment
equations for space trusses is of considerable advantage and is used in
the sample problem which follows.
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SAMPLE PROBLEM 4/5

The space truss consists of the rigid tetrahedron ABCD anchored by a ball-
and-socket connection at A and prevented from any rotation about the x-, y-, or
z-axes by the respective links 1, 2, and 3. The load L is applied to joint E, which
is rigidly fixed to the tetrahedron by the three additional links. Solve for the
forces in the members at joint E and indicate the procedure for the determina-
tion of the forces in the remaining members of the truss.

Solution. We note first that the truss is supported with six properly placed
constraints, which are the three at A and the links 1, 2, and 3. Also, with m = 9
members and j = 5 joints, the condition m + 6 = 3; for a sufficiency of members
to provide a noncollapsible structure is satisfied.

The external reactions at A, B, and D can be calculated easily as a first step,
although their values will be determined from the solution of all forces on each
of the joints in succession.

We start with a joint on which at least one known force and not more than
three unknown forces act, which in this case is joint E. The free-body diagram of
joint E is shown with all force vectors arbitrarily assumed in their positive ten-
sion directions (away from the joint). The vector expressions for the three un-
known forces are

F F F
—EB i), FEC:A§§(—31—4kL FM):Agg(—m«—4k)

F., =
EB \/5

Equilibrium of joint E requires

[EF=0] L+Fg+Fu+Fp=0 or

F F F
—Li+EB(—i—j) +EC(-8i+4k) + L2 (-3j—4k) =0
/2 5 5

Rearranging terms gives
_L_@_3FEC>H_ _Fpp  3Fpp .+<_4FEC_4FED>k=0
J2 5 J2 5 5 5

Equating the coefficients of the i-, j-, and k-unit vectors to zero gives the three
equations

Fpp  3Fpc _ _;  Fep  3Fmp _
V2 8 V2. b

Solving the equations gives us

0 Fpo+ Fgp=0

Fgp=—-L/J2  Fzo=-5L6  Fgp=>5L/6 Ans.

Thus, we conclude that Fzp and Fgc are compressive forces and Fgp is tension.

Unless we have computed the external reactions first, we must next analyze
joint C with the known value of Fg¢ and the three unknowns Fcp, Foa, and Fep.
The procedure is identical with that used for joint E. Joints B, D, and A are then
analyzed in the same way and in that order, which limits the scalar unknowns to
three for each joint. The external reactions computed from these analyses must,
of course, agree with the values which can be determined initially from an analy-
sis of the truss as a whole.

Helpful Hints

@ Suggestion: Draw a free-body dia-
gram of the truss as a whole and ver-
ify that the external forces acting on
the truss are A, = Li, A, = Lj, A, =
(4L/3)k, B, = 0, D, = —Lj, D, =
—(4L/3)k.

@ With this assumption, a negative
numerical value for a force indicates

compression.
z
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PROBLEMS

(In the following problems, use plus for tension and minus
for compression.)

4/59 Determine the forces in members AB, AC, and AD.

Problem 4/59

4/60 The base of an automobile jackstand forms an equi-
lateral triangle of side length 10 in. and is centered
under the collar A. Model the structure as one with a
ball and socket at each joint and determine the forces
in members BC, BD, and CD. Neglect any horizontal
reaction components under the feet B, C, and D.

800 1b

Problem 4/60

4/61 The depicted structure is under consideration as the
upper portion of a transmission-line tower and is
supported at points F, G, H, and I. Point C is directly
above the center of rectangle FGHI. Determine the
force in member CD.

1.25a

Problem 4/61

4/62 The space truss in the form of a tetrahedron is sup-
ported by ball-and-socket connections at its base
points A and B and is prevented from rotating about
AB by the vertical tie bar CD. After noting the verti-
cal components of the reactions under the symmetri-
cal truss at A and B, draw a free-body diagram of the
triangular configuration of links BDE and determine
the x-component of the force exerted by the founda-
tion on the truss at B.

Problem 4/62
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4/63 Determine the forces in members AC and BD of the
inverted pyramidal truss with rectangular base.
Point M is the midpoint of BD.

AM = 6a
Problem 4/63

4/64 The space truss of Prob. 4/63 is modified as shown
in that its supports and loading are altered. Deter-
mine the forces in members AC and BD and com-
pare with the results of Prob. 4/63.

AM =6a

Problem 4/64

4/65 For the space truss shown, check the sufficiency of
the supports and also the number and arrangement
of the members to ensure statical determinacy, both
external and internal. By inspection determine the
forces in members DC, CB, and CF. Calculate the
force in member AF and the x-component of the reac-
tion on the truss at D.

Problem 4/65

4/66 The space truss is shown in an intermediate stage of
design. The external constraints indicated are suffi-
cient to maintain external equilibrium. How many
additional members are needed to prevent internal
instability and where can they be placed?

Problem 4/66
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4/67 Determine the forces in members AD and DG.

Problem 4/67

4/68 The tetrahedral space truss has a horizontal base
ABC in the form of an isosceles triangle and legs AD,
BD, and CD which support the mass m from point D.
Each vertex of the base is suspended by a vertical
wire from an overhead support. Calculate the forces
induced in members AC and AB.

Problem 4/69

4/70 Each of the support points B, C, D, E, and F is
assumed to have simple frictionless contact with the
horizontal supporting surface. For the vertical load
L shown, what would be the forces in all members if
members BD and DF were removed? How would
your solution change if BD and DF were present?

Problem 4/68 Problem 4/70

4/69 The space truss shown is secured to the fixed sup-
ports at A, B, and E and is loaded by the force L
which has equal x- and y-components but no vertical
z-component. Show that there is a sufficient number
of members to provide internal stability and that
their placement is adequate for this purpose. Next
determine the forces in members CD, BC, and CE.
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4/71 The pyramidal truss section BCDEF is symmetric »4/72 A space truss is constructed in the form of a cube

about the vertical x-z plane as shown. Cables AE, with six diagonal members shown. Verify that the
AF, and AB support a 5-kN load. Determine the truss is internally stable. If the truss is subjected to
force in member BE. the compressive forces P applied at F and D along
the diagonal FD, determine the forces in members
\ 360 360 FE and EG.
mm %

Problem 4/72

Problem 4/71
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This “jaws-of-life” machine is used by
rescuers to pry apart wreckage.

4/6 Frames and Machines

A structure is called a frame or machine if at least one of its individ-
ual members is a multiforce member. A multiforce member is defined as
one with three or more forces acting on it, or one with two or more
forces and one or more couples acting on it. Frames are structures
which are designed to support applied loads and are usually fixed in po-
sition. Machines are structures which contain moving parts and are de-
signed to transmit input forces or couples to output forces or couples.

Because frames and machines contain multiforce members, the
forces in these members in general will not be in the directions of the
members. Therefore, we cannot analyze these structures by the meth-
ods developed in Arts. 4/3, 4/4, and 4/5 because these methods apply to
simple trusses composed of two-force members where the forces are in
the directions of the members.

Interconnected Rigid Bodies with Multiforce Members

In Chapter 3 we discussed the equilibrium of multiforce bodies, but
we concentrated on the equilibrium of a single rigid body. In the present
article we focus on the equilibrium of interconnected rigid bodies which in-
clude multiforce members. Although most such bodies may be analyzed as
two-dimensional systems, there are numerous examples of frames and
machines which are three-dimensional.

The forces acting on each member of a connected system are found
by isolating the member with a free-body diagram and applying the
equations of equilibrium. The principle of action and reaction must be
carefully observed when we represent the forces of interaction on the
separate free-body diagrams. If the structure contains more members or
supports than are necessary to prevent collapse, then, as in the case of
trusses, the problem is statically indeterminate, and the principles of
equilibrium, although necessary, are not sufficient for solution. Al-
though many frames and machines are statically indeterminate, we will
consider in this article only those which are statically determinate.

If the frame or machine constitutes a rigid unit by itself when re-
moved from its supports, like the A-frame in Fig. 4/14a, the analysis is
best begun by establishing all the forces external to the structure
treated as a single rigid body. We then dismember the structure and
consider the equilibrium of each part separately. The equilibrium equa-
tions for the several parts will be related through the terms involving

QD *\ 9
N J Y
Rigid Nonrigid
noncollapsible collapsible

(@) ®

Figure 4/14
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the forces of interaction. If the structure is not a rigid unit by itself but
depends on its external supports for rigidity, as illustrated in Fig. 4/14b,
then the calculation of the external support reactions cannot be com-
pleted until the structure is dismembered and the individual parts are
analyzed.

Force Representation and Free-Body Diagrams

In most cases the analysis of frames and machines is facilitated by
representing the forces in terms of their rectangular components. This
is particularly so when the dimensions of the parts are given in mutu-
ally perpendicular directions. The advantage of this representation is
that the calculation of moment arms is simplified. In some three-dimen-
sional problems, particularly when moments are evaluated about axes
which are not parallel to the coordinate axes, use of vector notation is
advantageous.

It is not always possible to assign the proper sense to every force or
its components when drawing the free-body diagrams, and it becomes
necessary to make an arbitrary assignment. In any event, it is absolutely
necessary that a force be consistently represented on the diagrams for in-
teracting bodies which involve the force in question. Thus, for two bod-
ies connected by the pin A, Fig. 4/15a, the force components must be
consistently represented in opposite directions on the separate free-body
diagrams.

For a ball-and-socket connection between members of a space
frame, we must apply the action-and-reaction principle to all three com-
ponents as shown in Fig. 4/15b. The assigned directions may prove to be
wrong when the algebraic signs of the components are determined upon
calculation. If A,, for instance, should turn out to be negative, it is actu-
ally acting in the direction opposite to that originally represented. Ac- Figure 4/15
cordingly, we would need to reverse the direction of the force on both
members and to reverse the sign of its force terms in the equations. Or
we may leave the representation as originally made, and the proper ‘
sense of the force will be understood from the negative sign. If we
choose to use vector notation in labeling the forces, then we must be %
careful to use a plus sign for an action and a minus sign for the corre-
sponding reaction, as shown in Fig. 4/16.

We may occasionally need to solve two or more equations simulta- 4
neously in order to separate the unknowns. In most instances, however, A: —3—o
we can avoid simultaneous solutions by careful choice of the member or </
group of members for the free-body diagram and by a careful choice of Vector
moment axes which will eliminate undesired terms from the equations. A, notation
The method of solution described in the foregoing paragraphs is illus-
trated in the following sample problems. Figure 4/16

®)
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SAMPLE PROBLEM 4/6

The frame supports the 400-kg load in the manner shown. Neglect the
weights of the members compared with the forces induced by the load and com-
pute the horizontal and vertical components of all forces acting on each of the
members.

Solution. We observe first that the three supporting members which consti-
tute the frame form a rigid assembly that can be analyzed as a single unit. We
also observe that the arrangement of the external supports makes the frame sta-
tically determinate.

From the free-body diagram of the entire frame we determine the external
reactions. Thus,

[EM, = 0] 5.5(0.4)9.81) —5D =0 D =4.32kN
[XF, = 0] A, —432=0 A ,=432kN
[XF, = 0] A,—392=0 A, =392kN

Next we dismember the frame and draw a separate free-body diagram of
each member. The diagrams are arranged in their approximate relative positions
to aid in keeping track of the common forces of interaction. The external reac-
tions just obtained are entered onto the diagram for AD. Other known forces are
the 3.92-kN forces exerted by the shaft of the pulley on the member BF, as ob-
tained from the free-body diagram of the pulley. The cable tension of 3.92 kN is
also shown acting on AD at its attachment point.

Next, the components of all unknown forces are shown on the diagrams.
Here we observe that CE is a two-force member. The force components on CE
have equal and opposite reactions, which are shown on BF at E and on AD at C.
We may not recognize the actual sense of the components at B at first glance, so
they may be arbitrarily but consistently assigned.

The solution may proceed by use of a moment equation about B or E for
member BF, followed by the two force equations. Thus,

[ZMj = 0] 3.92(5) - 2E,(3) =0  E, =13.08kN Ans.
[SF, = 0] B,+392-13.082=0 B, =262kN Ans.
[XF, = 0] B,+392-1308=0 B, =915kN Ans.

Positive numerical values of the unknowns mean that we assumed their direc-
tions correctly on the free-body diagrams. The value of C, = E, = 13.08 kN ob-
tained by inspection of the free-body diagram of CE is now entered onto the
diagram for AD, along with the values of B, and B, just determined. The equa-
tions of equilibrium may now be applied to member AD as a check, since all the
forces acting on it have already been computed. The equations give

[XM, = 0] 4.32(3.5) + 4.32(1.5) — 3.92(2) — 9.15(1.5) = 0
[XF, = 0] 4.32 —13.08 + 9.15 + 3.92 + 432 =0
[XF, = 0] —13.08/2 + 2.62 + 3.92 =0
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Helpful Hints

@ We sce that the frame corresponds to
the category illustrated in Fig. 4/14a.
@ Without this observation, the prob-
lem solution would be much longer,
because the three equilibrium equa-
tions for member BF would contain
four unknowns: B,, B,, E,, and E,.
Note that the direction of the line
joining the two points of force appli-
cation, and not the shape of the mem-
ber, determines the direction of the
forces acting on a two-force member.

A,
AﬂiW y
L ——x

—

0.4(9.81)
=3.92kN

3.92 kN

A, =3.92kN
/T 3.92 kN —)\-} ‘
A= | 3.92kN| 13.92kN
E

=
432 kI\L% N 3.92 kN
B L 4

y —<e e
1 B, 1. <1 3.92 kN
By ot

(e




Article 4/6

Frames and Machines 207

SAMPLE PROBLEM 4/7

Neglect the weight of the frame and compute the forces acting on all of its
members.

Solution. We note first that the frame is not a rigid unit when removed from
its supports since BDEF is a movable quadrilateral and not a rigid triangle. Con-
sequently the external reactions cannot be completely determined until the indi-
vidual members are analyzed. However, we can determine the vertical
components of the reactions at A and C from the free-body diagram of the frame
as a whole. Thus,

[XM = 0]

50(12) + 30(40) — Ans.

304, = 0
C, - 50(4/5) — 60 = 0

A, =601b

[XF, = 0] C,=1001b Ans.

Next we dismember the frame and draw the free-body diagram of each part.
Since EF is a two-force member, the direction of the force at E on ED and at F on
AB is known. We assume that the 30-1b force is applied to the pin as a part of
member BC. There should be no difficulty in assigning the correct directions for
forces E, F, D, and B,. The direction of B,, however, may not be assigned by inspec-

tion and therefore is arbitrarily shown as downward on AB and upward on BC.

Member ED. The two unknowns are easily obtained by

[XMp = 0] 50(12) —12E =0 E =501b Ans.

[XF = 0] D-50-50=0 D =1001b Ans.

Member EF. Clearly F is equal and opposite to E with the magnitude of 50 Ib.

Member AB. Since F is now known, we solve for B,, A,, and B, from

[EM, = 0] 50(3/5)(20) — B,(40) =0 B, =151b Ans.
[SF, = 0] A, +15-5085)=0 A, ,=15Db Ans.
[ZF, = 0] 50(4/5) — 60 —B,=0  B,=-201lb Ans.

The minus sign shows that we assigned B, in the wrong direction.

Member BC. The results for B,, B, and D are now transferred to BC, and the
remaining unknown C, is found from
[XF, = 0] 30 + 100(3/5) — 15— C, =0

C,=751b Ans.

We may apply the remaining two equilibrium equations as a check. Thus,

[ZF, = 0] 100 + (—20) — 100(4/5) =

[XM = 0] (30 — 15)(40) + (—20)(30) =

Helpful Hints

@ We see that this frame corresponds to
the category illustrated in Fig. 4/14b.

@ The directions of A, and C, are not
obvious initially and can be assigned
arbitrarily, to be corrected later if
necessary.

© Alternatively the 30-1b force could
be applied to the pin considered a
part of BA, with a resulting change
in the reaction B,.

LB B-(l)-SO Ib

SN

X
r%k

,=601b E

@O Alternatively we could have re-
turned to the free-body diagram of
the frame as a whole and found C,.

C,=1001b
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SAMPLE PROBLEM 4/8

The machine shown is designed as an overload protection device which re-
leases the load when it exceeds a predetermined value T'. A soft metal shear pin
S is inserted in a hole in the lower half and is acted on by the upper half. When
the total force on the pin exceeds its strength, it will break. The two halves then
rotate about A under the action of the tensions in BD and CD, as shown in the
second sketch, and rollers E and F release the eye bolt. Determine the maximum
allowable tension T if the pin S will shear when the total force on it is 800 N.
Also compute the corresponding force on the hinge pin A.

Solution. Because of symmetry we analyze only one of the two hinged mem-
bers. The upper part is chosen, and its free-body diagram along with that for the
connection at D is drawn. Because of symmetry the forces at S and A have no

@ x-components. The two-force members BD and CD exert forces of equal magni-
tude B = C on the connection at D. Equilibrium of the connection gives

[XF, = 0] BcosO +Ccosf—T=0 2Bcos6 =T
B = T/(2 cos 6)

From the free-body diagram of the upper part we express the equilibrium of
moments about point A. Substituting S = 800 N and the expression for B gives

T T
2 cos 0 (cos 6)(50) + 2 cos 0

e =M, =0] (sin 6)(36) — 36(800) — g (26) =0

Substituting sin 6/cos 6 = tan # = 5/12 and solving for T' give

5(36)
T(25 + 222 _13) =2
( 5 2(12) 3) 8 800
T =1477TN or T = 1477 kN Ans.

Finally, equilibrium in the y-direction gives us
[XF, = 0] S—Bsinf—-A=0

1477 5 4 _9 A=492N Ans.

800 = 9 19/13) 13

120 36 |60
Bseimy
A E| 24
50 : & T
\/CD o5 O O
i S \I.
T D 1>t > T
Dimensions Oc =

in millimeters

Released
position

Helpful Hints

@ 1t is always useful to recognize sym-
metry. Here it tells us that the forces
acting on the two parts behave as
mirror images of each other with re-
spect to the x-axis. Thus, we cannot
have an action on one member in the
plus x-direction and its reaction on
the other member in the negative
x-direction. Consequently the forces
at S and A have no x-components.

@ Be careful not to forget the moment of
the y-component of B. Note that our
units here are newton-millimeters.
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SAMPLE PROBLEM 4/9
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